메뉴 건너뛰기




Volumn 32, Issue 12, 2016, Pages i52-i59

Classifying and segmenting microscopy images with deep multiple instance learning

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHM; ARTIFICIAL NEURAL NETWORK; COMPUTER ASSISTED DIAGNOSIS; CYTOLOGY; HUMAN; MACHINE LEARNING; MICROSCOPY; YEAST;

EID: 84976510674     PISSN: 13674803     EISSN: 14602059     Source Type: Journal    
DOI: 10.1093/bioinformatics/btw252     Document Type: Article
Times cited : (397)

References (36)
  • 1
    • 77952474987 scopus 로고    scopus 로고
    • Cellular heterogeneity: Do differences make a difference
    • Altschuler,S.J. and Wu,L.F. (2010) Cellular heterogeneity: do differences make a difference Cell, 141, 559-563.
    • (2010) Cell , vol.141 , pp. 559-563
    • Altschuler, S.J.1    Wu, L.F.2
  • 2
    • 84876305060 scopus 로고    scopus 로고
    • A novel single-cell screening platform reveals proteome plasticity during yeast stress responses
    • Breker,M. et al. (2013) A novel single-cell screening platform reveals proteome plasticity during yeast stress responses. J. Cell Biol., 200, 839-850.
    • (2013) J. Cell Biol. , vol.200 , pp. 839-850
    • Breker, M.1
  • 3
    • 33845792555 scopus 로고    scopus 로고
    • Cellprofiler: Image analysis software for identifying and quantifying cell phenotypes
    • Carpenter, A.E. et al. (2006) Cellprofiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol., 7, R100.
    • (2006) Genome Biol. , vol.7 , pp. R100
    • Carpenter, A.E.1
  • 5
    • 84930684870 scopus 로고    scopus 로고
    • Yeast proteome dynamics from single cell imaging and automated analysis
    • Chong,Y.T. et al. (2015) Yeast proteome dynamics from single cell imaging and automated analysis. Cell, 161, 1413-1424.
    • (2015) Cell , vol.161 , pp. 1413-1424
    • Chong, Y.T.1
  • 6
    • 84877789057 scopus 로고    scopus 로고
    • Deep neural networks segment neuronal membranes in electron microscopy images
    • Lake Tahoe, Nevada
    • Ciresan,D. et al. (2012) Deep neural networks segment neuronal membranes in electron microscopy images. In Advances in neural information processing systems. Lake Tahoe, Nevada, pp. 2843-2851 .
    • (2012) Advances in Neural Information Processing Systems , pp. 2843-2851
    • Ciresan, D.1
  • 7
    • 0030649484 scopus 로고    scopus 로고
    • Solving the multiple instance problem with axisparallel rectangles
    • Dietterich,T.G. et al. (1997) Solving the multiple instance problem with axisparallel rectangles. Art. Intel., 89, 31-71.
    • (1997) Art. Intel , vol.89 , pp. 31-71
    • Dietterich, T.G.1
  • 8
    • 84863208608 scopus 로고    scopus 로고
    • Biological imaging software tools
    • Eliceiri,K.W. et al. (2012) Biological imaging software tools. Nat. Methods, 9, 697-710.
    • (2012) Nat. Methods , vol.9 , pp. 697-710
    • Eliceiri, K.W.1
  • 10
    • 77956339402 scopus 로고    scopus 로고
    • Cellcognition: Time-resolved phenotype annotation in high-throughput live cell imaging
    • Held,M. et al. (2010) Cellcognition: time-resolved phenotype annotation in high-throughput live cell imaging. Nat. Methods, 7, 747-754.
    • (2010) Nat. Methods , vol.7 , pp. 747-754
    • Held, M.1
  • 11
    • 0142184341 scopus 로고    scopus 로고
    • Global analysis of protein localization in budding yeast
    • Huh,W.K. et al. (2003) Global analysis of protein localization in budding yeast. Nature, 425, 686-691.
    • (2003) Nature , vol.425 , pp. 686-691
    • Huh, W.K.1
  • 15
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • Lake Tahoe, Nevada
    • Krizhevsky,A. et al. (2012). Imagenet classification with deep convolutional neural networks. In Advances in neural information processing systems. Lake Tahoe, Nevada, pp. 1097sc105.
    • (2012) Advances in Neural Information Processing Systems , pp. 1097-1105
    • Krizhevsky, A.1
  • 16
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • LeCun,Y. et al. (1998) Gradient-based learning applied to document recognition. Proc. IEEE, 86, 2278-2324.
    • (1998) Proc. IEEE , vol.86 , pp. 2278-2324
    • LeCun, Y.1
  • 17
    • 84927125938 scopus 로고    scopus 로고
    • Single-cell and multivariate approaches in genetic perturbation screens
    • Liberali,P. et al. (2015) Single-cell and multivariate approaches in genetic perturbation screens. Nat. Rev. Genet., 16, 18-32.
    • (2015) Nat. Rev. Genet , vol.16 , pp. 18-32
    • Liberali, P.1
  • 18
    • 84863198481 scopus 로고    scopus 로고
    • Annotated high-throughput microscopy image sets for validation
    • Ljosa,V. et al. (2012) Annotated high-throughput microscopy image sets for validation. Nat. Methods, 9, 637hods.
    • (2012) Nat. Methods , vol.9 , pp. 637hods
    • Ljosa, V.1
  • 19
    • 84887943419 scopus 로고    scopus 로고
    • Comparison of methods for image-based profiling of cellular morphological responses to small-molecule treatment
    • Ljosa,V. et al. (2013) Comparison of methods for image-based profiling of cellular morphological responses to small-molecule treatment. J. Biomol. Screen., 18, 1321-1329.
    • (2013) J. Biomol. Screen , vol.18 , pp. 1321-1329
    • Ljosa, V.1
  • 20
    • 84959205572 scopus 로고    scopus 로고
    • Fully convolutional networks for semantic segmentation
    • Boston, Massachusetts
    • Long,J. et al. (2015). Fully convolutional networks for semantic segmentation. In CVPR. Boston, Massachusetts.
    • (2015) CVPR
    • Long, J.1
  • 21
    • 26444512083 scopus 로고    scopus 로고
    • Toward automatic phenotyping of developing embryos from videos
    • Ning,F. et al. (2005) Toward automatic phenotyping of developing embryos from videos. Image Process. IEEE Trans., 14, 1360-1371.
    • (2005) Image Process. IEEE Trans. , vol.14 , pp. 1360-1371
    • Ning, F.1
  • 22
    • 84898956708 scopus 로고    scopus 로고
    • Extracting regions of interest from biological images with convolutional sparse block coding
    • Lake Tahoe, Nevada
    • Pachitariu,M. et al., (2013). Extracting regions of interest from biological images with convolutional sparse block coding. In Advances in Neural Information Processing Systems, Lake Tahoe, Nevada, pp. 1745sces .
    • (2013) Advances in Neural Information Processing Systems , pp. 1745sces
    • Pachitariu, M.1
  • 27
    • 84902210226 scopus 로고    scopus 로고
    • Increasing the content of high-content screening an overview
    • Singh, S. et al. (2014) Increasing the content of high-content screening an overview. J. Biomol. Screen., 19, 640-650.
    • (2014) J. Biomol. Screen , vol.19 , pp. 640-650
    • Singh, S.1
  • 30
    • 84865715286 scopus 로고    scopus 로고
    • Dissecting DNA damage response pathways by analysing protein localization and abundance changes during DNA replication stress
    • Tkach,J.M. et al. (2012) Dissecting dna damage response pathways by analysing protein localization and abundance changes during dna replication stress. Nat. Cell Biol., 14, 966-976.
    • (2012) Nat. Cell Biol. , vol.14 , pp. 966-976
    • Tkach, J.M.1
  • 31
    • 79551480483 scopus 로고    scopus 로고
    • Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
    • Vincent,P. et al. (2010) Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion. J. Mach. Learn. Res., 11, 3371-3408.
    • (2010) J. Mach. Learn. Res. , vol.11 , pp. 3371-3408
    • Vincent, P.1
  • 32
    • 84863195344 scopus 로고    scopus 로고
    • An image analysis toolbox for high-throughput C,elegans assays
    • Wahlby,C. et al. (2012) An image analysis toolbox for high-throughput C. elegans assays. Nat. Methods, 9, 714-716.
    • (2012) Nat. Methods , vol.9 , pp. 714-716
    • Wahlby, C.1
  • 33
    • 31844447172 scopus 로고    scopus 로고
    • Logistic regression and boosting for labeled bags of instances
    • Springer
    • Xu,X. and Frank,. (2004). Logistic regression and boosting for labeled bags of instances. In Advances in Knowledge Discovery and Data Mining. Springer, pp. 2722g.
    • (2004) Advances in Knowledge Discovery and Data Mining , pp. 2722g
    • Xu, X.1    Frank2
  • 34
    • 84905230329 scopus 로고    scopus 로고
    • Deep learning of feature representation with multiple instance learning for medical image analysis
    • IEEE
    • Xu,Y. et al. (2014). Deep learning of feature representation with multiple instance learning for medical image analysis. In ICASSP. IEEE.
    • (2014) ICASSP
    • Xu, Y.1
  • 35
    • 84906489074 scopus 로고    scopus 로고
    • Visualizing and understanding convolutional networks
    • Zeiler,M.D. and Fergus,R. (2014). Visualizing and understanding convolutional networks. In Computer Vision://www.ncbi. Zurich, pp. 818este.
    • (2014) Computer Vision , pp. 818este
    • Zeiler, M.D.1    Fergus, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.