-
1
-
-
84902210226
-
Increasing the Content of High-Content Screening: An Overview
-
Singh S., Carpenter A. E., Genovesio A., Increasing the Content of High-Content Screening: An Overview. J. Biomol. Screen. 2014, 19, 640-650.
-
(2014)
J. Biomol. Screen
, vol.19
, pp. 640-650
-
-
Singh, S.1
Carpenter, A.E.2
Genovesio, A.3
-
2
-
-
0032203257
-
Gradient-Based Learning Applied to Document Recognition
-
LeCun Y., Bottou L., Bengio Y., et al. Gradient-Based Learning Applied to Document Recognition. Proc. IEEE 1998, 86, 2278-2324.
-
(1998)
Proc. IEEE
, vol.86
, pp. 2278-2324
-
-
LeCun, Y.1
Bottou, L.2
Bengio, Y.3
-
3
-
-
24644511277
-
-
Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, June 20-25, 2005; IEEE: Piscataway, NJ
-
Serre T., Wolf L., Poggio T., In Object Recognition with Features Inspired by Visual Cortex, Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, June 20-25, 2005; IEEE: Piscataway, NJ, 2005; Vol. 2, pp 994-1000.
-
(2005)
Object Recognition with Features Inspired by Visual Cortex
, vol.2
, pp. 994-1000
-
-
Serre, T.1
Wolf, L.2
Poggio, T.3
-
4
-
-
0031875590
-
The Role of the Primary Visual Cortex in Higher Level Vision
-
Lee T. S., Mumford D., Romero R., et al. The Role of the Primary Visual Cortex in Higher Level Vision. Vision Res. 1998, 38, 2429-2454.
-
(1998)
Vision Res
, vol.38
, pp. 2429-2454
-
-
Lee, T.S.1
Mumford, D.2
Romero, R.3
-
5
-
-
84930630277
-
Deep Learning
-
LeCun Y., Bengio Y., Hinton G., Deep Learning. Nature 2015, 521, 436-444.
-
(2015)
Nature
, vol.521
, pp. 436-444
-
-
LeCun, Y.1
Bengio, Y.2
Hinton, G.3
-
6
-
-
84910651844
-
Deep Learning in Neural Networks: An Overview
-
Schmidhuber J., Deep Learning in Neural Networks: An Overview. Neural Netw. 2015, 61, 85-117.
-
(2015)
Neural Netw
, vol.61
, pp. 85-117
-
-
Schmidhuber, J.1
-
7
-
-
0042565834
-
Hierarchical Bayesian Inference in the Visual Cortex
-
Lee T. S., Mumford D., Hierarchical Bayesian Inference in the Visual Cortex. J. Opt. Soc. Am. A 2003, 20, 1434-1448.
-
(2003)
J. Opt. Soc. Am. A
, vol.20
, pp. 1434-1448
-
-
Lee, T.S.1
Mumford, D.2
-
8
-
-
69349090197
-
Learning Deep Architectures for AI
-
Bengio Y., Learning Deep Architectures for AI. Found. Trends Mach. Learn. 2009, 2, 1-127.
-
(2009)
Found. Trends Mach. Learn
, vol.2
, pp. 1-127
-
-
Bengio, Y.1
-
9
-
-
84876231242
-
-
Advances in Neural Information Processing Systems 25 - Proceedings of the 26th Conference on Neural Information Processing Systems, Lake Tahoe, NV, Dec 2012; Eds. MIT Press: Cambridge, MA
-
Krizhevsky A., Sutskever I., Hinton G. E., In ImageNet Classification with Deep Convolutional Neural Networks, Advances in Neural Information Processing Systems 25-Proceedings of the 26th Conference on Neural Information Processing Systems, Lake Tahoe, NV, Dec 2012; Pereira F., Burges C. J. C., Bottou L., et al., Eds.; MIT Press: Cambridge, MA, 2012.
-
(2012)
ImageNet Classification with Deep Convolutional Neural Networks
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
Pereira, F.4
Burges, C.J.C.5
Bottou, L.6
-
10
-
-
84924051598
-
Human-Level Control through Deep Reinforcement Learning
-
Mnih V., Kavukcuoglu K., Silver D., et al. Human-Level Control through Deep Reinforcement Learning. Nature 2015, 518, 529-533.
-
(2015)
Nature
, vol.518
, pp. 529-533
-
-
Mnih, V.1
Kavukcuoglu, K.2
Silver, D.3
-
11
-
-
85032751458
-
Deep Neural Networks for Acoustic Modeling in Speech Recognition: The Shared Views of Four Research Groups
-
Hinton G., Deng L., Yu D., et al. Deep Neural Networks for Acoustic Modeling in Speech Recognition: The Shared Views of Four Research Groups. IEEE Signal Process. Mag. 2012, 29, 82-97.
-
(2012)
IEEE Signal Process. Mag
, vol.29
, pp. 82-97
-
-
Hinton, G.1
Deng, L.2
Yu, D.3
-
12
-
-
84923367417
-
Deep Neural Nets as a Method for Quantitative Structure-Activity Relationships
-
Ma J., Sheridan R. P., Liaw A., et al. Deep Neural Nets as a Method for Quantitative Structure-Activity Relationships. J. Chem. Inf. Model. 2015, 55, 263-274.
-
(2015)
J. Chem. Inf. Model
, vol.55
, pp. 263-274
-
-
Ma, J.1
Sheridan, R.P.2
Liaw, A.3
-
13
-
-
84902462761
-
Deep Learning of the Tissue-Regulated Splicing Code
-
Leung M. K. K., Xiong H. Y., Lee L. J., et al. Deep Learning of the Tissue-Regulated Splicing Code. Bioinformatics 2014, 30, i121-i129.
-
(2014)
Bioinformatics
, vol.30
, pp. i121-i129
-
-
Leung, M.K.K.1
Xiong, H.Y.2
Lee, L.J.3
-
14
-
-
84887943419
-
Comparison of Methods for Image-Based Profiling of Cellular Morphological Responses to Small-Molecule Treatment
-
Ljosa V., Caie P. D., ter Horst R., et al. Comparison of Methods for Image-Based Profiling of Cellular Morphological Responses to Small-Molecule Treatment. J. Biomol. Screen. 2013, 18, 1321-1329.
-
(2013)
J. Biomol. Screen
, vol.18
, pp. 1321-1329
-
-
Ljosa, V.1
Caie, P.D.2
Ter Horst, R.3
-
15
-
-
79551480483
-
Stacked Denoising Autoencoders: Learning Useful Representations in a Deep Network with a Local Denoising Criterion
-
Vincent P., Larochelle H., Lajoie I., et al. Stacked Denoising Autoencoders: Learning Useful Representations in a Deep Network with a Local Denoising Criterion. J. Mach. Learn. Res. 2010, 11, 3371-3408.
-
(2010)
J. Mach. Learn. Res
, vol.11
, pp. 3371-3408
-
-
Vincent, P.1
Larochelle, H.2
Lajoie, I.3
-
16
-
-
84894115810
-
-
Proceedings of the 12th Mexican International Conference on Artificial Intelligence (MICAI), Mexico City, Mexico, Nov 24-30, Eds. Springer: Berlin, 2013
-
Amaral T., Silva L. M., Alexandre L. A., et al. In Using Different Cost Functions to Train Stacked Auto-Encoders, Proceedings of the 12th Mexican International Conference on Artificial Intelligence (MICAI), Mexico City, Mexico, Nov 24-30, 2013; Castro F., Gelbukh A., González M., Eds.; Springer: Berlin, 2013.
-
(2013)
Using Different Cost Functions to Train Stacked Auto-Encoders
-
-
Amaral, T.1
Silva, L.M.2
Alexandre, L.A.3
Castro, F.4
Gelbukh, A.5
González, M.6
-
17
-
-
84959188671
-
-
11th International Conference Image Analysis and Recognition (ICIAR), Vilamoura, Portugal, Oct 22-24, 2014; Eds. Lecture Notes in Computer Science; Springer: Berlin, Part I
-
Amaral T., Sá J., Silva L., et al. In Improving Performance on Problems with Few Labelled Data by Reusing Stacked Auto-Encoders, 11th International Conference Image Analysis and Recognition (ICIAR), Vilamoura, Portugal, Oct 22-24, 2014; Campilho A., Kamel M., Eds.; Lecture Notes in Computer Science; Springer: Berlin, 2014; Part I, Vol. 8814.
-
(2014)
Improving Performance on Problems with Few Labelled Data by Reusing Stacked Auto-Encoders
, vol.8814
-
-
Amaral, T.1
Sá, J.2
Silva, L.3
Campilho, A.4
Kamel, M.5
-
18
-
-
33845792555
-
CellProfiler: Image Analysis Software for Identifying and Quantifying Cell Phenotypes
-
Carpenter A. E., Jones T. R., Lamprecht M. R., et al. CellProfiler: Image Analysis Software for Identifying and Quantifying Cell Phenotypes. Genome Biol. 2006, 7, R100.
-
(2006)
Genome Biol
, vol.7
, pp. R100
-
-
Carpenter, A.E.1
Jones, T.R.2
Lamprecht, M.R.3
-
19
-
-
37249026328
-
Integrating High-Content Screening and Ligand-Target Prediction to Identify Mechanism of Action
-
Young D. W., Bender A., Hoyt J., et al. Integrating High-Content Screening and Ligand-Target Prediction to Identify Mechanism of Action. Nat. Chem. Biol. 2008, 4, 59-68.
-
(2008)
Nat. Chem. Biol
, vol.4
, pp. 59-68
-
-
Young, D.W.1
Bender, A.2
Hoyt, J.3
-
20
-
-
84897573740
-
A Theory of Learning from Different Domains
-
Ben-David S., Blitzer J., Crammer K., et al. A Theory of Learning from Different Domains. Mach. Learn. 2010, 79, 151-175.
-
(2010)
Mach. Learn
, vol.79
, pp. 151-175
-
-
Ben-David, S.1
Blitzer, J.2
Crammer, K.3
-
21
-
-
84959194635
-
-
Artificial Neural Networks and Machine Learning - 24th International Conference on Artificial Neural Networks (ICANN), Hamburg, Germany, Sept 15-19, 2014; Eds. Lecture Notes in Computer Science; Springer: Berlin
-
Kandaswamy C., Silva L. M., Alexandre L. A., et al. In Improving Transfer Learning Accuracy by Reusing Stacked Denoising Autoencoders, Artificial Neural Networks and Machine Learning-24th International Conference on Artificial Neural Networks (ICANN), Hamburg, Germany, Sept 15-19, 2014; Wermter S., Weber C., Duch W., et al., Eds.; Lecture Notes in Computer Science; Springer: Berlin, 2014; Vol. 8681.
-
(2014)
Improving Transfer Learning Accuracy by Reusing Stacked Denoising Autoencoders
, vol.8681
-
-
Kandaswamy, C.1
Silva, L.M.2
Alexandre, L.A.3
Wermter, S.4
Weber, C.5
Duch, W.6
-
22
-
-
84937508363
-
-
In Advances in Neural Information Processing Systems 27 - Proceedings of the 28th Conference on Neural Information Processing Systems, Montréal, Dec 8-13, 2014; Eds. MIT Press: Cambridge, MA
-
Yosinski J., Clune J., Bengio Y., et al. In How Transferable Are Features in Deep Neural Networks? Advances in Neural Information Processing Systems 27-Proceedings of the 28th Conference on Neural Information Processing Systems, Montréal, Dec 8-13, 2014; Ghahramani Z., Welling M., Cortes C., Eds.; MIT Press: Cambridge, MA, 2014.
-
(2014)
How Transferable Are Features in Deep Neural Networks?
-
-
Yosinski, J.1
Clune, J.2
Bengio, Y.3
Ghahramani, Z.4
Welling, M.5
Cortes, C.6
-
23
-
-
80051473208
-
Assessing the Efficacy of Low-Level Image Content Descriptors for Computer-Based Fluorescence Microscopy Image Analysis
-
Shamir L., Assessing the Efficacy of Low-Level Image Content Descriptors for Computer-Based Fluorescence Microscopy Image Analysis. J. Microsc. 2011, 243, 284-292.
-
(2011)
J. Microsc
, vol.243
, pp. 284-292
-
-
Shamir, L.1
-
24
-
-
84959218946
-
-
Proceedings of the Python for Scientific Computing Conference (SciPy), Austin, TX, June 20-July 3, 2010; Ed. Austin, TX
-
Bergstra J., Breuleux O., Bastien F., et al. In Theano: A CPU and GPU Math Expression Compiler, Proceedings of the Python for Scientific Computing Conference (SciPy), Austin, TX, June 20-July 3, 2010; van der Walt S., Millman J., Ed.; 2010; Vol. 4: Austin, TX.
-
(2010)
Theano: A CPU and GPU Math Expression Compiler
, vol.4
-
-
Bergstra, J.1
Breuleux, O.2
Bastien, F.3
Van Der Walt, S.4
Millman, J.5
-
25
-
-
34249753618
-
Support-Vector Networks
-
Cortes C., Vapnik V., Support-Vector Networks. Mach. Learn. 1995, 20, 273-297.
-
(1995)
Mach. Learn
, vol.20
, pp. 273-297
-
-
Cortes, C.1
Vapnik, V.2
-
26
-
-
77953445258
-
High-Content Phenotypic Profiling of Drug Response Signatures across Distinct Cancer Cells
-
Caie P. D., Rebecca E. W, Alexandra I., et al. High-Content Phenotypic Profiling of Drug Response Signatures across Distinct Cancer Cells. Mol. Cancer Ther. 2010, 9, 1913-1926.
-
(2010)
Mol. Cancer Ther
, vol.9
, pp. 1913-1926
-
-
Caie, P.D.1
Rebecca, E.W.2
Alexandra, I.3
|