-
1
-
-
77952474987
-
Cellular heterogeneity: Do differences make a difference
-
Altschuler,S.J. and Wu,L.F. (2010) Cellular heterogeneity: do differences make a difference Cell, 141, 559-563.
-
(2010)
Cell
, vol.141
, pp. 559-563
-
-
Altschuler, S.J.1
Wu, L.F.2
-
2
-
-
84876305060
-
A novel single-cell screening platform reveals proteome plasticity during yeast stress responses
-
Breker,M. et al. (2013) A novel single-cell screening platform reveals proteome plasticity during yeast stress responses. J. Cell Biol., 200, 839-850.
-
(2013)
J. Cell Biol.
, vol.200
, pp. 839-850
-
-
Breker, M.1
-
3
-
-
33845792555
-
Cellprofiler: Image analysis software for identifying and quantifying cell phenotypes
-
Carpenter, A.E. et al. (2006) Cellprofiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol., 7, R100.
-
(2006)
Genome Biol.
, vol.7
, pp. R100
-
-
Carpenter, A.E.1
-
5
-
-
84930684870
-
Yeast proteome dynamics from single cell imaging and automated analysis
-
Chong,Y.T. et al. (2015) Yeast proteome dynamics from single cell imaging and automated analysis. Cell, 161, 1413-1424.
-
(2015)
Cell
, vol.161
, pp. 1413-1424
-
-
Chong, Y.T.1
-
6
-
-
84877789057
-
Deep neural networks segment neuronal membranes in electron microscopy images
-
Lake Tahoe, Nevada
-
Ciresan,D. et al. (2012) Deep neural networks segment neuronal membranes in electron microscopy images. In Advances in neural information processing systems. Lake Tahoe, Nevada, pp. 2843-2851 .
-
(2012)
Advances in Neural Information Processing Systems
, pp. 2843-2851
-
-
Ciresan, D.1
-
7
-
-
0030649484
-
Solving the multiple instance problem with axisparallel rectangles
-
Dietterich,T.G. et al. (1997) Solving the multiple instance problem with axisparallel rectangles. Art. Intel., 89, 31-71.
-
(1997)
Art. Intel
, vol.89
, pp. 31-71
-
-
Dietterich, T.G.1
-
8
-
-
84863208608
-
Biological imaging software tools
-
Eliceiri,K.W. et al. (2012) Biological imaging software tools. Nat. Methods, 9, 697-710.
-
(2012)
Nat. Methods
, vol.9
, pp. 697-710
-
-
Eliceiri, K.W.1
-
10
-
-
77956339402
-
Cellcognition: Time-resolved phenotype annotation in high-throughput live cell imaging
-
Held,M. et al. (2010) Cellcognition: time-resolved phenotype annotation in high-throughput live cell imaging. Nat. Methods, 7, 747-754.
-
(2010)
Nat. Methods
, vol.7
, pp. 747-754
-
-
Held, M.1
-
11
-
-
0142184341
-
Global analysis of protein localization in budding yeast
-
Huh,W.K. et al. (2003) Global analysis of protein localization in budding yeast. Nature, 425, 686-691.
-
(2003)
Nature
, vol.425
, pp. 686-691
-
-
Huh, W.K.1
-
15
-
-
84876231242
-
Imagenet classification with deep convolutional neural networks
-
Lake Tahoe, Nevada
-
Krizhevsky,A. et al. (2012). Imagenet classification with deep convolutional neural networks. In Advances in neural information processing systems. Lake Tahoe, Nevada, pp. 1097sc105.
-
(2012)
Advances in Neural Information Processing Systems
, pp. 1097-1105
-
-
Krizhevsky, A.1
-
16
-
-
0032203257
-
Gradient-based learning applied to document recognition
-
LeCun,Y. et al. (1998) Gradient-based learning applied to document recognition. Proc. IEEE, 86, 2278-2324.
-
(1998)
Proc. IEEE
, vol.86
, pp. 2278-2324
-
-
LeCun, Y.1
-
17
-
-
84927125938
-
Single-cell and multivariate approaches in genetic perturbation screens
-
Liberali,P. et al. (2015) Single-cell and multivariate approaches in genetic perturbation screens. Nat. Rev. Genet., 16, 18-32.
-
(2015)
Nat. Rev. Genet
, vol.16
, pp. 18-32
-
-
Liberali, P.1
-
18
-
-
84863198481
-
Annotated high-throughput microscopy image sets for validation
-
Ljosa,V. et al. (2012) Annotated high-throughput microscopy image sets for validation. Nat. Methods, 9, 637hods.
-
(2012)
Nat. Methods
, vol.9
, pp. 637hods
-
-
Ljosa, V.1
-
19
-
-
84887943419
-
Comparison of methods for image-based profiling of cellular morphological responses to small-molecule treatment
-
Ljosa,V. et al. (2013) Comparison of methods for image-based profiling of cellular morphological responses to small-molecule treatment. J. Biomol. Screen., 18, 1321-1329.
-
(2013)
J. Biomol. Screen
, vol.18
, pp. 1321-1329
-
-
Ljosa, V.1
-
20
-
-
84959205572
-
Fully convolutional networks for semantic segmentation
-
Boston, Massachusetts
-
Long,J. et al. (2015). Fully convolutional networks for semantic segmentation. In CVPR. Boston, Massachusetts.
-
(2015)
CVPR
-
-
Long, J.1
-
21
-
-
26444512083
-
Toward automatic phenotyping of developing embryos from videos
-
Ning,F. et al. (2005) Toward automatic phenotyping of developing embryos from videos. Image Process. IEEE Trans., 14, 1360-1371.
-
(2005)
Image Process. IEEE Trans.
, vol.14
, pp. 1360-1371
-
-
Ning, F.1
-
22
-
-
84898956708
-
Extracting regions of interest from biological images with convolutional sparse block coding
-
Lake Tahoe, Nevada
-
Pachitariu,M. et al., (2013). Extracting regions of interest from biological images with convolutional sparse block coding. In Advances in Neural Information Processing Systems, Lake Tahoe, Nevada, pp. 1745sces .
-
(2013)
Advances in Neural Information Processing Systems
, pp. 1745sces
-
-
Pachitariu, M.1
-
27
-
-
84902210226
-
Increasing the content of high-content screening an overview
-
Singh, S. et al. (2014) Increasing the content of high-content screening an overview. J. Biomol. Screen., 19, 640-650.
-
(2014)
J. Biomol. Screen
, vol.19
, pp. 640-650
-
-
Singh, S.1
-
30
-
-
84865715286
-
Dissecting DNA damage response pathways by analysing protein localization and abundance changes during DNA replication stress
-
Tkach,J.M. et al. (2012) Dissecting dna damage response pathways by analysing protein localization and abundance changes during dna replication stress. Nat. Cell Biol., 14, 966-976.
-
(2012)
Nat. Cell Biol.
, vol.14
, pp. 966-976
-
-
Tkach, J.M.1
-
31
-
-
79551480483
-
Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
-
Vincent,P. et al. (2010) Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion. J. Mach. Learn. Res., 11, 3371-3408.
-
(2010)
J. Mach. Learn. Res.
, vol.11
, pp. 3371-3408
-
-
Vincent, P.1
-
32
-
-
84863195344
-
An image analysis toolbox for high-throughput C,elegans assays
-
Wahlby,C. et al. (2012) An image analysis toolbox for high-throughput C. elegans assays. Nat. Methods, 9, 714-716.
-
(2012)
Nat. Methods
, vol.9
, pp. 714-716
-
-
Wahlby, C.1
-
33
-
-
31844447172
-
Logistic regression and boosting for labeled bags of instances
-
Springer
-
Xu,X. and Frank,. (2004). Logistic regression and boosting for labeled bags of instances. In Advances in Knowledge Discovery and Data Mining. Springer, pp. 2722g.
-
(2004)
Advances in Knowledge Discovery and Data Mining
, pp. 2722g
-
-
Xu, X.1
Frank2
-
34
-
-
84905230329
-
Deep learning of feature representation with multiple instance learning for medical image analysis
-
IEEE
-
Xu,Y. et al. (2014). Deep learning of feature representation with multiple instance learning for medical image analysis. In ICASSP. IEEE.
-
(2014)
ICASSP
-
-
Xu, Y.1
-
35
-
-
84906489074
-
Visualizing and understanding convolutional networks
-
Zeiler,M.D. and Fergus,R. (2014). Visualizing and understanding convolutional networks. In Computer Vision://www.ncbi. Zurich, pp. 818este.
-
(2014)
Computer Vision
, pp. 818este
-
-
Zeiler, M.D.1
Fergus, R.2
|