메뉴 건너뛰기




Volumn 14, Issue 9, 2017, Pages 849-863

Data-analysis strategies for image-based cell profiling

(24)  Caicedo, Juan C a   Cooper, Sam b   Heigwer, Florian c   Warchal, Scott d   Qiu, Peng e   Molnar, Csaba f   Vasilevich, Aliaksei S g   Barry, Joseph D h   Bansal, Harmanjit Singh i   Kraus, Oren j   Wawer, Mathias a   Paavolainen, Lassi k   Herrmann, Markus D l   Rohban, Mohammad a   Hung, Jane a,m   Hennig, Holger n   Concannon, John o   Smith, Ian a   Clemons, Paul A a   Singh, Shantanu a   more..


Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHM; ARTICLE; CELL ASSAY; CELL LEVEL; CELL STRUCTURE; DATA ANALYSIS; HUMAN; ILLUMINATION; IMAGE ANALYSIS; IMAGE BASED CELL PROFILING; IMAGE PROCESSING; IMAGE QUALITY; MACHINE LEARNING; MOLECULAR IMAGING; PHENOTYPE; PRIORITY JOURNAL; PROCEDURES CONCERNING CELLS; QUALITY CONTROL; SUPPORT VECTOR MACHINE; ANIMAL; AUTOMATED PATTERN RECOGNITION; CELL TRACKING; COMPUTER ASSISTED DIAGNOSIS; HIGH THROUGHPUT SCREENING; MICROSCOPY; PROCEDURES; STATISTICAL ANALYSIS; TISSUE MICROARRAY;

EID: 85028727120     PISSN: 15487091     EISSN: 15487105     Source Type: Journal    
DOI: 10.1038/nmeth.4397     Document Type: Article
Times cited : (523)

References (150)
  • 1
    • 84949495449 scopus 로고    scopus 로고
    • Microscopy-based high-content screening
    • Boutros, M., Heigwer, F. & Laufer, C. Microscopy-based high-content screening. Cell 163, 1314-1325 (2015).
    • (2015) Cell , vol.163 , pp. 1314-1325
    • Boutros, M.1    Heigwer, F.2    Laufer, C.3
  • 2
    • 84964647459 scopus 로고    scopus 로고
    • High-content screening for quantitative cell biology
    • Mattiazzi Usaj, M. et al. High-content screening for quantitative cell biology. Trends Cell Biol. 26, 598-611 (2016).
    • (2016) Trends Cell Biol. , vol.26 , pp. 598-611
    • Mattiazzi Usaj, M.1
  • 4
    • 84971571441 scopus 로고    scopus 로고
    • 'Cell painting' highlights responses to drugs and toxins
    • Pennisi, E. 'Cell painting' highlights responses to drugs and toxins. Science 352, 877-878 (2016).
    • (2016) Science , vol.352 , pp. 877-878
    • Pennisi, E.1
  • 5
    • 85008602558 scopus 로고    scopus 로고
    • Machine learning and computer vision approaches for phenotypic profiling
    • Grys, B.T. et al. Machine learning and computer vision approaches for phenotypic profiling. J. Cell Biol. 216, 65-71 (2017).
    • (2017) J. Cell Biol. , vol.216 , pp. 65-71
    • Grys, B.T.1
  • 6
    • 67650070045 scopus 로고    scopus 로고
    • Multi-parameter phenotypic profiling: Using cellular effects to characterize small-molecule compounds
    • Feng, Y., Mitchison, T.J., Bender, A., Young, D.W. & Tallarico, J.A. Multi-parameter phenotypic profiling: using cellular effects to characterize small-molecule compounds. Nat. Rev. Drug Discov. 8, 567-578 (2009).
    • (2009) Nat. Rev. Drug Discov. , vol.8 , pp. 567-578
    • Feng, Y.1    Mitchison, T.J.2    Bender, A.3    Young, D.W.4    Tallarico, J.A.5
  • 7
    • 85028708724 scopus 로고    scopus 로고
    • Multidimensional profile based screening: Understanding biology through cellular response signatures
    • (eds. Bittker, J.A. & Ross, N.T.) (RSC Publishing)
    • Mader, C.C., Subramanian, A. & Bittker, J. Multidimensional profile based screening: understanding biology through cellular response signatures. in High Throughput Screening Methods: Evolution and Refinement (eds. Bittker, J.A. & Ross, N.T.) 214-238 (RSC Publishing, 2016).
    • (2016) High Throughput Screening Methods: Evolution and Refinement , pp. 214-238
    • Mader, C.C.1    Subramanian, A.2    Bittker, J.3
  • 8
  • 9
    • 85013236905 scopus 로고    scopus 로고
    • Large-scale image-based screening and profiling of cellular phenotypes
    • Bougen-Zhukov, N., Loh, S.Y., Lee, H.K. & Loo, L.-H. Large-scale image-based screening and profiling of cellular phenotypes. Cytometry A 91, 115-125 (2017).
    • (2017) Cytometry A , vol.91 , pp. 115-125
    • Bougen-Zhukov, N.1    Loh, S.Y.2    Lee, H.K.3    Loo, L.-H.4
  • 10
    • 84891388151 scopus 로고    scopus 로고
    • Multiplex cytological profiling assay to measure diverse cellular states
    • Gustafsdottir, S.M. et al. Multiplex cytological profiling assay to measure diverse cellular states. PLoS One 8, e80999 (2013).
    • (2013) PLoS One , vol.8 , pp. e80999
    • Gustafsdottir, S.M.1
  • 11
    • 85015335626 scopus 로고    scopus 로고
    • Cell Painting, a high-content image-based assay for morphological profiling using multiplexed fluorescent dyes
    • Bray, M.-A. et al. Cell Painting, a high-content image-based assay for morphological profiling using multiplexed fluorescent dyes. Nat. Protoc. 11, 1757-1774 (2016).
    • (2016) Nat. Protoc. , vol.11 , pp. 1757-1774
    • Bray, M.-A.1
  • 12
    • 84953790713 scopus 로고    scopus 로고
    • Improving drug discovery with high-content phenotypic screens by systematic selection of reporter cell lines
    • Kang, J. et al. Improving drug discovery with high-content phenotypic screens by systematic selection of reporter cell lines. Nat. Biotechnol. 34, 70-77 (2016).
    • (2016) Nat. Biotechnol. , vol.34 , pp. 70-77
    • Kang, J.1
  • 13
    • 77950387346 scopus 로고    scopus 로고
    • Phenotypic profiling of the human genome by time-lapse microscopy reveals cell division genes
    • Neumann, B. et al. Phenotypic profiling of the human genome by time-lapse microscopy reveals cell division genes. Nature 464, 721-727 (2010).
    • (2010) Nature , vol.464 , pp. 721-727
    • Neumann, B.1
  • 14
    • 84878891119 scopus 로고    scopus 로고
    • Innovation in academic chemical screening: Filling the gaps in chemical biology
    • Hasson, S.A. & Inglese, J. Innovation in academic chemical screening: filling the gaps in chemical biology. Curr. Opin. Chem. Biol. 17, 329-338 (2013).
    • (2013) Curr. Opin. Chem. Biol. , vol.17 , pp. 329-338
    • Hasson, S.A.1    Inglese, J.2
  • 15
    • 84928923564 scopus 로고    scopus 로고
    • CIDRE: An illumination-correction method for optical microscopy
    • Smith, K. et al. CIDRE: an illumination-correction method for optical microscopy. Nat. Methods 12, 404-406 (2015).
    • (2015) Nat. Methods , vol.12 , pp. 404-406
    • Smith, K.1
  • 16
    • 84911493504 scopus 로고    scopus 로고
    • Pipeline for illumination correction of images for high-throughput microscopy
    • Singh, S., Bray, M.-A., Jones, T.R. & Carpenter, A.E. Pipeline for illumination correction of images for high-throughput microscopy. J. Microsc. 256, 231-236 (2014).
    • (2014) J. Microsc. , vol.256 , pp. 231-236
    • Singh, S.1    Bray, M.-A.2    Jones, T.R.3    Carpenter, A.E.4
  • 17
    • 0034056035 scopus 로고    scopus 로고
    • Retrospective shading correction based on entropy minimization
    • Likar, B., Maintz, J.B., Viergever, M.A. & Pernus, F. Retrospective shading correction based on entropy minimization. J. Microsc. 197, 285-295 (2000).
    • (2000) J. Microsc. , vol.197 , pp. 285-295
    • Likar, B.1    Maintz, J.B.2    Viergever, M.A.3    Pernus, F.4
  • 19
    • 81255185359 scopus 로고    scopus 로고
    • Evaluation of three methods for retrospective correction of vignetting on medical microscopy images utilizing two open source software tools
    • Babaloukas, G., Tentolouris, N., Liatis, S., Sklavounou, A. & Perrea, D. Evaluation of three methods for retrospective correction of vignetting on medical microscopy images utilizing two open source software tools. J. Microsc. 244, 320-324 (2011).
    • (2011) J. Microsc. , vol.244 , pp. 320-324
    • Babaloukas, G.1    Tentolouris, N.2    Liatis, S.3    Sklavounou, A.4    Perrea, D.5
  • 21
    • 84983804197 scopus 로고    scopus 로고
    • Accurate morphology preserving segmentation of overlapping cells based on active contours
    • Molnar, C. et al. Accurate morphology preserving segmentation of overlapping cells based on active contours. Sci. Rep. 6, 32412 (2016).
    • (2016) Sci. Rep. , vol.6 , pp. 32412
    • Molnar, C.1
  • 24
    • 33845792555 scopus 로고    scopus 로고
    • CellProfiler: Image analysis software for identifying and quantifying cell phenotypes
    • Carpenter, A.E. et al. CellProfiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol. 7, R100 (2006).
    • (2006) Genome Biol. , vol.7 , pp. R100
    • Carpenter, A.E.1
  • 25
    • 0037272440 scopus 로고    scopus 로고
    • A feature set for cytometry on digitized microscopic images
    • Rodenacker, K. & Bengtsson, E. A feature set for cytometry on digitized microscopic images. Anal. Cell. Pathol. 25, 1-36 (2003).
    • (2003) Anal. Cell. Pathol. , vol.25 , pp. 1-36
    • Rodenacker, K.1    Bengtsson, E.2
  • 28
    • 0023016186 scopus 로고
    • Texture discrimination by Gabor functions
    • Turner, M.R. Texture discrimination by Gabor functions. Biol. Cybern. 55, 71-82 (1986).
    • (1986) Biol. Cybern. , vol.55 , pp. 71-82
    • Turner, M.R.1
  • 29
    • 0032212323 scopus 로고    scopus 로고
    • Automated recognition of patterns characteristic of subcellular structures in fluorescence microscopy images
    • Boland, M.V., Markey, M.K. & Murphy, R.F. Automated recognition of patterns characteristic of subcellular structures in fluorescence microscopy images. Cytometry 33, 366-375 (1998).
    • (1998) Cytometry , vol.33 , pp. 366-375
    • Boland, M.V.1    Markey, M.K.2    Murphy, R.F.3
  • 30
    • 84883467254 scopus 로고    scopus 로고
    • Determining the subcellular location of new proteins from microscope images using local features
    • Coelho, L.P. et al. Determining the subcellular location of new proteins from microscope images using local features. Bioinformatics 29, 2343-2349 (2013).
    • (2013) Bioinformatics , vol.29 , pp. 2343-2349
    • Coelho, L.P.1
  • 31
    • 70349466529 scopus 로고    scopus 로고
    • Population context determines cell-to-cell variability in endocytosis and virus infection
    • Snijder, B. et al. Population context determines cell-to-cell variability in endocytosis and virus infection. Nature 461, 520-523 (2009).
    • (2009) Nature , vol.461 , pp. 520-523
    • Snijder, B.1
  • 32
    • 84860187343 scopus 로고    scopus 로고
    • Single-cell analysis of population context advances RNAi screening at multiple levels
    • Snijder, B. et al. Single-cell analysis of population context advances RNAi screening at multiple levels. Mol. Syst. Biol. 8, 579 (2012).
    • (2012) Mol. Syst. Biol. , vol.8 , pp. 579
    • Snijder, B.1
  • 33
    • 84925832811 scopus 로고    scopus 로고
    • Cell shape and the microenvironment regulate nuclear translocation of NF-κB in breast epithelial and tumor cells
    • Sero, J.E. et al. Cell shape and the microenvironment regulate nuclear translocation of NF-κB in breast epithelial and tumor cells. Mol. Syst. Biol. 11, 790 (2015).
    • (2015) Mol. Syst. Biol. , vol.11 , pp. 790
    • Sero, J.E.1
  • 34
    • 84902210226 scopus 로고    scopus 로고
    • Increasing the content of high-content screening: An overview
    • Singh, S., Carpenter, A.E. & Genovesio, A. Increasing the content of high-content screening: an overview. J. Biomol. Screen. 19, 640-650 (2014).
    • (2014) J. Biomol. Screen. , vol.19 , pp. 640-650
    • Singh, S.1    Carpenter, A.E.2    Genovesio, A.3
  • 35
    • 77951959633 scopus 로고    scopus 로고
    • EBImage: An R package for image processing with applications to cellular phenotypes
    • Pau, G., Fuchs, F., Sklyar, O., Boutros, M. & Huber, W. EBImage: an R package for image processing with applications to cellular phenotypes. Bioinformatics 26, 979-981 (2010).
    • (2010) Bioinformatics , vol.26 , pp. 979-981
    • Pau, G.1    Fuchs, F.2    Sklyar, O.3    Boutros, M.4    Huber, W.5
  • 36
    • 84863205849 scopus 로고    scopus 로고
    • NIH Image to ImageJ: 25 years of image analysis
    • Schneider, C.A., Rasband, W.S. & Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671-675 (2012).
    • (2012) Nat. Methods , vol.9 , pp. 671-675
    • Schneider, C.A.1    Rasband, W.S.2    Eliceiri, K.W.3
  • 37
    • 0022033601 scopus 로고
    • A comparison of different focus functions for use in autofocus algorithms
    • Groen, F.C., Young, I.T. & Ligthart, G. A comparison of different focus functions for use in autofocus algorithms. Cytometry 6, 81-91 (1985).
    • (1985) Cytometry , vol.6 , pp. 81-91
    • Groen, F.C.1    Young, I.T.2    Ligthart, G.3
  • 38
    • 0018466704 scopus 로고
    • Statistical and structural approaches to texture
    • Haralick, R.M. Statistical and structural approaches to texture. Proc. IEEE 67, 786-804 (1979).
    • (1979) Proc. IEEE , vol.67 , pp. 786-804
    • Haralick, R.M.1
  • 39
    • 0030729883 scopus 로고    scopus 로고
    • Visual sensitivity, blur and the sources of variability in the amplitude spectra of natural scenes
    • Field, D.J. & Brady, N. Visual sensitivity, blur and the sources of variability in the amplitude spectra of natural scenes. Vision Res. 37, 3367-3383 (1997).
    • (1997) Vision Res. , vol.37 , pp. 3367-3383
    • Field, D.J.1    Brady, N.2
  • 40
    • 84856292873 scopus 로고    scopus 로고
    • Workflow and metrics for image quality control in large-scale high-content screens
    • Bray, M.-A., Fraser, A.N., Hasaka, T.P. & Carpenter, A.E. Workflow and metrics for image quality control in large-scale high-content screens. J. Biomol. Screen. 17, 266-274 (2012).
    • (2012) J. Biomol. Screen. , vol.17 , pp. 266-274
    • Bray, M.-A.1    Fraser, A.N.2    Hasaka, T.P.3    Carpenter, A.E.4
  • 42
    • 84870044562 scopus 로고    scopus 로고
    • Quality classification of microscopic imagery with weakly supervised learning
    • (eds. Wang, F., Shen, D., Yan, P. & Suzuki, K.) Springer Berlin Heidelberg
    • Lou, X., Fiaschi, L., Koethe, U. & Hamprecht, F.A. Quality classification of microscopic imagery with weakly supervised learning. in Machine Learning in Medical Imaging (eds. Wang, F., Shen, D., Yan, P. & Suzuki, K.) 176-183 (Springer Berlin Heidelberg, 2012).
    • (2012) Machine Learning in Medical Imaging , pp. 176-183
    • Lou, X.1    Fiaschi, L.2    Koethe, U.3    Hamprecht, F.A.4
  • 45
    • 84927125938 scopus 로고    scopus 로고
    • Single-cell and multivariate approaches in genetic perturbation screens
    • Liberali, P., Snijder, B. & Pelkmans, L. Single-cell and multivariate approaches in genetic perturbation screens. Nat. Rev. Genet. 16, 18-32 (2015).
    • (2015) Nat. Rev. Genet. , vol.16 , pp. 18-32
    • Liberali, P.1    Snijder, B.2    Pelkmans, L.3
  • 46
    • 4444333897 scopus 로고    scopus 로고
    • A brain tumor segmentation framework based on outlier detection
    • Prastawa, M., Bullitt, E., Ho, S. & Gerig, G. A brain tumor segmentation framework based on outlier detection. Med. Image Anal. 8, 275-283 (2004).
    • (2004) Med. Image Anal. , vol.8 , pp. 275-283
    • Prastawa, M.1    Bullitt, E.2    Ho, S.3    Gerig, G.4
  • 47
    • 84922706541 scopus 로고    scopus 로고
    • Analysis of high-throughput screening reveals the effect of surface topographies on cellular morphology
    • Hulsman, M. et al. Analysis of high-throughput screening reveals the effect of surface topographies on cellular morphology. Acta Biomater. 15, 29-38 (2015).
    • (2015) Acta Biomater. , vol.15 , pp. 29-38
    • Hulsman, M.1
  • 50
    • 80053466067 scopus 로고    scopus 로고
    • Machine learning improves the precision and robustness of high-content screens: Using nonlinear multiparametric methods to analyze screening results
    • Horvath, P., Wild, T., Kutay, U. & Csucs, G. Machine learning improves the precision and robustness of high-content screens: using nonlinear multiparametric methods to analyze screening results. J. Biomol. Screen. 16, 1059-1067 (2011).
    • (2011) J. Biomol. Screen. , vol.16 , pp. 1059-1067
    • Horvath, P.1    Wild, T.2    Kutay, U.3    Csucs, G.4
  • 51
    • 84995528830 scopus 로고    scopus 로고
    • CellProfiler Analyst: Interactive data exploration, analysis and classification of large biological image sets
    • Dao, D. et al. CellProfiler Analyst: interactive data exploration, analysis and classification of large biological image sets. Bioinformatics 32, 3210-3212 (2016).
    • (2016) Bioinformatics , vol.32 , pp. 3210-3212
    • Dao, D.1
  • 52
    • 84902089978 scopus 로고    scopus 로고
    • A hierarchical map of regulatory genetic interactions in membrane trafficking
    • Liberali, P., Snijder, B. & Pelkmans, L. A hierarchical map of regulatory genetic interactions in membrane trafficking. Cell 157, 1473-1487 (2014).
    • (2014) Cell , vol.157 , pp. 1473-1487
    • Liberali, P.1    Snijder, B.2    Pelkmans, L.3
  • 53
    • 84901788620 scopus 로고    scopus 로고
    • Data acquisition and preprocessing in studies on humans: What is not taught in statistics classes?
    • Zhu, Y., Hernandez, L.M., Mueller, P., Dong, Y. & Forman, M.R. Data acquisition and preprocessing in studies on humans: what is not taught in statistics classes? Am. Stat. 67, 235-241 (2013).
    • (2013) Am. Stat. , vol.67 , pp. 235-241
    • Zhu, Y.1    Hernandez, L.M.2    Mueller, P.3    Dong, Y.4    Forman, M.R.5
  • 54
    • 84950296105 scopus 로고    scopus 로고
    • Impact of normalization methods on high-throughput screening data with high hit rates and drug testing with dose-response data
    • Mpindi, J.-P. et al. Impact of normalization methods on high-throughput screening data with high hit rates and drug testing with dose-response data. Bioinformatics 31, 3815-3821 (2015).
    • (2015) Bioinformatics , vol.31 , pp. 3815-3821
    • Mpindi, J.-P.1
  • 55
    • 9444236735 scopus 로고    scopus 로고
    • Relationship between gene co-expression and probe localization on microarray slides
    • Kluger, Y., Yu, H., Qian, J. & Gerstein, M. Relationship between gene co-expression and probe localization on microarray slides. BMC Genomics 4, 49 (2003).
    • (2003) BMC Genomics , vol.4 , pp. 49
    • Kluger, Y.1    Yu, H.2    Qian, J.3    Gerstein, M.4
  • 56
    • 33846938060 scopus 로고    scopus 로고
    • Positional artifacts in microarrays: Experimental verification and construction of COP, an automated detection tool
    • Yu, H. et al. Positional artifacts in microarrays: experimental verification and construction of COP, an automated detection tool. Nucleic Acids Res. 35, e8 (2007).
    • (2007) Nucleic Acids Res. , vol.35 , pp. e8
    • Yu, H.1
  • 57
    • 34547840198 scopus 로고    scopus 로고
    • An efficient method for the detection and elimination of systematic error in high-throughput screening
    • Makarenkov, V. et al. An efficient method for the detection and elimination of systematic error in high-throughput screening. Bioinformatics 23, 1648-1657 (2007).
    • (2007) Bioinformatics , vol.23 , pp. 1648-1657
    • Makarenkov, V.1
  • 58
    • 84924873520 scopus 로고    scopus 로고
    • Correcting positional correlations in Affymetrix genome chips
    • Homouz, D., Chen, G. & Kudlicki, A.S. Correcting positional correlations in Affymetrix genome chips. Sci. Rep. 5, 9078 (2015).
    • (2015) Sci. Rep. , vol.5 , pp. 9078
    • Homouz, D.1    Chen, G.2    Kudlicki, A.S.3
  • 59
    • 1542702936 scopus 로고    scopus 로고
    • A simple technique for reducing edge effect in cell-based assays
    • Lundholt, B.K., Scudder, K.M. & Pagliaro, L. A simple technique for reducing edge effect in cell-based assays. J. Biomol. Screen. 8, 566-570 (2003).
    • (2003) J. Biomol. Screen. , vol.8 , pp. 566-570
    • Lundholt, B.K.1    Scudder, K.M.2    Pagliaro, L.3
  • 60
    • 3242669872 scopus 로고    scopus 로고
    • Improved statistical methods for hit selection in high-throughput screening
    • Brideau, C., Gunter, B., Pikounis, B. & Liaw, A. Improved statistical methods for hit selection in high-throughput screening. J. Biomol. Screen. 8, 634-647 (2003).
    • (2003) J. Biomol. Screen. , vol.8 , pp. 634-647
    • Brideau, C.1    Gunter, B.2    Pikounis, B.3    Liaw, A.4
  • 61
    • 84940654987 scopus 로고    scopus 로고
    • Linking phenotypes and modes of action through high-content screen fingerprints
    • Reisen, F. et al. Linking phenotypes and modes of action through high-content screen fingerprints. Assay Drug Dev. Technol. 13, 415-427 (2015).
    • (2015) Assay Drug Dev. Technol. , vol.13 , pp. 415-427
    • Reisen, F.1
  • 62
    • 77956873627 scopus 로고    scopus 로고
    • Tackling the widespread and critical impact of batch effects in high-throughput data
    • Leek, J.T. et al. Tackling the widespread and critical impact of batch effects in high-throughput data. Nat. Rev. Genet. 11, 733-739 (2010).
    • (2010) Nat. Rev. Genet. , vol.11 , pp. 733-739
    • Leek, J.T.1
  • 63
    • 0037316303 scopus 로고    scopus 로고
    • A comparison of normalization methods for high density oligonucleotide array data based on variance and bias
    • Bolstad, B.M., Irizarry, R.A., Astrand, M. & Speed, T.P. A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19, 185-193 (2003).
    • (2003) Bioinformatics , vol.19 , pp. 185-193
    • Bolstad, B.M.1    Irizarry, R.A.2    Astrand, M.3    Speed, T.P.4
  • 65
    • 84928721918 scopus 로고    scopus 로고
    • Removing batch effects from purified plasma cell gene expression microarrays with modified ComBat
    • Stein, C.K. et al. Removing batch effects from purified plasma cell gene expression microarrays with modified ComBat. BMC Bioinformatics 16, 63 (2015).
    • (2015) BMC Bioinformatics , vol.16 , pp. 63
    • Stein, C.K.1
  • 66
    • 84902160477 scopus 로고    scopus 로고
    • Rapid assessment and visualization of normality in high-content and other cell-level data and its impact on the interpretation of experimental results
    • Haney, S.A. Rapid assessment and visualization of normality in high-content and other cell-level data and its impact on the interpretation of experimental results. J. Biomol. Screen. 19, 672-684 (2014).
    • (2014) J. Biomol. Screen. , vol.19 , pp. 672-684
    • Haney, S.A.1
  • 67
    • 0012572299 scopus 로고    scopus 로고
    • A variance-stabilizing transformation for gene-expression microarray data
    • Durbin, B.P., Hardin, J.S., Hawkins, D.M. & Rocke, D.M. A variance-stabilizing transformation for gene-expression microarray data. Bioinformatics 18 (Suppl. 1), S105-S110 (2002).
    • (2002) Bioinformatics , vol.18 , pp. S105-S110
    • Durbin, B.P.1    Hardin, J.S.2    Hawkins, D.M.3    Rocke, D.M.4
  • 68
    • 11244346557 scopus 로고    scopus 로고
    • Variance stabilization applied to microarray data calibration and to the quantification of differential expression
    • Huber, W., von Heydebreck, A., Sültmann, H., Poustka, A. & Vingron, M. Variance stabilization applied to microarray data calibration and to the quantification of differential expression. Bioinformatics 18 (Suppl. 1), S96-S104 (2002).
    • (2002) Bioinformatics , vol.18 , pp. S96-S104
    • Huber, W.1    Von Heydebreck, A.2    Sültmann, H.3    Poustka, A.4    Vingron, M.5
  • 69
    • 84877303028 scopus 로고    scopus 로고
    • Mapping genetic interactions in human cancer cells with RNAi and multiparametric phenotyping
    • Laufer, C., Fischer, B., Billmann, M., Huber, W. & Boutros, M. Mapping genetic interactions in human cancer cells with RNAi and multiparametric phenotyping. Nat. Methods 10, 427-431 (2013).
    • (2013) Nat. Methods , vol.10 , pp. 427-431
    • Laufer, C.1    Fischer, B.2    Billmann, M.3    Huber, W.4    Boutros, M.5
  • 70
    • 84924325795 scopus 로고    scopus 로고
    • A map of directional genetic interactions in a metazoan cell
    • Fischer, B. et al. A map of directional genetic interactions in a metazoan cell. eLife 4, e05464 (2015).
    • (2015) ELife , vol.4 , pp. e05464
    • Fischer, B.1
  • 71
    • 68349112682 scopus 로고    scopus 로고
    • Statistical methods for analysis of high-throughput RNA interference screens
    • Birmingham, A. et al. Statistical methods for analysis of high-throughput RNA interference screens. Nat. Methods 6, 569-575 (2009).
    • (2009) Nat. Methods , vol.6 , pp. 569-575
    • Birmingham, A.1
  • 72
    • 84885152209 scopus 로고    scopus 로고
    • Large-scale cytological profiling for functional analysis of bioactive compounds
    • Woehrmann, M.H. et al. Large-scale cytological profiling for functional analysis of bioactive compounds. Mol. Biosyst. 9, 2604-2617 (2013).
    • (2013) Mol. Biosyst. , vol.9 , pp. 2604-2617
    • Woehrmann, M.H.1
  • 73
    • 17644384367 scopus 로고    scopus 로고
    • Minimum redundancy feature selection from microarray gene expression data
    • Ding, C. & Peng, H. Minimum redundancy feature selection from microarray gene expression data. J. Bioinform. Comput. Biol. 3, 185-205 (2005).
    • (2005) J. Bioinform. Comput. Biol. , vol.3 , pp. 185-205
    • Ding, C.1    Peng, H.2
  • 74
    • 77956028042 scopus 로고    scopus 로고
    • A cell profiling framework for modeling drug responses from HCS imaging
    • Ng, A.Y.J. et al. A cell profiling framework for modeling drug responses from HCS imaging. J. Biomol. Screen. 15, 858-868 (2010).
    • (2010) J. Biomol. Screen. , vol.15 , pp. 858-868
    • Ng, A.Y.J.1
  • 75
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • Guyon, I., Weston, J., Barnhill, S. & Vapnik, V. Gene selection for cancer classification using support vector machines. Mach. Learn. 46, 389-422 (2002).
    • (2002) Mach. Learn. , vol.46 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4
  • 76
    • 34250216344 scopus 로고    scopus 로고
    • Image-based multivariate profiling of drug responses from single cells
    • Loo, L.-H., Wu, L.F. & Altschuler, S.J. Image-based multivariate profiling of drug responses from single cells. Nat. Methods 4, 445-453 (2007).
    • (2007) Nat. Methods , vol.4 , pp. 445-453
    • Loo, L.-H.1    Wu, L.F.2    Altschuler, S.J.3
  • 77
    • 84887943419 scopus 로고    scopus 로고
    • Comparison of methods for image-based profiling of cellular morphological responses to small-molecule treatment
    • Ljosa, V. et al. Comparison of methods for image-based profiling of cellular morphological responses to small-molecule treatment. J. Biomol. Screen. 18, 1321-1329 (2013).
    • (2013) J. Biomol. Screen. , vol.18 , pp. 1321-1329
    • Ljosa, V.1
  • 78
    • 84887928920 scopus 로고    scopus 로고
    • Benchmarking of multivariate similarity measures for high-content screening fingerprints in phenotypic drug discovery
    • Reisen, F., Zhang, X., Gabriel, D. & Selzer, P. Benchmarking of multivariate similarity measures for high-content screening fingerprints in phenotypic drug discovery. J. Biomol. Screen. 18, 1284-1297 (2013).
    • (2013) J. Biomol. Screen. , vol.18 , pp. 1284-1297
    • Reisen, F.1    Zhang, X.2    Gabriel, D.3    Selzer, P.4
  • 79
    • 34548515317 scopus 로고    scopus 로고
    • Comparison of quantitative methods for cell-shape analysis
    • Pincus, Z. & Theriot, J.A. Comparison of quantitative methods for cell-shape analysis. J. Microsc. 227, 140-156 (2007).
    • (2007) J. Microsc. , vol.227 , pp. 140-156
    • Pincus, Z.1    Theriot, J.A.2
  • 80
    • 37249026328 scopus 로고    scopus 로고
    • Integrating high-content screening and ligand-target prediction to identify mechanism of action
    • Young, D.W. et al. Integrating high-content screening and ligand-target prediction to identify mechanism of action. Nat. Chem. Biol. 4, 59-68 (2008).
    • (2008) Nat. Chem. Biol. , vol.4 , pp. 59-68
    • Young, D.W.1
  • 81
    • 77949385899 scopus 로고    scopus 로고
    • Integration of multiple readouts into the Z′ factor for assay quality assessment
    • Kümmel, A. et al. Integration of multiple readouts into the Z′ factor for assay quality assessment. J. Biomol. Screen. 15, 95-101 (2010).
    • (2010) J. Biomol. Screen. , vol.15 , pp. 95-101
    • Kümmel, A.1
  • 82
    • 33750823778 scopus 로고    scopus 로고
    • Compound classification using image-based cellular phenotypes
    • Adams, C.L. et al. Compound classification using image-based cellular phenotypes. Methods Enzymol. 414, 440-468 (2006).
    • (2006) Methods Enzymol. , vol.414 , pp. 440-468
    • Adams, C.L.1
  • 83
    • 8444223104 scopus 로고    scopus 로고
    • Multidimensional drug profiling by automated microscopy
    • Perlman, Z.E. et al. Multidimensional drug profiling by automated microscopy. Science 306, 1194-1198 (2004).
    • (2004) Science , vol.306 , pp. 1194-1198
    • Perlman, Z.E.1
  • 84
    • 84884697284 scopus 로고    scopus 로고
    • From cellular characteristics to disease diagnosis: Uncovering phenotypes with supercells
    • Candia, J. et al. From cellular characteristics to disease diagnosis: uncovering phenotypes with supercells. PLoS Comput. Biol. 9, e1003215 (2013).
    • (2013) PLoS Comput. Biol. , vol.9 , pp. e1003215
    • Candia, J.1
  • 85
    • 77952474987 scopus 로고    scopus 로고
    • Cellular heterogeneity: Do differences make a difference?
    • Altschuler, S.J. & Wu, L.F. Cellular heterogeneity: do differences make a difference? Cell 141, 559-563 (2010).
    • (2010) Cell , vol.141 , pp. 559-563
    • Altschuler, S.J.1    Wu, L.F.2
  • 86
    • 78951470515 scopus 로고    scopus 로고
    • Origins of regulated cell-to-cell variability
    • Snijder, B. & Pelkmans, L. Origins of regulated cell-to-cell variability. Nat. Rev. Mol. Cell Biol. 12, 119-125 (2011).
    • (2011) Nat. Rev. Mol. Cell Biol. , vol.12 , pp. 119-125
    • Snijder, B.1    Pelkmans, L.2
  • 87
    • 34250882643 scopus 로고    scopus 로고
    • Quantitative morphological signatures define local signaling networks regulating cell morphology
    • Bakal, C., Aach, J., Church, G. & Perrimon, N. Quantitative morphological signatures define local signaling networks regulating cell morphology. Science 316, 1753-1756 (2007).
    • (2007) Science , vol.316 , pp. 1753-1756
    • Bakal, C.1    Aach, J.2    Church, G.3    Perrimon, N.4
  • 88
    • 58149510531 scopus 로고    scopus 로고
    • CellProfiler Analyst: Data exploration and analysis software for complex image-based screens
    • Jones, T.R. et al. CellProfiler Analyst: data exploration and analysis software for complex image-based screens. BMC Bioinformatics 9, 482 (2008).
    • (2008) BMC Bioinformatics , vol.9 , pp. 482
    • Jones, T.R.1
  • 89
    • 77953276042 scopus 로고    scopus 로고
    • Clustering phenotype populations by genome-wide RNAi and multiparametric imaging
    • Fuchs, F. et al. Clustering phenotype populations by genome-wide RNAi and multiparametric imaging. Mol. Syst. Biol. 6, 370 (2010).
    • (2010) Mol. Syst. Biol. , vol.6 , pp. 370
    • Fuchs, F.1
  • 90
    • 84901044347 scopus 로고    scopus 로고
    • Cross-talk between Rho and Rac GTPases drives deterministic exploration of cellular shape space and morphological heterogeneity
    • Sailem, H., Bousgouni, V., Cooper, S. & Bakal, C. Cross-talk between Rho and Rac GTPases drives deterministic exploration of cellular shape space and morphological heterogeneity. Open Biol. 4, 130132 (2014).
    • (2014) Open Biol. , vol.4 , pp. 130132
    • Sailem, H.1    Bousgouni, V.2    Cooper, S.3    Bakal, C.4
  • 91
    • 33749537857 scopus 로고    scopus 로고
    • Genome-wide functional analysis of human cell-cycle regulators
    • Mukherji, M. et al. Genome-wide functional analysis of human cell-cycle regulators. Proc. Natl. Acad. Sci. USA 103, 14819-14824 (2006).
    • (2006) Proc. Natl. Acad. Sci. USA , vol.103 , pp. 14819-14824
    • Mukherji, M.1
  • 92
    • 77952257945 scopus 로고    scopus 로고
    • Patterns of basal signaling heterogeneity can distinguish cellular populations with different drug sensitivities
    • Singh, D.K. et al. Patterns of basal signaling heterogeneity can distinguish cellular populations with different drug sensitivities. Mol. Syst. Biol. 6, 369 (2010).
    • (2010) Mol. Syst. Biol. , vol.6 , pp. 369
    • Singh, D.K.1
  • 93
    • 84959063772 scopus 로고    scopus 로고
    • Visualizing quantitative microscopy data: History and challenges
    • Sailem, H.Z., Cooper, S. & Bakal, C. Visualizing quantitative microscopy data: History and challenges. Crit. Rev. Biochem. Mol. Biol. 51, 96-101 (2016).
    • (2016) Crit. Rev. Biochem. Mol. Biol. , vol.51 , pp. 96-101
    • Sailem, H.Z.1    Cooper, S.2    Bakal, C.3
  • 94
    • 0242361514 scopus 로고    scopus 로고
    • A functional genomic analysis of cell morphology using RNA interference
    • Kiger, A.A. et al. A functional genomic analysis of cell morphology using RNA interference. J. Biol. 2, 27 (2003).
    • (2003) J. Biol. , vol.2 , pp. 27
    • Kiger, A.A.1
  • 95
    • 71449123412 scopus 로고    scopus 로고
    • Online phenotype discovery in high-content RNAi screens using gap statistics
    • (eds. Pham, T.D. & Zhou, X.) (AIP Publishing)
    • Yin, Z. et al. Online phenotype discovery in high-content RNAi screens using gap statistics. in Proc. Int. Symposium on Computational Models of Life Sciences Vol. 952 (eds. Pham, T.D. & Zhou, X.), 86-95 (AIP Publishing, 2007).
    • (2007) Proc. Int. Symposium on Computational Models of Life Sciences , vol.952 , pp. 86-95
    • Yin, Z.1
  • 96
    • 60549104030 scopus 로고    scopus 로고
    • Scoring diverse cellular morphologies in image-based screens with iterative feedback and machine learning
    • Jones, T.R. et al. Scoring diverse cellular morphologies in image-based screens with iterative feedback and machine learning. Proc. Natl. Acad. Sci. USA 106, 1826-1831 (2009).
    • (2009) Proc. Natl. Acad. Sci. USA , vol.106 , pp. 1826-1831
    • Jones, T.R.1
  • 98
    • 84946763430 scopus 로고    scopus 로고
    • Apolar and polar transitions drive the conversion between amoeboid and mesenchymal shapes in melanoma cells
    • Cooper, S., Sadok, A., Bousgouni, V. & Bakal, C. Apolar and polar transitions drive the conversion between amoeboid and mesenchymal shapes in melanoma cells. Mol. Biol. Cell 26, 4163-4170 (2015).
    • (2015) Mol. Biol. Cell , vol.26 , pp. 4163-4170
    • Cooper, S.1    Sadok, A.2    Bousgouni, V.3    Bakal, C.4
  • 99
    • 85017449992 scopus 로고    scopus 로고
    • Systematic morphological profiling of human gene and allele function via Cell Painting
    • Rohban, M.H. et al. Systematic morphological profiling of human gene and allele function via Cell Painting. eLife 6, e24060 (2017).
    • (2017) ELife , vol.6 , pp. e24060
    • Rohban, M.H.1
  • 100
    • 84955481836 scopus 로고    scopus 로고
    • Time series modeling of live-cell shape dynamics for image-based phenotypic profiling
    • Gordonov, S. et al. Time series modeling of live-cell shape dynamics for image-based phenotypic profiling. Integr. Biol. 8, 73-90 (2016).
    • (2016) Integr. Biol. , vol.8 , pp. 73-90
    • Gordonov, S.1
  • 101
    • 77953445258 scopus 로고    scopus 로고
    • High-content phenotypic profiling of drug response signatures across distinct cancer cells
    • Caie, P.D. et al. High-content phenotypic profiling of drug response signatures across distinct cancer cells. Mol. Cancer Ther. 9, 1913-1926 (2010).
    • (2010) Mol. Cancer Ther. , vol.9 , pp. 1913-1926
    • Caie, P.D.1
  • 102
    • 84874300871 scopus 로고    scopus 로고
    • "Function-first" lead discovery: Mode of action profiling of natural product libraries using image-based screening
    • Schulze, C.J. et al. "Function-first" lead discovery: mode of action profiling of natural product libraries using image-based screening. Chem. Biol. 20, 285-295 (2013).
    • (2013) Chem. Biol. , vol.20 , pp. 285-295
    • Schulze, C.J.1
  • 103
    • 84941309166 scopus 로고    scopus 로고
    • Morphological profiles of RNAi-induced gene knockdown are highly reproducible but dominated by seed effects
    • Singh, S. et al. Morphological profiles of RNAi-induced gene knockdown are highly reproducible but dominated by seed effects. PLoS One 10, e0131370 (2015).
    • (2015) PLoS One , vol.10 , pp. e0131370
    • Singh, S.1
  • 104
    • 84887983821 scopus 로고    scopus 로고
    • A novel phenotypic dissimilarity method for image-based high-throughput screens
    • Zhang, X. & Boutros, M. A novel phenotypic dissimilarity method for image-based high-throughput screens. BMC Bioinformatics 14, 336 (2013).
    • (2013) BMC Bioinformatics , vol.14 , pp. 336
    • Zhang, X.1    Boutros, M.2
  • 105
    • 0036798238 scopus 로고    scopus 로고
    • Judging the quality of gene expression-based clustering methods using gene annotation
    • Gibbons, F.D. & Roth, F.P. Judging the quality of gene expression-based clustering methods using gene annotation. Genome Res. 12, 1574-1581 (2002).
    • (2002) Genome Res. , vol.12 , pp. 1574-1581
    • Gibbons, F.D.1    Roth, F.P.2
  • 107
    • 84984670371 scopus 로고    scopus 로고
    • A grand challenge. 2. Phenotypic profiling of a natural product library on Parkinson's patient-derived cells
    • Vial, M.-L. et al. A grand challenge. 2. Phenotypic profiling of a natural product library on Parkinson's patient-derived cells. J. Nat. Prod. 79, 1982-1989 (2016).
    • (2016) J. Nat. Prod. , vol.79 , pp. 1982-1989
    • Vial, M.-L.1
  • 108
    • 84863198481 scopus 로고    scopus 로고
    • Annotated high-throughput microscopy image sets for validation
    • Ljosa, V., Sokolnicki, K.L. & Carpenter, A.E. Annotated high-throughput microscopy image sets for validation. Nat. Methods 9, 637 (2012).
    • (2012) Nat. Methods , vol.9 , pp. 637
    • Ljosa, V.1    Sokolnicki, K.L.2    Carpenter, A.E.3
  • 109
    • 84875747495 scopus 로고    scopus 로고
    • The multidimensional perturbation value
    • Hutz, J.E. et al. The multidimensional perturbation value. J. Biomol. Screen. 18, 367-377 (2013).
    • (2013) J. Biomol. Screen. , vol.18 , pp. 367-377
    • Hutz, J.E.1
  • 110
    • 85010686536 scopus 로고    scopus 로고
    • Effect-size measures as descriptors of assay quality in high-content screening: A brief review of some available methodologies
    • Rajwa, B. Effect-size measures as descriptors of assay quality in high-content screening: a brief review of some available methodologies. Assay Drug Dev. Technol. 15, 15-29 (2017).
    • (2017) Assay Drug Dev. Technol. , vol.15 , pp. 15-29
    • Rajwa, B.1
  • 111
    • 84859027204 scopus 로고    scopus 로고
    • A chemical screen probing the relationship between mitochondrial content and cell size
    • Kitami, T. et al. A chemical screen probing the relationship between mitochondrial content and cell size. PLoS One 7, e33755 (2012).
    • (2012) PLoS One , vol.7 , pp. e33755
    • Kitami, T.1
  • 112
    • 77954938186 scopus 로고    scopus 로고
    • Data reduction for spectral clustering to analyze high throughput flow cytometry data
    • Zare, H., Shooshtari, P., Gupta, A. & Brinkman, R.R. Data reduction for spectral clustering to analyze high throughput flow cytometry data. BMC Bioinformatics 11, 403 (2010).
    • (2010) BMC Bioinformatics , vol.11 , pp. 403
    • Zare, H.1    Shooshtari, P.2    Gupta, A.3    Brinkman, R.R.4
  • 113
    • 80054768631 scopus 로고    scopus 로고
    • Extracting a cellular hierarchy from high-dimensional cytometry data with SPADE
    • Qiu, P. et al. Extracting a cellular hierarchy from high-dimensional cytometry data with SPADE. Nat. Biotechnol. 29, 886-891 (2011).
    • (2011) Nat. Biotechnol. , vol.29 , pp. 886-891
    • Qiu, P.1
  • 114
    • 0034704229 scopus 로고    scopus 로고
    • A global geometric framework for nonlinear dimensionality reduction
    • Tenenbaum, J.B., de Silva, V. & Langford, J.C. A global geometric framework for nonlinear dimensionality reduction. Science 290, 2319-2323 (2000).
    • (2000) Science , vol.290 , pp. 2319-2323
    • Tenenbaum, J.B.1    De Silva, V.2    Langford, J.C.3
  • 116
    • 84880280631 scopus 로고    scopus 로고
    • ViSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia
    • Amir, A.D. et al. viSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia. Nat. Biotechnol. 31, 545-552 (2013).
    • (2013) Nat. Biotechnol. , vol.31 , pp. 545-552
    • Amir, A.D.1
  • 117
    • 84975822112 scopus 로고    scopus 로고
    • Visualization and cellular hierarchy inference of single-cell data using SPADE
    • Anchang, B. et al. Visualization and cellular hierarchy inference of single-cell data using SPADE. Nat. Protoc. 11, 1264-1279 (2016).
    • (2016) Nat. Protoc. , vol.11 , pp. 1264-1279
    • Anchang, B.1
  • 118
    • 79955570576 scopus 로고    scopus 로고
    • Discovering biological progression underlying microarray samples
    • Qiu, P., Gentles, A.J. & Plevritis, S.K. Discovering biological progression underlying microarray samples. PLoS Comput. Biol. 7, e1001123 (2011).
    • (2011) PLoS Comput. Biol. , vol.7 , pp. e1001123
    • Qiu, P.1    Gentles, A.J.2    Plevritis, S.K.3
  • 119
    • 79955750055 scopus 로고    scopus 로고
    • Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum
    • Bendall, S.C. et al. Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum. Science 332, 687-696 (2011).
    • (2011) Science , vol.332 , pp. 687-696
    • Bendall, S.C.1
  • 120
    • 84941753288 scopus 로고    scopus 로고
    • Diffusion maps for high-dimensional single-cell analysis of differentiation data
    • Haghverdi, L., Buettner, F. & Theis, F.J. Diffusion maps for high-dimensional single-cell analysis of differentiation data. Bioinformatics 31, 2989-2998 (2015).
    • (2015) Bioinformatics , vol.31 , pp. 2989-2998
    • Haghverdi, L.1    Buettner, F.2    Theis, F.J.3
  • 123
    • 84857392540 scopus 로고    scopus 로고
    • The case for open computer programs
    • Ince, D.C., Hatton, L. & Graham-Cumming, J. The case for open computer programs. Nature 482, 485-488 (2012).
    • (2012) Nature , vol.482 , pp. 485-488
    • Ince, D.C.1    Hatton, L.2    Graham-Cumming, J.3
  • 125
    • 84924292102 scopus 로고    scopus 로고
    • Interactive notebooks: Sharing the code
    • Shen, H. Interactive notebooks: sharing the code. Nature 515, 151-152 (2014).
    • (2014) Nature , vol.515 , pp. 151-152
    • Shen, H.1
  • 126
    • 84930642023 scopus 로고    scopus 로고
    • An introduction to Docker for reproducible research
    • Boettiger, C. An introduction to Docker for reproducible research. Oper. Syst. Rev. 49, 71-79 (2015).
    • (2015) Oper. Syst. Rev. , vol.49 , pp. 71-79
    • Boettiger, C.1
  • 127
    • 85017331188 scopus 로고    scopus 로고
    • Reproducibility of computational workflows is automated using continuous analysis
    • Beaulieu-Jones, B.K. & Greene, C.S. Reproducibility of computational workflows is automated using continuous analysis. Nat. Biotechnol. 35, 342-346 (2017).
    • (2017) Nat. Biotechnol. , vol.35 , pp. 342-346
    • Beaulieu-Jones, B.K.1    Greene, C.S.2
  • 128
    • 85026475117 scopus 로고    scopus 로고
    • Image Data Resource: A bioimage data integration and publication platform
    • Williams, E. et al. Image Data Resource: a bioimage data integration and publication platform. Nat. Methods 14, 775-781 (2017).
    • (2017) Nat. Methods , vol.14 , pp. 775-781
    • Williams, E.1
  • 129
    • 84971255023 scopus 로고    scopus 로고
    • The cellular microscopy phenotype ontology
    • Jupp, S. et al. The cellular microscopy phenotype ontology. J. Biomed. Semantics 7, 28 (2016).
    • (2016) J. Biomed. Semantics , vol.7 , pp. 28
    • Jupp, S.1
  • 130
    • 84955508486 scopus 로고    scopus 로고
    • A chemical-genetic interaction map of small molecules using high-throughput imaging in cancer cells
    • Breinig, M., Klein, F.A., Huber, W. & Boutros, M. A chemical-genetic interaction map of small molecules using high-throughput imaging in cancer cells. Mol. Syst. Biol. 11, 846 (2015).
    • (2015) Mol. Syst. Biol. , vol.11 , pp. 846
    • Breinig, M.1    Klein, F.A.2    Huber, W.3    Boutros, M.4
  • 131
    • 84975784299 scopus 로고    scopus 로고
    • Genome-wide RNAi Screening identifies protein modules required for 40S subunit synthesis in human cells
    • Badertscher, L. et al. Genome-wide RNAi Screening identifies protein modules required for 40S subunit synthesis in human cells. Cell Rep. 13, 2879-2891 (2015).
    • (2015) Cell Rep. , vol.13 , pp. 2879-2891
    • Badertscher, L.1
  • 132
    • 84863393849 scopus 로고    scopus 로고
    • OMERO: Flexible, model-driven data management for experimental biology
    • Allan, C. et al. OMERO: flexible, model-driven data management for experimental biology. Nat. Methods 9, 245-253 (2012).
    • (2012) Nat. Methods , vol.9 , pp. 245-253
    • Allan, C.1
  • 133
    • 82955207226 scopus 로고    scopus 로고
    • OpenBIS: A flexible framework for managing and analyzing complex data in biology research
    • Bauch, A. et al. openBIS: a flexible framework for managing and analyzing complex data in biology research. BMC Bioinformatics 12, 468 (2011).
    • (2011) BMC Bioinformatics , vol.12 , pp. 468
    • Bauch, A.1
  • 134
    • 84863192185 scopus 로고    scopus 로고
    • PhenoRipper: Software for rapidly profiling microscopy images
    • Rajaram, S., Pavie, B., Wu, L.F. & Altschuler, S.J. PhenoRipper: software for rapidly profiling microscopy images. Nat. Methods 9, 635-637 (2012).
    • (2012) Nat. Methods , vol.9 , pp. 635-637
    • Rajaram, S.1    Pavie, B.2    Wu, L.F.3    Altschuler, S.J.4
  • 135
    • 84897459922 scopus 로고    scopus 로고
    • Rapid analysis and exploration of fluorescence microscopy images
    • Pavie, B. et al. Rapid analysis and exploration of fluorescence microscopy images. J. Vis. Exp. e51280 (2014).
    • (2014) J. Vis. Exp. , pp. e51280
    • Pavie, B.1
  • 136
    • 48349111792 scopus 로고    scopus 로고
    • Wndchrm: An open source utility for biological image analysis
    • Shamir, L. et al. Wndchrm: an open source utility for biological image analysis. Source Code Biol. Med. 3, 13 (2008).
    • (2008) Source Code Biol. Med. , vol.3 , pp. 13
    • Shamir, L.1
  • 137
    • 45049083228 scopus 로고    scopus 로고
    • WND-CHARM: Multi-purpose image classification using compound image transforms
    • Orlov, N. et al. WND-CHARM: multi-purpose image classification using compound image transforms. Pattern Recognit. Lett. 29, 1684-1693 (2008).
    • (2008) Pattern Recognit. Lett. , vol.29 , pp. 1684-1693
    • Orlov, N.1
  • 138
    • 84956574418 scopus 로고    scopus 로고
    • CP-CHARM: Segmentation-free image classification made accessible
    • Uhlmann, V., Singh, S. & Carpenter, A.E. CP-CHARM: segmentation-free image classification made accessible. BMC Bioinformatics 17, 51 (2016).
    • (2016) BMC Bioinformatics , vol.17 , pp. 51
    • Uhlmann, V.1    Singh, S.2    Carpenter, A.E.3
  • 140
  • 141
    • 84999836246 scopus 로고    scopus 로고
    • Deep learning automates the quantitative analysis of individual cells in live-cell imaging experiments
    • Van Valen, D.A. et al. Deep learning automates the quantitative analysis of individual cells in live-cell imaging experiments. PLoS Comput. Biol. 12, e1005177 (2016).
    • (2016) PLoS Comput. Biol. , vol.12 , pp. e1005177
    • Van Valen, D.A.1
  • 144
    • 85021826417 scopus 로고    scopus 로고
    • A multi-scale convolutional neural network for phenotyping high-content cellular images
    • Godinez, W.J., Hossain, I., Lazic, S.E., Davies, J.W. & Zhang, X. A multi-scale convolutional neural network for phenotyping high-content cellular images. Bioinformatics (2017).
    • (2017) Bioinformatics
    • Godinez, W.J.1    Hossain, I.2    Lazic, S.E.3    Davies, J.W.4    Zhang, X.5
  • 145
    • 84976510674 scopus 로고    scopus 로고
    • Classifying and segmenting microscopy images with deep multiple instance learning
    • Kraus, O.Z., Ba, J.L. & Frey, B.J. Classifying and segmenting microscopy images with deep multiple instance learning. Bioinformatics 32, i52-i59 (2016).
    • (2016) Bioinformatics , vol.32 , pp. i52-i59
    • Kraus, O.Z.1    Ba, J.L.2    Frey, B.J.3
  • 146
    • 85018293362 scopus 로고    scopus 로고
    • Automated analysis of high-content microscopy data with deep learning
    • Kraus, O.Z. et al. Automated analysis of high-content microscopy data with deep learning. Mol. Syst. Biol. 13, 924 (2017).
    • (2017) Mol. Syst. Biol. , vol.13 , pp. 924
    • Kraus, O.Z.1
  • 147
    • 85019234865 scopus 로고    scopus 로고
    • Accurate classification of protein subcellular localization from high throughput microscopy images using deep learning
    • Pärnamaa, T. & Parts, L. Accurate classification of protein subcellular localization from high throughput microscopy images using deep learning. G3 (Bethesda) 7, 1385-1392 (2017).
    • (2017) G3 (Bethesda) , vol.7 , pp. 1385-1392
    • Pärnamaa, T.1    Parts, L.2
  • 149
    • 84959185539 scopus 로고    scopus 로고
    • High-content analysis of breast cancer using single-cell deep transfer learning
    • Kandaswamy, C., Silva, L.M., Alexandre, L.A. & Santos, J.M. High-content analysis of breast cancer using single-cell deep transfer learning. J. Biomol. Screen. 21, 252-259 (2016).
    • (2016) J. Biomol. Screen. , vol.21 , pp. 252-259
    • Kandaswamy, C.1    Silva, L.M.2    Alexandre, L.A.3    Santos, J.M.4
  • 150
    • 84863208608 scopus 로고    scopus 로고
    • Biological imaging software tools
    • Eliceiri, K.W. et al. Biological imaging software tools. Nat. Methods 9, 697-710 (2012).
    • (2012) Nat. Methods , vol.9 , pp. 697-710
    • Eliceiri, K.W.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.