메뉴 건너뛰기




Volumn 11, Issue , 2010, Pages

Data reduction for spectral clustering to analyze high throughput flow cytometry data

Author keywords

[No Author keywords available]

Indexed keywords

BIOLOGICAL DISCOVERIES; CLUSTERING METHODS; HIGH THROUGHPUT; MULTIDIMENSIONAL DATA; POST-PROCESSING STAGES; SAMPLING PROCEDURES; SPECTRAL CLUSTERING; SPECTRAL METHODOLOGIES;

EID: 77954938186     PISSN: None     EISSN: 14712105     Source Type: Journal    
DOI: 10.1186/1471-2105-11-403     Document Type: Article
Times cited : (141)

References (50)
  • 2
    • 3543069879 scopus 로고    scopus 로고
    • Seventeen-colour flow cytometry: unravelling the immune system
    • 10.1038/nri1416, 15286731
    • Perfetto SP, Chattopadhyay PK, Roederer M. Seventeen-colour flow cytometry: unravelling the immune system. Nat Rev Immunol 2004, 4(8):648-655. 10.1038/nri1416, 15286731.
    • (2004) Nat Rev Immunol , vol.4 , Issue.8 , pp. 648-655
    • Perfetto, S.P.1    Chattopadhyay, P.K.2    Roederer, M.3
  • 3
  • 4
    • 67651042932 scopus 로고    scopus 로고
    • Scalable analysis of flow cytometry data using R/Bioconductor
    • Klinke D, Brundage K. Scalable analysis of flow cytometry data using R/Bioconductor. Cytometry Part A 2009, 75(8):699-706.
    • (2009) Cytometry Part A , vol.75 , Issue.8 , pp. 699-706
    • Klinke, D.1    Brundage, K.2
  • 5
    • 77954250303 scopus 로고    scopus 로고
    • Data analysis in flow cytometry: The future just started
    • Lugli E, Roederer M, Cossarizza A. Data analysis in flow cytometry: The future just started. Cytometry Part A 2010, 77(7):705-13.
    • (2010) Cytometry Part A , vol.77 , Issue.7 , pp. 705-713
    • Lugli, E.1    Roederer, M.2    Cossarizza, A.3
  • 6
    • 42949083636 scopus 로고    scopus 로고
    • Mixture modeling approach to flow cytometry data
    • Boedigheimer M, Ferbas J. Mixture modeling approach to flow cytometry data. Cytometry Part A 2008, 73(5):421-429.
    • (2008) Cytometry Part A , vol.73 , Issue.5 , pp. 421-429
    • Boedigheimer, M.1    Ferbas, J.2
  • 8
    • 34248346643 scopus 로고    scopus 로고
    • Feature-guided clustering of multi-dimensional flow cytometry datasets
    • 10.1016/j.jbi.2006.06.005, 16901761
    • Zeng Q, Pratt J, Pak J, Ravnic D, Huss H, Mentzer S. Feature-guided clustering of multi-dimensional flow cytometry datasets. Journal of Biomedical Informatics 2007, 40(3):325-331. 10.1016/j.jbi.2006.06.005, 16901761.
    • (2007) Journal of Biomedical Informatics , vol.40 , Issue.3 , pp. 325-331
    • Zeng, Q.1    Pratt, J.2    Pak, J.3    Ravnic, D.4    Huss, H.5    Mentzer, S.6
  • 9
    • 77955982976 scopus 로고    scopus 로고
    • ImmPort FLOCK: Automated cell population identification in high dimensional flow cytometry data
    • Scheuermann R, Qian Y, Wei C, Sanz I. ImmPort FLOCK: Automated cell population identification in high dimensional flow cytometry data. The Journal of Immunology 2009, 182(Meeting Abstracts 1):42-17.
    • (2009) The Journal of Immunology , vol.182 , pp. 42-117
    • Scheuermann, R.1    Qian, Y.2    Wei, C.3    Sanz, I.4
  • 10
    • 77949564197 scopus 로고    scopus 로고
    • The curvHDR method for gating flow cytometry samples
    • 10.1186/1471-2105-11-44, 2832899, 20096119
    • Naumann U, Luta G, Wand M. The curvHDR method for gating flow cytometry samples. BMC bioinformatics 2010, 11:44. 10.1186/1471-2105-11-44, 2832899, 20096119.
    • (2010) BMC bioinformatics , vol.11 , pp. 44
    • Naumann, U.1    Luta, G.2    Wand, M.3
  • 11
    • 51449090127 scopus 로고    scopus 로고
    • Analysis of flow cytometry data using an automatic processing tool
    • Jeffries D, Zaidi I, de Jong B, Holland M, Miles D. Analysis of flow cytometry data using an automatic processing tool. Cytometry Part A 2008, 73(9):857-867.
    • (2008) Cytometry Part A , vol.73 , Issue.9 , pp. 857-867
    • Jeffries, D.1    Zaidi, I.2    de Jong, B.3    Holland, M.4    Miles, D.5
  • 12
    • 68849100111 scopus 로고    scopus 로고
    • Automation in high-content flow cytometry screening
    • Naumann U, Wand M. Automation in high-content flow cytometry screening. Cytometry Part A 2009, 75(9):789-797.
    • (2009) Cytometry Part A , vol.75 , Issue.9 , pp. 789-797
    • Naumann, U.1    Wand, M.2
  • 13
    • 51449102338 scopus 로고    scopus 로고
    • Development of an automated analysis system for data from flow cytometric intracellular cytokine staining assays from clinical vaccine trials
    • Shulman N, Bellew M, Snelling G, Carter D, Huang Y, Li H, Self S, McElrath M, De Rosa S. Development of an automated analysis system for data from flow cytometric intracellular cytokine staining assays from clinical vaccine trials. Cytometry Part A 2008, 73(9):847-856.
    • (2008) Cytometry Part A , vol.73 , Issue.9 , pp. 847-856
    • Shulman, N.1    Bellew, M.2    Snelling, G.3    Carter, D.4    Huang, Y.5    Li, H.6    Self, S.7    McElrath, M.8    De Rosa, S.9
  • 14
    • 74049084316 scopus 로고    scopus 로고
    • Advances in complex multiparameter flow cytometry technology: Applications in stem cell research
    • Preffer F, Dombkowski D. Advances in complex multiparameter flow cytometry technology: Applications in stem cell research. Cytometry Part B: Clinical Cytometry 2009, 76(5):295-314.
    • (2009) Cytometry Part B: Clinical Cytometry , vol.76 , Issue.5 , pp. 295-314
    • Preffer, F.1    Dombkowski, D.2
  • 16
    • 0023271424 scopus 로고
    • A rapid, non-parametric clustering scheme for flow cytometric data
    • Conrad MP. A rapid, non-parametric clustering scheme for flow cytometric data. Pattern Recognition 1987, 20(2):229-35.
    • (1987) Pattern Recognition , vol.20 , Issue.2 , pp. 229-235
    • Conrad, M.P.1
  • 17
    • 0027544701 scopus 로고
    • Real-time adaptive clustering of flow cytometric data
    • Fu L, Yang M, Braylan R, Benson N. Real-time adaptive clustering of flow cytometric data. Pattern Recognition 1993, 26(2):365-373.
    • (1993) Pattern Recognition , vol.26 , Issue.2 , pp. 365-373
    • Fu, L.1    Yang, M.2    Braylan, R.3    Benson, N.4
  • 18
    • 0035397276 scopus 로고    scopus 로고
    • Pattern recognition in flow cytometry
    • 10.1002/1097-0320(20010701)44:3<195::AID-CYTO1112>3.0.CO;2-H, 11429770
    • Boddy L, Wilkins M, Morris C. Pattern recognition in flow cytometry. Cytometry 2001, 44(3):195-209. 10.1002/1097-0320(20010701)44:3<195::AID-CYTO1112>3.0.CO;2-H, 11429770.
    • (2001) Cytometry , vol.44 , Issue.3 , pp. 195-209
    • Boddy, L.1    Wilkins, M.2    Morris, C.3
  • 19
    • 62349137000 scopus 로고    scopus 로고
    • Analysis of clinical flow cytometric immunophenotyping data by clustering on statistical manifolds: Treating flow cytometry data as high-dimensional objects
    • Finn WG, Carter KM, Raich R, Stoolman LM, Hero AO. Analysis of clinical flow cytometric immunophenotyping data by clustering on statistical manifolds: Treating flow cytometry data as high-dimensional objects. Cytometry Part B: Clinical Cytometry 2009, 76B:1-7.
    • (2009) Cytometry Part B: Clinical Cytometry , vol.76 , pp. 1-7
    • Finn, W.G.1    Carter, K.M.2    Raich, R.3    Stoolman, L.M.4    Hero, A.O.5
  • 21
    • 67649488081 scopus 로고    scopus 로고
    • FlowClust: a Bioconductor package for automated gating of flow cytometry data
    • 10.1186/1471-2105-10-145, 2631520, 19118496
    • Lo K, Hahne F, Brinkman R, Gottardo R. flowClust: a Bioconductor package for automated gating of flow cytometry data. BMC Bioinformatics 2009, 10:1-145. 10.1186/1471-2105-10-145, 2631520, 19118496.
    • (2009) BMC Bioinformatics , vol.10 , pp. 1-145
    • Lo, K.1    Hahne, F.2    Brinkman, R.3    Gottardo, R.4
  • 23
    • 48849105886 scopus 로고    scopus 로고
    • Statistical mixture modeling for cell subtype identification in flow cytometry
    • Chan C, Feng F, Ottinger J, Foster D, West M, Kepler TB. Statistical mixture modeling for cell subtype identification in flow cytometry. Cytometry Part A 2008, 73A(8):693-701.
    • (2008) Cytometry Part A , vol.73 , Issue.8 , pp. 693-701
    • Chan, C.1    Feng, F.2    Ottinger, J.3    Foster, D.4    West, M.5    Kepler, T.B.6
  • 24
    • 34548583274 scopus 로고    scopus 로고
    • A tutorial on spectral clustering
    • von Luxburg U. A tutorial on spectral clustering. Statistics and Computing 2007, 17(4):395-416.
    • (2007) Statistics and Computing , vol.17 , Issue.4 , pp. 395-416
    • von Luxburg, U.1
  • 27
    • 29344457665 scopus 로고    scopus 로고
    • Spectral Clustering of Biological Sequence Data
    • Pentney W, Meila M. Spectral Clustering of Biological Sequence Data. AAAI 2005, 845-850.
    • (2005) AAAI , pp. 845-850
    • Pentney, W.1    Meila, M.2
  • 28
    • 33749317042 scopus 로고    scopus 로고
    • Learning Spectral Clustering, With Application To Speech Separation
    • Bach FR, Jordan MI. Learning Spectral Clustering, With Application To Speech Separation. J Mach Learn Res 2006, 7:1963-2001.
    • (2006) J Mach Learn Res , vol.7 , pp. 1963-2001
    • Bach, F.R.1    Jordan, M.I.2
  • 34
    • 0023145152 scopus 로고
    • On multiparameter data analysis in flow cytometry
    • Mann RC. On multiparameter data analysis in flow cytometry. Cytometry A 1987, 8(2):184-189.
    • (1987) Cytometry A , vol.8 , Issue.2 , pp. 184-189
    • Mann, R.C.1
  • 35
    • 70350675100 scopus 로고    scopus 로고
    • Fast Approximate Spectral Clustering
    • EECS Department, University of California, Berkeley
    • Yan D, Huang L, Jordan M. Fast Approximate Spectral Clustering. Tech. Rep. UCB/EECS-2009-45 2009, EECS Department, University of California, Berkeley.
    • (2009) Tech. Rep. UCB/EECS-2009-45
    • Yan, D.1    Huang, L.2    Jordan, M.3
  • 36
    • 0041775676 scopus 로고    scopus 로고
    • Diffusion Kernels on Graphs and Other Discrete Structures
    • Kondor RI, Lafferty J. Diffusion Kernels on Graphs and Other Discrete Structures. In Proceedings of the ICML 2002, 315-322.
    • (2002) In Proceedings of the ICML , pp. 315-322
    • Kondor, R.I.1    Lafferty, J.2
  • 38
    • 35448945640 scopus 로고    scopus 로고
    • Spectral clustering with eigenvector selection
    • Xiang T, Gong S. Spectral clustering with eigenvector selection. Pattern Recogn 2008, 41(3):1012-1029.
    • (2008) Pattern Recogn , vol.41 , Issue.3 , pp. 1012-1029
    • Xiang, T.1    Gong, S.2
  • 40
    • 84888282374 scopus 로고    scopus 로고
    • SamSPECTRAL package at BioConductor
    • SamSPECTRAL package at BioConductor. , http://www.bioconductor.org/packages/devel/bioc/html/SamSPECTRAL.html
  • 44
    • 34447523459 scopus 로고    scopus 로고
    • Rare-Event Analysis in Flow Cytometry
    • 10.1016/j.cll.2007.05.013, 17658410
    • Donnenberg AD, Donnenberg VS. Rare-Event Analysis in Flow Cytometry. Clinics in Laboratory Medicine 2007, 27(3):627-652. 10.1016/j.cll.2007.05.013, 17658410.
    • (2007) Clinics in Laboratory Medicine , vol.27 , Issue.3 , pp. 627-652
    • Donnenberg, A.D.1    Donnenberg, V.S.2
  • 45
    • 77955980500 scopus 로고    scopus 로고
    • Automation in proteomics and genomics: an engineering case-based approach
    • Wiley
    • Gil Alterovitz MR, Benson R. Automation in proteomics and genomics: an engineering case-based approach. 2009, Wiley.
    • (2009)
    • Gil Alterovitz, M.R.1    Benson, R.2
  • 46
    • 34547692981 scopus 로고    scopus 로고
    • Long-term propagation of distinct hematopoietic differentiation programs in vivo
    • 10.1016/j.stem.2007.05.015, 18371352
    • Dykstra B, Kent D, Bowie M, McCaffrey L, Hamilton M, Lyons K, Lee S, Brinkman R, Eaves C. Long-term propagation of distinct hematopoietic differentiation programs in vivo. Cell Stem Cell 2007, 1(2):218-29. 10.1016/j.stem.2007.05.015, 18371352.
    • (2007) Cell Stem Cell , vol.1 , Issue.2 , pp. 218-229
    • Dykstra, B.1    Kent, D.2    Bowie, M.3    McCaffrey, L.4    Hamilton, M.5    Lyons, K.6    Lee, S.7    Brinkman, R.8    Eaves, C.9
  • 47
    • 34548852722 scopus 로고    scopus 로고
    • Flow cytometry and FISH to measure the average length of telomeres (flow FISH)
    • 10.1038/nprot.2006.263, 17406480
    • Baerlocher G, Vulto I, de JG, Lansdorp P. Flow cytometry and FISH to measure the average length of telomeres (flow FISH). Nature protocols 2006, 1(5):2365.. 10.1038/nprot.2006.263, 17406480.
    • (2006) Nature protocols , vol.1 , Issue.5
    • Baerlocher, G.1    Vulto, I.2    de, J.G.3    Lansdorp, P.4
  • 48
    • 34248652720 scopus 로고    scopus 로고
    • High-content flow cytometry and temporal data analysis for defining a cellular signature of graft-versus-host disease
    • 10.1016/j.bbmt.2007.02.002, 2000975, 17531779
    • Brinkman R, Gasparetto M, Lee S, Ribickas A, Perkins J, Janssen W, Smiley R, Smith C. High-content flow cytometry and temporal data analysis for defining a cellular signature of graft-versus-host disease. Biol Blood Marrow Transplant 2007, 13(6):691-700. 10.1016/j.bbmt.2007.02.002, 2000975, 17531779.
    • (2007) Biol Blood Marrow Transplant , vol.13 , Issue.6 , pp. 691-700
    • Brinkman, R.1    Gasparetto, M.2    Lee, S.3    Ribickas, A.4    Perkins, J.5    Janssen, W.6    Smiley, R.7    Smith, C.8
  • 49
    • 0019436319 scopus 로고
    • Propidium iodide as a nuclear marker in immunofluorescence. II. Use with cellular identification and viability studies
    • 10.1016/0022-1759(81)90174-5, 7019344
    • Yeh C, Hsi B, Lee S, Faulk W. Propidium iodide as a nuclear marker in immunofluorescence. II. Use with cellular identification and viability studies. J Immunol Methods 1981, 43(3):269-275. 10.1016/0022-1759(81)90174-5, 7019344.
    • (1981) J Immunol Methods , vol.43 , Issue.3 , pp. 269-275
    • Yeh, C.1    Hsi, B.2    Lee, S.3    Faulk, W.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.