메뉴 건너뛰기




Volumn 21, Issue 3, 2016, Pages 252-259

High-Content Analysis of Breast Cancer Using Single-Cell Deep Transfer Learning

Author keywords

cancer drug discovery; deep transfer learning; high content screening; image analysis

Indexed keywords

ARTICLE; ARTIFICIAL NEURAL NETWORK; BREAST CANCER; CELLULAR DISTRIBUTION; CONTENT ANALYSIS; DEEP TRANSFER LEARNING; DRUG DEVELOPMENT; IMAGE ANALYSIS; MACHINE LEARNING; PHENOTYPE; PRINCIPAL COMPONENT ANALYSIS; PRIORITY JOURNAL; SINGLE CELL ANALYSIS; SUPPORT VECTOR MACHINE; BIOLOGY; FEMALE; GENETIC ENGINEERING; HIGH THROUGHPUT SCREENING; HUMAN; MOLECULAR LIBRARY; PROCEDURES; REPRODUCIBILITY; TUMOR CELL LINE;

EID: 84959185539     PISSN: 10870571     EISSN: 1552454X     Source Type: Journal    
DOI: 10.1177/1087057115623451     Document Type: Article
Times cited : (65)

References (26)
  • 1
    • 84902210226 scopus 로고    scopus 로고
    • Increasing the Content of High-Content Screening: An Overview
    • Singh S., Carpenter A. E., Genovesio A., Increasing the Content of High-Content Screening: An Overview. J. Biomol. Screen. 2014, 19, 640-650.
    • (2014) J. Biomol. Screen , vol.19 , pp. 640-650
    • Singh, S.1    Carpenter, A.E.2    Genovesio, A.3
  • 2
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-Based Learning Applied to Document Recognition
    • LeCun Y., Bottou L., Bengio Y., et al. Gradient-Based Learning Applied to Document Recognition. Proc. IEEE 1998, 86, 2278-2324.
    • (1998) Proc. IEEE , vol.86 , pp. 2278-2324
    • LeCun, Y.1    Bottou, L.2    Bengio, Y.3
  • 3
    • 24644511277 scopus 로고    scopus 로고
    • Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, June 20-25, 2005; IEEE: Piscataway, NJ
    • Serre T., Wolf L., Poggio T., In Object Recognition with Features Inspired by Visual Cortex, Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, June 20-25, 2005; IEEE: Piscataway, NJ, 2005; Vol. 2, pp 994-1000.
    • (2005) Object Recognition with Features Inspired by Visual Cortex , vol.2 , pp. 994-1000
    • Serre, T.1    Wolf, L.2    Poggio, T.3
  • 4
    • 0031875590 scopus 로고    scopus 로고
    • The Role of the Primary Visual Cortex in Higher Level Vision
    • Lee T. S., Mumford D., Romero R., et al. The Role of the Primary Visual Cortex in Higher Level Vision. Vision Res. 1998, 38, 2429-2454.
    • (1998) Vision Res , vol.38 , pp. 2429-2454
    • Lee, T.S.1    Mumford, D.2    Romero, R.3
  • 6
    • 84910651844 scopus 로고    scopus 로고
    • Deep Learning in Neural Networks: An Overview
    • Schmidhuber J., Deep Learning in Neural Networks: An Overview. Neural Netw. 2015, 61, 85-117.
    • (2015) Neural Netw , vol.61 , pp. 85-117
    • Schmidhuber, J.1
  • 7
    • 0042565834 scopus 로고    scopus 로고
    • Hierarchical Bayesian Inference in the Visual Cortex
    • Lee T. S., Mumford D., Hierarchical Bayesian Inference in the Visual Cortex. J. Opt. Soc. Am. A 2003, 20, 1434-1448.
    • (2003) J. Opt. Soc. Am. A , vol.20 , pp. 1434-1448
    • Lee, T.S.1    Mumford, D.2
  • 8
    • 69349090197 scopus 로고    scopus 로고
    • Learning Deep Architectures for AI
    • Bengio Y., Learning Deep Architectures for AI. Found. Trends Mach. Learn. 2009, 2, 1-127.
    • (2009) Found. Trends Mach. Learn , vol.2 , pp. 1-127
    • Bengio, Y.1
  • 9
    • 84876231242 scopus 로고    scopus 로고
    • Advances in Neural Information Processing Systems 25 - Proceedings of the 26th Conference on Neural Information Processing Systems, Lake Tahoe, NV, Dec 2012; Eds. MIT Press: Cambridge, MA
    • Krizhevsky A., Sutskever I., Hinton G. E., In ImageNet Classification with Deep Convolutional Neural Networks, Advances in Neural Information Processing Systems 25-Proceedings of the 26th Conference on Neural Information Processing Systems, Lake Tahoe, NV, Dec 2012; Pereira F., Burges C. J. C., Bottou L., et al., Eds.; MIT Press: Cambridge, MA, 2012.
    • (2012) ImageNet Classification with Deep Convolutional Neural Networks
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3    Pereira, F.4    Burges, C.J.C.5    Bottou, L.6
  • 10
    • 84924051598 scopus 로고    scopus 로고
    • Human-Level Control through Deep Reinforcement Learning
    • Mnih V., Kavukcuoglu K., Silver D., et al. Human-Level Control through Deep Reinforcement Learning. Nature 2015, 518, 529-533.
    • (2015) Nature , vol.518 , pp. 529-533
    • Mnih, V.1    Kavukcuoglu, K.2    Silver, D.3
  • 11
    • 85032751458 scopus 로고    scopus 로고
    • Deep Neural Networks for Acoustic Modeling in Speech Recognition: The Shared Views of Four Research Groups
    • Hinton G., Deng L., Yu D., et al. Deep Neural Networks for Acoustic Modeling in Speech Recognition: The Shared Views of Four Research Groups. IEEE Signal Process. Mag. 2012, 29, 82-97.
    • (2012) IEEE Signal Process. Mag , vol.29 , pp. 82-97
    • Hinton, G.1    Deng, L.2    Yu, D.3
  • 12
    • 84923367417 scopus 로고    scopus 로고
    • Deep Neural Nets as a Method for Quantitative Structure-Activity Relationships
    • Ma J., Sheridan R. P., Liaw A., et al. Deep Neural Nets as a Method for Quantitative Structure-Activity Relationships. J. Chem. Inf. Model. 2015, 55, 263-274.
    • (2015) J. Chem. Inf. Model , vol.55 , pp. 263-274
    • Ma, J.1    Sheridan, R.P.2    Liaw, A.3
  • 13
    • 84902462761 scopus 로고    scopus 로고
    • Deep Learning of the Tissue-Regulated Splicing Code
    • Leung M. K. K., Xiong H. Y., Lee L. J., et al. Deep Learning of the Tissue-Regulated Splicing Code. Bioinformatics 2014, 30, i121-i129.
    • (2014) Bioinformatics , vol.30 , pp. i121-i129
    • Leung, M.K.K.1    Xiong, H.Y.2    Lee, L.J.3
  • 14
    • 84887943419 scopus 로고    scopus 로고
    • Comparison of Methods for Image-Based Profiling of Cellular Morphological Responses to Small-Molecule Treatment
    • Ljosa V., Caie P. D., ter Horst R., et al. Comparison of Methods for Image-Based Profiling of Cellular Morphological Responses to Small-Molecule Treatment. J. Biomol. Screen. 2013, 18, 1321-1329.
    • (2013) J. Biomol. Screen , vol.18 , pp. 1321-1329
    • Ljosa, V.1    Caie, P.D.2    Ter Horst, R.3
  • 15
    • 79551480483 scopus 로고    scopus 로고
    • Stacked Denoising Autoencoders: Learning Useful Representations in a Deep Network with a Local Denoising Criterion
    • Vincent P., Larochelle H., Lajoie I., et al. Stacked Denoising Autoencoders: Learning Useful Representations in a Deep Network with a Local Denoising Criterion. J. Mach. Learn. Res. 2010, 11, 3371-3408.
    • (2010) J. Mach. Learn. Res , vol.11 , pp. 3371-3408
    • Vincent, P.1    Larochelle, H.2    Lajoie, I.3
  • 17
    • 84959188671 scopus 로고    scopus 로고
    • 11th International Conference Image Analysis and Recognition (ICIAR), Vilamoura, Portugal, Oct 22-24, 2014; Eds. Lecture Notes in Computer Science; Springer: Berlin, Part I
    • Amaral T., Sá J., Silva L., et al. In Improving Performance on Problems with Few Labelled Data by Reusing Stacked Auto-Encoders, 11th International Conference Image Analysis and Recognition (ICIAR), Vilamoura, Portugal, Oct 22-24, 2014; Campilho A., Kamel M., Eds.; Lecture Notes in Computer Science; Springer: Berlin, 2014; Part I, Vol. 8814.
    • (2014) Improving Performance on Problems with Few Labelled Data by Reusing Stacked Auto-Encoders , vol.8814
    • Amaral, T.1    Sá, J.2    Silva, L.3    Campilho, A.4    Kamel, M.5
  • 18
    • 33845792555 scopus 로고    scopus 로고
    • CellProfiler: Image Analysis Software for Identifying and Quantifying Cell Phenotypes
    • Carpenter A. E., Jones T. R., Lamprecht M. R., et al. CellProfiler: Image Analysis Software for Identifying and Quantifying Cell Phenotypes. Genome Biol. 2006, 7, R100.
    • (2006) Genome Biol , vol.7 , pp. R100
    • Carpenter, A.E.1    Jones, T.R.2    Lamprecht, M.R.3
  • 19
    • 37249026328 scopus 로고    scopus 로고
    • Integrating High-Content Screening and Ligand-Target Prediction to Identify Mechanism of Action
    • Young D. W., Bender A., Hoyt J., et al. Integrating High-Content Screening and Ligand-Target Prediction to Identify Mechanism of Action. Nat. Chem. Biol. 2008, 4, 59-68.
    • (2008) Nat. Chem. Biol , vol.4 , pp. 59-68
    • Young, D.W.1    Bender, A.2    Hoyt, J.3
  • 20
    • 84897573740 scopus 로고    scopus 로고
    • A Theory of Learning from Different Domains
    • Ben-David S., Blitzer J., Crammer K., et al. A Theory of Learning from Different Domains. Mach. Learn. 2010, 79, 151-175.
    • (2010) Mach. Learn , vol.79 , pp. 151-175
    • Ben-David, S.1    Blitzer, J.2    Crammer, K.3
  • 21
    • 84959194635 scopus 로고    scopus 로고
    • Artificial Neural Networks and Machine Learning - 24th International Conference on Artificial Neural Networks (ICANN), Hamburg, Germany, Sept 15-19, 2014; Eds. Lecture Notes in Computer Science; Springer: Berlin
    • Kandaswamy C., Silva L. M., Alexandre L. A., et al. In Improving Transfer Learning Accuracy by Reusing Stacked Denoising Autoencoders, Artificial Neural Networks and Machine Learning-24th International Conference on Artificial Neural Networks (ICANN), Hamburg, Germany, Sept 15-19, 2014; Wermter S., Weber C., Duch W., et al., Eds.; Lecture Notes in Computer Science; Springer: Berlin, 2014; Vol. 8681.
    • (2014) Improving Transfer Learning Accuracy by Reusing Stacked Denoising Autoencoders , vol.8681
    • Kandaswamy, C.1    Silva, L.M.2    Alexandre, L.A.3    Wermter, S.4    Weber, C.5    Duch, W.6
  • 22
    • 84937508363 scopus 로고    scopus 로고
    • In Advances in Neural Information Processing Systems 27 - Proceedings of the 28th Conference on Neural Information Processing Systems, Montréal, Dec 8-13, 2014; Eds. MIT Press: Cambridge, MA
    • Yosinski J., Clune J., Bengio Y., et al. In How Transferable Are Features in Deep Neural Networks? Advances in Neural Information Processing Systems 27-Proceedings of the 28th Conference on Neural Information Processing Systems, Montréal, Dec 8-13, 2014; Ghahramani Z., Welling M., Cortes C., Eds.; MIT Press: Cambridge, MA, 2014.
    • (2014) How Transferable Are Features in Deep Neural Networks?
    • Yosinski, J.1    Clune, J.2    Bengio, Y.3    Ghahramani, Z.4    Welling, M.5    Cortes, C.6
  • 23
    • 80051473208 scopus 로고    scopus 로고
    • Assessing the Efficacy of Low-Level Image Content Descriptors for Computer-Based Fluorescence Microscopy Image Analysis
    • Shamir L., Assessing the Efficacy of Low-Level Image Content Descriptors for Computer-Based Fluorescence Microscopy Image Analysis. J. Microsc. 2011, 243, 284-292.
    • (2011) J. Microsc , vol.243 , pp. 284-292
    • Shamir, L.1
  • 25
    • 34249753618 scopus 로고
    • Support-Vector Networks
    • Cortes C., Vapnik V., Support-Vector Networks. Mach. Learn. 1995, 20, 273-297.
    • (1995) Mach. Learn , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 26
    • 77953445258 scopus 로고    scopus 로고
    • High-Content Phenotypic Profiling of Drug Response Signatures across Distinct Cancer Cells
    • Caie P. D., Rebecca E. W, Alexandra I., et al. High-Content Phenotypic Profiling of Drug Response Signatures across Distinct Cancer Cells. Mol. Cancer Ther. 2010, 9, 1913-1926.
    • (2010) Mol. Cancer Ther , vol.9 , pp. 1913-1926
    • Caie, P.D.1    Rebecca, E.W.2    Alexandra, I.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.