메뉴 건너뛰기




Volumn 33, Issue 13, 2017, Pages 2010-2019

A multi-scale convolutional neural network for phenotyping high-content cellular images

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL NEURAL NETWORK; HUMAN; IMAGE PROCESSING; MICROSCOPY; PROCEDURES; SOFTWARE; TUMOR CELL LINE;

EID: 85021826417     PISSN: 13674803     EISSN: 14602059     Source Type: Journal    
DOI: 10.1093/bioinformatics/btx069     Document Type: Article
Times cited : (148)

References (62)
  • 1
    • 84938888109 scopus 로고    scopus 로고
    • Predicting the sequence specificities of DNA-A nd RNA-binding proteins by deep learning
    • Alipanahi, B., et al. (2015) Predicting the sequence specificities of DNA-A nd RNA-binding proteins by deep learning. Nat. Biotechnol., 33, 831-838.
    • (2015) Nat. Biotechnol. , vol.33 , pp. 831-838
    • Alipanahi, B.1
  • 2
    • 0017911537 scopus 로고
    • Synthesis and adrenergic activity of benzimidazole bioisosteres of norepinephrine and isoproterenol
    • Arnett, C. D., et al. (1978) Synthesis and adrenergic activity of benzimidazole bioisosteres of norepinephrine and isoproterenol. J. Med. Chem., 21, 72-78.
    • (1978) J. Med. Chem. , vol.21 , pp. 72-78
    • Arnett, C.D.1
  • 3
    • 34250882643 scopus 로고    scopus 로고
    • Quantitative morphological signatures define local signaling networks regulating cell morphology
    • Bakal, C., et al. (2007) Quantitative morphological signatures define local signaling networks regulating cell morphology. Science, 316, 1753-1756.
    • (2007) Science , vol.316 , pp. 1753-1756
    • Bakal, C.1
  • 4
    • 84878516709 scopus 로고    scopus 로고
    • Hydroxyurea exposure triggers tissue-specific activation of p38 mitogen-activated protein kinase signaling and the DNA damage response in organogenesis-stage mouse embryos
    • Banh, S., Hales, B. F. (2013) Hydroxyurea exposure triggers tissue-specific activation of p38 mitogen-activated protein kinase signaling and the DNA damage response in organogenesis-stage mouse embryos. Toxicol. Sci., 133, 208-298.
    • (2013) Toxicol. Sci. , vol.133 , pp. 208-298
    • Banh, S.1    Hales, B.F.2
  • 5
    • 41549148628 scopus 로고    scopus 로고
    • Toward a confocal subcellular atlas of the human proteome
    • Barbe, L., et al. (2008) Toward a confocal subcellular atlas of the human proteome. Mol. Cell. Proteomics, 7, 499-508.
    • (2008) Mol. Cell. Proteomics , vol.7 , pp. 499-508
    • Barbe, L.1
  • 6
    • 0036139314 scopus 로고    scopus 로고
    • A neural network classifier capable of recognizing the patterns of all major subcellular structures in fluorescence microscope images of HeLa cells
    • Boland, M. V., Murphy, R. F. (2001) A neural network classifier capable of recognizing the patterns of all major subcellular structures in fluorescence microscope images of HeLa cells. Bioinformatics, 17, 1213-1223.
    • (2001) Bioinformatics , vol.17 , pp. 1213-1223
    • Boland, M.V.1    Murphy, R.F.2
  • 7
    • 0032212323 scopus 로고    scopus 로고
    • Automated recognition of patterns characteristic of subcellular structures in fluorescence microscopy images
    • Boland, M. V., et al. (1998) Automated recognition of patterns characteristic of subcellular structures in fluorescence microscopy images. Cytometry, 33, 366-375.
    • (1998) Cytometry , vol.33 , pp. 366-375
    • Boland, M.V.1
  • 8
    • 84949495449 scopus 로고    scopus 로고
    • Microscopy-based high-content screening
    • Boutros, M., et al. (2015) Microscopy-based high-content screening. Cell, 163, 1314-1325.
    • (2015) Cell , vol.163 , pp. 1314-1325
    • Boutros, M.1
  • 9
    • 85021793123 scopus 로고    scopus 로고
    • Multiscale convolutional neural networks for visionbased classification of cells
    • Buyssens, P., et al. (2012) Multiscale convolutional neural networks for visionbased classification of cells. In Proc. Asian Conf. Comput. Vis, pages 342-352.
    • (2012) Proc. Asian Conf. Comput. Vis , pp. 342-352
    • Buyssens, P.1
  • 10
    • 77953445258 scopus 로고    scopus 로고
    • High-content phenotypic profiling of drug response signatures across distinct cancer cells
    • Caie, P. D., et al. (2010) High-content phenotypic profiling of drug response signatures across distinct cancer cells. Mol. Cancer. Ther., 9, 1913-1926.
    • (2010) Mol. Cancer. Ther. , vol.9 , pp. 1913-1926
    • Caie, P.D.1
  • 11
    • 33845792555 scopus 로고    scopus 로고
    • CellProfiler: Image analysis software for identifying and quantifying cell phenotypes
    • Carpenter, A. E., et al. (2006) CellProfiler: Image analysis software for identifying and quantifying cell phenotypes. Genome Biol., 7, R100.
    • (2006) Genome Biol. , vol.7 , pp. R100
    • Carpenter, A.E.1
  • 12
    • 34547650901 scopus 로고    scopus 로고
    • A multiresolution approach to automated classification of protein subcellular location images
    • Chebira, A., et al. (2007) A multiresolution approach to automated classification of protein subcellular location images. BMC Bioinformatics, 8, 210.
    • (2007) BMC Bioinformatics , vol.8 , pp. 210
    • Chebira, A.1
  • 13
    • 84976420628 scopus 로고    scopus 로고
    • Gene expression inference with deep learning
    • Chen, Y., et al. (2016) Gene expression inference with deep learning. Bioinformatics, 32, 1832-1839.
    • (2016) Bioinformatics , vol.32 , pp. 1832-1839
    • Chen, Y.1
  • 14
    • 84877789057 scopus 로고    scopus 로고
    • Deep neural networks segment neuronal membranes in electron microscopy images
    • Ciresan, D., et al. (2012a) Deep neural networks segment neuronal membranes in electron microscopy images. Proc. Advances in Neural Information Processing Systems, 25, 2843-2851.
    • (2012) Proc. Advances in Neural Information Processing Systems , vol.25 , pp. 2843-2851
    • Ciresan, D.1
  • 16
    • 84883467254 scopus 로고    scopus 로고
    • Determining the subcellular location of new proteins from microscope images using local features
    • Coelho, L. P., et al. (2013) Determining the subcellular location of new proteins from microscope images using local features. Bioinformatics, 29, 2343-2349.
    • (2013) Bioinformatics , vol.29 , pp. 2343-2349
    • Coelho, L.P.1
  • 18
    • 84876258641 scopus 로고    scopus 로고
    • Learning hierarchical features for scene labeling
    • Farabet, C., et al. (2013) Learning hierarchical features for scene labeling. IEEE Trans. Pattern Anal. Mach. Intell., 35, 1915-1929.
    • (2013) IEEE Trans. Pattern Anal. Mach. Intell. , vol.35 , pp. 1915-1929
    • Farabet, C.1
  • 19
    • 84940758213 scopus 로고    scopus 로고
    • Identification of alsterpaullone as a novel small molecule inhibitor to target group 3 medulloblastoma
    • Faria, C. C., et al. (2015) Identification of alsterpaullone as a novel small molecule inhibitor to target group 3 medulloblastoma. Oncotarget, 6, 21718-21729.
    • (2015) Oncotarget , vol.6 , pp. 21718-21729
    • Faria, C.C.1
  • 20
    • 84930324062 scopus 로고    scopus 로고
    • Cell-based screening: Extracting meaning from complex data
    • Finkbeiner, S., et al. (2015) Cell-based screening: Extracting meaning from complex data. Neuron, 86, 160-174.
    • (2015) Neuron , vol.86 , pp. 160-174
    • Finkbeiner, S.1
  • 21
    • 77953276042 scopus 로고    scopus 로고
    • Clustering phenotype populations by genome-wide RNAi and multiparametric imaging
    • Fuchs, F., et al. (2010) Clustering phenotype populations by genome-wide RNAi and multiparametric imaging. Mol. Syst. Biol., 6, 370.
    • (2010) Mol. Syst. Biol. , vol.6 , pp. 370
    • Fuchs, F.1
  • 22
    • 85015719821 scopus 로고    scopus 로고
    • HEp-2 cell image classification with deep convolutional neural networks
    • Gao, Z., et al. (2016) HEp-2 cell image classification with deep convolutional neural networks. IEEE J. Biomed. Heal. Informatics, DOI: 10. 1109/JBHI. 2016. 2526603.
    • (2016) IEEE J. Biomed. Heal. Informatics
    • Gao, Z.1
  • 23
    • 77956230392 scopus 로고    scopus 로고
    • An imaging assay to analyze primary neurons for cellular neurotoxicity
    • Gö tte, M., et al. (2010) An imaging assay to analyze primary neurons for cellular neurotoxicity. J. Neurosci. Methods, 192, 7-16.
    • (2010) J. Neurosci. Methods , vol.192 , pp. 7-16
    • Götte, M.1
  • 24
    • 84959123422 scopus 로고    scopus 로고
    • Trajectories of cell-cycle progression from fixed cell populations
    • Gut, G., et al. (2015) Trajectories of cell-cycle progression from fixed cell populations. Nat. Methods, 12, 951-954.
    • (2015) Nat. Methods , vol.12 , pp. 951-954
    • Gut, G.1
  • 25
    • 0018466704 scopus 로고
    • Statistical and structural approaches to texture
    • Haralick, R. M. (1979) Statistical and structural approaches to texture. Proc. IEEE, 786-804.
    • (1979) Proc. IEEE , pp. 786-804
    • Haralick, R.M.1
  • 27
    • 84881453258 scopus 로고    scopus 로고
    • Connectomic reconstruction of the inner plexiform layer in the mouse retina
    • Helmstaedter, M., et al. (2013) Connectomic reconstruction of the inner plexiform layer in the mouse retina. Nature, 500, 168-174.
    • (2013) Nature , vol.500 , pp. 168-174
    • Helmstaedter, M.1
  • 28
    • 17144396362 scopus 로고    scopus 로고
    • Automated classification of subcellular patterns in multicell images without segmentation into single cells
    • Huang, K., Murphy, R. (2004) Automated classification of subcellular patterns in multicell images without segmentation into single cells. In Proc. IEEE Int. Symp. on Biomedical Imaging: From Nano to Macro (ISBI'04), pp. 1139-1142.
    • (2004) Proc. IEEE Int. Symp. On Biomedical Imaging: From Nano to Macro (ISBI'04) , pp. 1139-1142
    • Huang, K.1    Murphy, R.2
  • 29
    • 84995784237 scopus 로고    scopus 로고
    • Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation
    • Kamnitsas, K., et al. (2017) Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med. Image Anal, 36, 61-78.
    • (2017) Med. Image Anal , vol.36 , pp. 61-78
    • Kamnitsas, K.1
  • 30
    • 84959185539 scopus 로고    scopus 로고
    • High-content analysis of breast cancer using single-cell deep transfer learning
    • Kandaswamy, C., et al. (2016) High-content analysis of breast cancer using single-cell deep transfer learning. J. Biomol. Screen, 21, 252-259.
    • (2016) J. Biomol. Screen , vol.21 , pp. 252-259
    • Kandaswamy, C.1
  • 31
    • 0020367511 scopus 로고
    • Syntheses and adrenergic agonist properties of ringfluorinated isoproterenols
    • Kirk, K. L., et al. (1982) Syntheses and adrenergic agonist properties of ringfluorinated isoproterenols. J. Med. Chem., 25, 680-684.
    • (1982) J. Med. Chem. , vol.25 , pp. 680-684
    • Kirk, K.L.1
  • 32
    • 77949492506 scopus 로고    scopus 로고
    • Novel derivatives of 1, 3, 4-oxadiazoles are potent mitostatic agents featuring strong microtubule depolymerizing activity in the sea urchin embryo and cell culture assays
    • Kiselyov, A. S., et al. (2010) Novel derivatives of 1, 3, 4-oxadiazoles are potent mitostatic agents featuring strong microtubule depolymerizing activity in the sea urchin embryo and cell culture assays. Eur. J. Med. Chem., 45, 1683-1697.
    • (2010) Eur. J. Med. Chem. , vol.45 , pp. 1683-1697
    • Kiselyov, A.S.1
  • 33
    • 84976510674 scopus 로고    scopus 로고
    • Classifying and segmenting microscopy images with deep multiple instance learning
    • Kraus, O. Z., et al. (2016) Classifying and segmenting microscopy images with deep multiple instance learning. Bioinformatics, 32, i52-i59.
    • (2016) Bioinformatics , vol.32 , pp. i52-i59
    • Kraus, O.Z.1
  • 34
    • 84876231242 scopus 로고    scopus 로고
    • ImageNet classification with deep convolutional neural networks
    • Krizhevsky, A., et al. (2012) ImageNet classification with deep convolutional neural networks. In Proc. Advances in Neural Information Processing Systems, 25, pp. 1097-1105.
    • (2012) Proc. Advances in Neural Information Processing Systems , vol.25 , pp. 1097-1105
    • Krizhevsky, A.1
  • 35
    • 0037387215 scopus 로고    scopus 로고
    • Alsterpaullone, a novel cyclin-dependent kinase inhibitor, induces apoptosis by activation of caspase-9 due to perturbation in mitochondrial membrane potential
    • Lahusen, T., et al. (2003) Alsterpaullone, a novel cyclin-dependent kinase inhibitor, induces apoptosis by activation of caspase-9 due to perturbation in mitochondrial membrane potential. Mol. Carcinog., 36, 183-194.
    • (2003) Mol. Carcinog. , vol.36 , pp. 183-194
    • Lahusen, T.1
  • 36
    • 0032203257 scopus 로고    scopus 로고
    • Gradient based learning applied to document recognition
    • LeCun, Y., et al. (1998) Gradient based learning applied to document recognition. Proc. IEEE, 86, 2278-2324.
    • (1998) Proc. IEEE , vol.86 , pp. 2278-2324
    • LeCun, Y.1
  • 37
    • 84930630277 scopus 로고    scopus 로고
    • Deep learning
    • LeCun, Y., et al. (2015) Deep learning. Nature, 521, 436-444.
    • (2015) Nature , vol.521 , pp. 436-444
    • LeCun, Y.1
  • 38
    • 84870595917 scopus 로고    scopus 로고
    • Automated analysis and reannotation of subcellular locations in confocal images from the human protein atlas
    • Li, J., et al. (2012) Automated analysis and reannotation of subcellular locations in confocal images from the human protein atlas. PLoS One, 7, e50514.
    • (2012) PLoS One , vol.7 , pp. e50514
    • Li, J.1
  • 39
    • 84927125938 scopus 로고    scopus 로고
    • Single-cell and multivariate approaches in genetic perturbation screens
    • Liberali, P., et al. (2014) Single-cell and multivariate approaches in genetic perturbation screens. Nat. Rev. Genet., 16, 18-32.
    • (2014) Nat. Rev. Genet. , vol.16 , pp. 18-32
    • Liberali, P.1
  • 40
    • 0032209062 scopus 로고    scopus 로고
    • Feature detection with automatic scale selection
    • Lindeberg, T. (1998) Feature detection with automatic scale selection. Int. J. Comput. Vis., 30, 79-116.
    • (1998) Int. J. Comput. Vis. , vol.30 , pp. 79-116
    • Lindeberg, T.1
  • 41
    • 84863198481 scopus 로고    scopus 로고
    • Annotated high-throughput microscopy image sets for validation
    • Ljosa, V., et al. (2012) Annotated high-throughput microscopy image sets for validation. Nat. Methods, 9, 637-637.
    • (2012) Nat. Methods , vol.9 , pp. 637
    • Ljosa, V.1
  • 42
    • 84887943419 scopus 로고    scopus 로고
    • Comparison of methods for image-based profiling of cellular morphological responses to small-molecule treatment
    • Ljosa, V., et al. (2013) Comparison of methods for image-based profiling of cellular morphological responses to small-molecule treatment. J. Biomol. Screen, 18, 1321-1329.
    • (2013) J. Biomol. Screen , vol.18 , pp. 1321-1329
    • Ljosa, V.1
  • 43
    • 34250216344 scopus 로고    scopus 로고
    • Image-based multivariate profiling of drug responses from single cells
    • Loo, L. H., et al. (2007) Image-based multivariate profiling of drug responses from single cells. Nat. Methods, 4, 445-453.
    • (2007) Nat. Methods , vol.4 , pp. 445-453
    • Loo, L.H.1
  • 44
    • 65549144451 scopus 로고    scopus 로고
    • Single-cell-based image analysis of high-throughput cell array screens for quantification of viral infection
    • Matula, P., et al. (2009) Single-cell-based image analysis of high-throughput cell array screens for quantification of viral infection. Cytometry A, 75A, 309-318.
    • (2009) Cytometry A , vol.75 A , pp. 309-318
    • Matula, P.1
  • 45
    • 26444512083 scopus 로고    scopus 로고
    • Toward automatic phenotyping of developing embryos from videos
    • Ning, F., et al. (2005) Toward automatic phenotyping of developing embryos from videos. IEEE Transs. Image Process., 14, 1360-1371.
    • (2005) IEEE Transs. Image Process. , vol.14 , pp. 1360-1371
    • Ning, F.1
  • 46
    • 45049083228 scopus 로고    scopus 로고
    • WND-CHARM: Multi-purpose image classification using compound image transforms
    • Orlov, N., et al. (2008) WND-CHARM: Multi-purpose image classification using compound image transforms. Pattern Recognit. Lett., 29, 1684-1693.
    • (2008) Pattern Recognit. Lett. , vol.29 , pp. 1684-1693
    • Orlov, N.1
  • 47
    • 0034649613 scopus 로고    scopus 로고
    • Synthesis and antitumor activities of novel pyrimidine derivatives of 2, 3-O, O-dibenzyl-6-deoxy-l-ascorbic acid and 4, 5-didehydro-5, 6-dideoxy-l-ascorbic acid
    • Raic-Malic, S., et al. (2000) Synthesis and antitumor activities of novel pyrimidine derivatives of 2, 3-O, O-dibenzyl-6-deoxy-l-ascorbic acid and 4, 5-didehydro-5, 6-dideoxy-l-ascorbic acid. J. Med. Chem., 43, 4806-4811.
    • (2000) J. Med. Chem. , vol.43 , pp. 4806-4811
    • Raic-Malic, S.1
  • 49
    • 84919744939 scopus 로고    scopus 로고
    • OverFeat: Integrated recognition, localization and detection using convolutional networks
    • Banff, AB, Canada
    • Sermanet, P., et al. (2014) OverFeat: Integrated recognition, localization and detection using convolutional networks. In Proc. International Conference on Learning Representations, Banff, AB, Canada.
    • (2014) Proc. International Conference On Learning Representations
    • Sermanet, P.1
  • 50
    • 80051473208 scopus 로고    scopus 로고
    • Assessing the efficacy of low-level image content descriptors for computer-based fluorescence microscopy image analysis
    • Shamir, L. (2011) Assessing the efficacy of low-level image content descriptors for computer-based fluorescence microscopy image analysis. J. Microsc., 243, 284-292.
    • (2011) J. Microsc. , vol.243 , pp. 284-292
    • Shamir, L.1
  • 52
    • 85083953896 scopus 로고    scopus 로고
    • Deep inside convolutional networks: Visualising image classification models and saliency maps
    • Banff, AB, Canada
    • Simonyan, K., et al. (2014) Deep inside convolutional networks: Visualising image classification models and saliency maps. In Proc. International Conferences on Learning RepresentationsWorkshop, Banff, AB, Canada.
    • (2014) Proc. International Conferences On Learning RepresentationsWorkshop
    • Simonyan, K.1
  • 53
    • 67651121886 scopus 로고    scopus 로고
    • Urea and carbamate derivatives of primaquine: Synthesis cytostatic and antioxidant activities
    • Simunovic, M., et al. (2009) Urea and carbamate derivatives of primaquine: Synthesis, cytostatic and antioxidant activities. Bioorg. Med. Chem., 17, 5605-5613.
    • (2009) Bioorg. Med. Chem. , vol.17 , pp. 5605-5613
    • Simunovic, M.1
  • 54
    • 84890498817 scopus 로고    scopus 로고
    • Machine learning in cell biology-teaching computers to recognize phenotypes
    • Sommer, C., Gerlich, D. W. (2013) Machine learning in cell biology-teaching computers to recognize phenotypes. J. Cell Sci., 126, 5529-5539.
    • (2013) J. Cell Sci. , vol.126 , pp. 5529-5539
    • Sommer, C.1    Gerlich, D.W.2
  • 56
    • 84956574418 scopus 로고    scopus 로고
    • CP-CHARM: Segmentation-free image classification made accessible
    • Uhlmann, V., et al. (2016) CP-CHARM: Segmentation-free image classification made accessible. BMC Bioinformatics, 17, 51.
    • (2016) BMC Bioinformatics , vol.17 , pp. 51
    • Uhlmann, V.1
  • 57
    • 0028170210 scopus 로고
    • A specific inhibitor of phosphatidylinositol 3-kinase, 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002
    • Vlahos, C. J., et al. (1994) A specific inhibitor of phosphatidylinositol 3-kinase, 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002). J. Biol. Chem., 269, 5241-5248.
    • (1994) J. Biol. Chem. , vol.269 , pp. 5241-5248
    • Vlahos, C.J.1
  • 58
    • 0031965445 scopus 로고    scopus 로고
    • Quantification of apoptotic and lytic cell death by video microscopy in combination with artificial neural networks
    • Weisser, M., et al. (1998) Quantification of apoptotic and lytic cell death by video microscopy in combination with artificial neural networks. Cytometry, 31, 20-28.
    • (1998) Cytometry , vol.31 , pp. 20-28
    • Weisser, M.1
  • 59
    • 84959091021 scopus 로고    scopus 로고
    • Understanding neural networks through deep visualization
    • Lille, France
    • Yosinski, J., et al. (2015) Understanding neural networks through deep visualization. In Proc. ICML Deep LearningWorkshop, Lille, France.
    • (2015) Proc. ICML Deep LearningWorkshop
    • Yosinski, J.1
  • 61
    • 84958257565 scopus 로고    scopus 로고
    • Predicting effects of noncoding variants with deep learning-based sequence model
    • Zhou, J., Troyanskaya, O. G. (2015) Predicting effects of noncoding variants with deep learning-based sequence model. Nat. Methods, 12, 931-934.
    • (2015) Nat. Methods , vol.12 , pp. 931-934
    • Zhou, J.1    Troyanskaya, O.G.2
  • 62
    • 84884928887 scopus 로고    scopus 로고
    • BIOCAT: A pattern recognition platform for customizable biological image classification and annotation
    • Zhou, J., et al. (2013) BIOCAT: A pattern recognition platform for customizable biological image classification and annotation. BMC Bioinformatics, 14, 291.
    • (2013) BMC Bioinformatics , vol.14 , pp. 291
    • Zhou, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.