-
2
-
-
0036836408
-
New multiscale transforms, minimum total variation synthesis: Applications to edge-preserving image reconstruction
-
Candès E.J., Guo F. New multiscale transforms, minimum total variation synthesis. applications to edge-preserving image reconstruction Signal Processing. 82(11):2002;1519-1543.
-
(2002)
Signal Processing
, vol.82
, Issue.11
, pp. 1519-1543
-
-
Candès, E.J.1
Guo, F.2
-
3
-
-
0038514136
-
A best wavelet packet basis for joint image deblurring-denoising and compression
-
SPIE 47th Annual Meeting
-
P. Dhérété, S. Durand, J. Froment, B. Rougé, A best wavelet packet basis for joint image deblurring-denoising and compression, in: SPIE 47th Annual Meeting, Proceedings of SPIE Vol. 4793, 2002.
-
(2002)
Proceedings of SPIE
, vol.4793
-
-
Dhérété, P.1
Durand, S.2
Froment, J.3
Rougé, B.4
-
4
-
-
0000370306
-
Nonlinear wavelet methods for recovery of signals, densities, and spectra from indirect and noisy data
-
American Mathematical Society, Providence, RI
-
D.L. Donoho, Nonlinear wavelet methods for recovery of signals, densities, and spectra from indirect and noisy data, in: Proceedings of Symposia in Applied Mathematics, Vol. 47, American Mathematical Society, Providence, RI, 1993, pp. 173-205.
-
(1993)
Proceedings of Symposia in Applied Mathematics
, vol.47
, pp. 173-205
-
-
Donoho, D.L.1
-
5
-
-
0029288068
-
Nonlinear solution of inverse problems by wavelet-vaguelette decomposition
-
Donoho D.L. Nonlinear solution of inverse problems by wavelet-vaguelette decomposition. Appl. Comput. Harmon. Anal. 2:1995;101-126.
-
(1995)
Appl. Comput. Harmon. Anal.
, vol.2
, pp. 101-126
-
-
Donoho, D.L.1
-
6
-
-
0042636645
-
Reconstruction of wavelet coefficients using total variation minimization
-
CMLA, November
-
S. Durand, J. Froment, Reconstruction of wavelet coefficients using total variation minimization, Technical Report 2001-18, CMLA, November 2001.
-
(2001)
Technical Report
, vol.18
-
-
Durand, S.1
Froment, J.2
-
8
-
-
0013212026
-
Mathematical analysis of a model which combines total variation and wavelet for image restoration
-
Malgouyres F. Mathematical analysis of a model which combines total variation and wavelet for image restoration. J. Inform. Process. 2(1):2002;1-10.
-
(2002)
J. Inform. Process.
, vol.2
, Issue.1
, pp. 1-10
-
-
Malgouyres, F.1
-
12
-
-
0035767715
-
Very high quality image restoration
-
A. Laine, M.A. Unser, A. Aldroubi (Eds.), SPIE Conference on Signal and Image Processing: Wavelet Applications in Signal and Image Processing IX
-
J.-L. Starck, D.L. Donoho, E. Candès, Very high quality image restoration, in: A. Laine, M.A. Unser, A. Aldroubi (Eds.), SPIE Conference on Signal and Image Processing: Wavelet Applications in Signal and Image Processing IX, Proceedings of SPIE, Vol. 4478, 2001.
-
(2001)
Proceedings of SPIE
, vol.4478
-
-
Starck, J.-L.1
Donoho, D.L.2
Candès, E.3
|