메뉴 건너뛰기




Volumn 29, Issue 18, 2013, Pages 2343-2349

Determining the subcellular location of new proteins from microscope images using local features

Author keywords

[No Author keywords available]

Indexed keywords

PROTEIN;

EID: 84883467254     PISSN: 13674803     EISSN: 14602059     Source Type: Journal    
DOI: 10.1093/bioinformatics/btt392     Document Type: Article
Times cited : (62)

References (37)
  • 1
    • 0016355478 scopus 로고
    • A new look at the statistical model identification
    • Akaike,H. (1974) A new look at the statistical model identification. IEEE Trans. Automatic Control, 19, 716-723.
    • (1974) IEEE Trans. Automatic Control , vol.19 , pp. 716-723
    • Akaike, H.1
  • 2
    • 33646466731 scopus 로고    scopus 로고
    • Subcellular localization of mammalian type II membrane proteins
    • Aturaliya,R.N. et al. (2006) Subcellular localization of mammalian type II membrane proteins. Traffic, 7, 613-25.
    • (2006) Traffic , vol.7 , pp. 613-625
    • Aturaliya, R.N.1
  • 3
    • 41549148628 scopus 로고    scopus 로고
    • Toward a confocal subcellular atlas of the human proteome
    • Barbe,L. et al. (2008) Toward a confocal subcellular atlas of the human proteome. Mol. Cell. Proteomics, 7, 499-508.
    • (2008) Mol. Cell. Proteomics , vol.7 , pp. 499-508
    • Barbe, L.1
  • 4
    • 43049174575 scopus 로고    scopus 로고
    • Speeded-up robust features (surf)
    • Bay,H. et al. (2008) Speeded-Up Robust Features (SURF). Comput. Vis. Image Underst., 110, 346-359.
    • (2008) Comput. Vis. Image Underst. , vol.110 , pp. 346-359
    • Bay, H.1
  • 5
    • 0036139314 scopus 로고    scopus 로고
    • A neural network classifier capable of recognizing the patterns of all major subcellular structures in fluorescence microscope images of HeLa cells
    • Boland,M.V. and Murphy,R.F. (2001) A neural network classifier capable of recognizing the patterns of all major subcellular structures in fluorescence microscope images of HeLa cells. Bioinformatics, 17, 1213-1223.
    • (2001) Bioinformatics , vol.17 , pp. 1213-1223
    • Boland, M.V.1    Murphy, R.F.2
  • 6
    • 0032212323 scopus 로고    scopus 로고
    • Automated recognition of patterns characteristic of subcellular structures in fluorescence microscopy images
    • Boland,M.V. et al. (1998) Automated recognition of patterns characteristic of subcellular structures in fluorescence microscopy images. Cytometry, 33, 366-375.
    • (1998) Cytometry , vol.33 , pp. 366-375
    • Boland, M.V.1
  • 8
    • 34547650901 scopus 로고    scopus 로고
    • A multiresolution approach to automated classification of protein subcellular location images
    • Chebira,A. et al. (2007) A multiresolution approach to automated classification of protein subcellular location images. BMC Bioinformatics, 8, 210.
    • (2007) BMC Bioinformatics , vol.8 , pp. 210
    • Chebira, A.1
  • 9
    • 77954179297 scopus 로고    scopus 로고
    • Quantifying the distribution of probes between subcellular locations using unsupervised pattern unmixing
    • Coelho,L.P. et al. (2010) Quantifying the distribution of probes between subcellular locations using unsupervised pattern unmixing. Bioinformatics, 26, i7-i12.
    • (2010) Bioinformatics , vol.26
    • Coelho, L.P.1
  • 10
    • 77953756788 scopus 로고    scopus 로고
    • Structured literature image finder: Extracting information from text and images in biomedical literature
    • Coelho,L.P. et al. (2010) Structured literature image finder: Extracting information from text and images in biomedical literature. Lect. Notes Comput. Sci., 6004, 23-32.
    • (2010) Lect. Notes Comput. Sci. , vol.6004 , pp. 23-32
    • Coelho, L.P.1
  • 11
    • 84893387500 scopus 로고    scopus 로고
    • Mahotas: Open source software for scriptable computer vision
    • Coelho,L.P. (2013) Mahotas: Open source software for scriptable computer vision. J. Open Res. Softw., 1.
    • (2013) J. Open Res. Softw. , pp. 1
    • Coelho, L.P.1
  • 12
    • 34249666037 scopus 로고    scopus 로고
    • Large-scale automated analysis of location patterns in randomly tagged 3T3 cells
    • García Osuna,E. et al. (2007) Large-scale automated analysis of location patterns in randomly tagged 3T3 cells. Ann. Biomed. Eng., 35, 1081-1087.
    • (2007) Ann. Biomed. Eng. , vol.35 , pp. 1081-1087
    • García Osuna, E.1
  • 13
    • 34147187876 scopus 로고    scopus 로고
    • Fast automated cell phenotype image classification
    • Hamilton,N.A. et al. (2007) Fast automated cell phenotype image classification. BMC Bioinformatics, 8, 110.
    • (2007) BMC Bioinformatics , vol.8 , pp. 110
    • Hamilton, N.A.1
  • 14
    • 0015680481 scopus 로고
    • Textural features for image classification
    • Haralick,R.M. et al. (1973) Textural features for image classification. IEEE Trans. Syst. Man Cybern., 3, 610-621.
    • (1973) IEEE Trans. Syst. Man Cybern. , vol.3 , pp. 610-621
    • Haralick, R.M.1
  • 15
    • 13344280993 scopus 로고    scopus 로고
    • Boosting accuracy of automated classification of fluorescence microscope images for location proteomics
    • Huang,K. andMurphy,R.F. (2004) Boosting accuracy of automated classification of fluorescence microscope images for location proteomics. BMC Bioinformatics, 5, 78.
    • (2004) BMC Bioinformatics , vol.5 , pp. 78
    • Huang, K.1    Murphy, R.F.2
  • 16
    • 0242628975 scopus 로고    scopus 로고
    • Feature reduction for improved recognition of subcellular location patterns in fluorescence microscope images
    • SPIE, United States
    • Huang,K. et al. (2003) Feature reduction for improved recognition of subcellular location patterns in fluorescence microscope images. In Proceedings of SPIE 4962, Manipulation and Analysis of Biomolecules, Cells, and Tissues. SPIE, United States, pp. 307-318.
    • (2003) Proceedings of SPIE 4962, Manipulation and Analysis of Biomolecules, Cells, and Tissues , pp. 307-318
    • Huang, K.1
  • 17
    • 71049155903 scopus 로고    scopus 로고
    • Efficient framework for automated classification of subcellular patterns in budding yeast
    • Huh,S. et al. (2009) Efficient framework for automated classification of subcellular patterns in budding yeast. Cytometry, 75, 934-40.
    • (2009) Cytometry , vol.75 , pp. 934-940
    • Huh, S.1
  • 18
    • 0036795576 scopus 로고    scopus 로고
    • In vivo functional proteomics: Mammalian genome annotation using CD-tagging
    • 856 858-60 assim
    • Jarvik,J.W. et al. (2002) In vivo functional proteomics: Mammalian genome annotation using CD-tagging. Biotechniques, 33, 852-854, 856, 858-60 passim.
    • (2002) Biotechniques , vol.33 , pp. 852-854
    • Jarvik, J.W.1
  • 19
    • 0002997383 scopus 로고
    • Stepwise discriminant analysis
    • In Enslein,K. et al. (ed.) . John Wiley & Sons, New York
    • Jennrich,R.I. (1977) Stepwise discriminant analysis. In Enslein,K. et al. (ed.) Statistical Methods for Digital Computers. John Wiley & Sons, New York.
    • (1977) Statistical Methods for Digital Computers
    • Jennrich, R.I.1
  • 20
    • 0006256829 scopus 로고
    • Stepwise regression
    • In Enslein,K. et al. (ed.) . John Wiley & Sons, New York
    • Jennrich,R.I. (1977) Stepwise Regression. In Enslein,K. et al. (ed.) Statistical Methods for Digital Computerss. John Wiley & Sons, New York.
    • (1977) Statistical Methods for Digital Computerss
    • Jennrich, R.I.1
  • 21
    • 84870595917 scopus 로고    scopus 로고
    • Automated analysis and reannotation of subcellular locations in confocal images from the human protein atlas
    • Li,J. et al. (2012) Automated analysis and reannotation of subcellular locations in confocal images from the human protein atlas. PLoS One, 7, e50514.
    • (2012) PLoS One , vol.7
    • Li, J.1
  • 22
    • 84863505983 scopus 로고    scopus 로고
    • Protein subcellular location pattern classification in cellular images using latent discriminative models
    • Li,J. et al. (2012) Protein subcellular location pattern classification in cellular images using latent discriminative models. Bioinformatics, 28, i32-i39.
    • (2012) Bioinformatics , vol.28
    • Li, J.1
  • 23
    • 36949037952 scopus 로고    scopus 로고
    • Boosting multiclass learning with repeating codes and weak detectors for protein subcellular localization
    • Lin,C.C. et al. (2007) Boosting multiclass learning with repeating codes and weak detectors for protein subcellular localization. Bioinformatics, 23, 3374-3381.
    • (2007) Bioinformatics , vol.23 , pp. 3374-3381
    • Lin, C.C.1
  • 25
    • 34548840588 scopus 로고    scopus 로고
    • Random subwindows and extremely randomized trees for image classification in cell biology
    • Mare'e,R. et al. (2007) Random subwindows and extremely randomized trees for image classification in cell biology. BMC Cell Biol., 8(Suppl. 1), S2.
    • (2007) BMC Cell Biol. , vol.8 , Issue.SUPPL. 1
    • Mare'e, R.1
  • 26
    • 0141921564 scopus 로고    scopus 로고
    • Robust numerical features for description and classification of subcellular location patterns in fluorescence microscope images
    • Murphy,R.F. et al. (2003) Robust numerical features for description and classification of subcellular location patterns in fluorescence microscope images. J. VLSI Signal Process. Syst. Signal Image Video Technol., 35, 311-321.
    • (2003) J. VLSI Signal Process. Syst. Signal Image Video Technol. , vol.35 , pp. 311-321
    • Murphy, R.F.1
  • 27
    • 44349190845 scopus 로고    scopus 로고
    • A reliable method for cell phenotype image classification
    • Nanni,L. and Lumini,A. (2008) A reliable method for cell phenotype image classification. Artif. Intell. Med., 43, 87-97.
    • (2008) Artif. Intell. Med. , vol.43 , pp. 87-97
    • Nanni, L.1    Lumini, A.2
  • 28
    • 79952202651 scopus 로고    scopus 로고
    • Novel features for automated cell phenotype image classification
    • Nanni,L. et al. (2010) Novel features for automated cell phenotype image classification. Adv. Exp. Med. Biol., 680, 207-13.
    • (2010) Adv. Exp. Med. Biol. , vol.680 , pp. 207-213
    • Nanni, L.1
  • 29
    • 0037212267 scopus 로고    scopus 로고
    • Human vs machine: Evaluation of fluorescence micrographs
    • Nattkemper,T.W. et al. (2003) Human vs machine: Evaluation of fluorescence micrographs. Comput. Biol. Med., 33(1), 31-43.
    • (2003) Comput. Biol. Med. , vol.33 , Issue.1 , pp. 31-43
    • Nattkemper, T.W.1
  • 30
    • 49849090542 scopus 로고    scopus 로고
    • A framework for the automated analysis of subcellular patterns in human protein atlas images
    • Newberg,J. and Murphy,R.F. (2008) A framework for the automated analysis of subcellular patterns in human protein atlas images. J. Proteome Res., 7, 2300-8.
    • (2008) J. Proteome Res. , vol.7 , pp. 2300-2308
    • Newberg, J.1    Murphy, R.F.2
  • 31
    • 77649263885 scopus 로고    scopus 로고
    • Determining the distribution of probes between different subcellular locations through automated unmixing of subcellular patterns
    • Peng,T. et al. (2010) Determining the distribution of probes between different subcellular locations through automated unmixing of subcellular patterns. Proc. Natl. Acad. Sci. USA, 107, 2944-2949.
    • (2010) Proc. Natl. Acad. Sci. USA , vol.107 , pp. 2944-2949
    • Peng, T.1
  • 32
    • 56349129774 scopus 로고    scopus 로고
    • Protein localization on cellular images with Markov random fields
    • Rajapakse,J.C. (2008) Protein localization on cellular images with Markov random fields. IEEE Int. Joint Conf. Neural Netw., 2127-2132.
    • (2008) IEEE Int. Joint Conf. Neural Netw. , pp. 2127-2132
    • Rajapakse, J.C.1
  • 33
    • 51349164296 scopus 로고    scopus 로고
    • IICBU 2008: A proposed benchmark suite for biological image analysis
    • Shamir,L. et al. (2008) IICBU 2008: A proposed benchmark suite for biological image analysis. Med. Biol. Eng. Comput., 46, 943-947.
    • (2008) Med. Biol. Eng. Comput. , vol.46 , pp. 943-947
    • Shamir, L.1
  • 34
    • 48349111792 scopus 로고    scopus 로고
    • Wndchrm - an open source utility for biological image analysis
    • Shamir,L. et al. (2008) Wndchrm - an open source utility for biological image analysis. Source Code Biol. Med., 3, 13.
    • (2008) Source Code Biol. Med. , vol.3 , pp. 13
    • Shamir, L.1
  • 35
    • 77955426203 scopus 로고    scopus 로고
    • Evaluating color descriptors for object and scene recognition
    • van de Sande,K.E.A. et al. (2010) Evaluating color descriptors for object and scene recognition. IEEE Trans. Pattern Anal. Mach. Intell., 32, 1582-1596.
    • (2010) IEEE Trans Pattern Anal. Mach. Intell. , vol.32 , pp. 1582-1596
    • Van De Sande, K.E.A.1
  • 37
    • 26444451080 scopus 로고    scopus 로고
    • Object type recognition for automated analysis of protein subcellular location
    • Zhao,T. et al. (2005) Object type recognition for automated analysis of protein subcellular location. IEEE Trans. Image Process., 14, 1351-9.
    • (2005) IEEE Trans. Image Process. , vol.14 , pp. 1351-1359
    • Zhao, T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.