메뉴 건너뛰기




Volumn 51, Issue 2, 2016, Pages 102-109

Computer vision for high content screening

Author keywords

Cells; classification; deep learning; high content screening; machine learning; microscopy; segmentation

Indexed keywords

ALGORITHM; COMPUTER; CYTOMETRY; DROSOPHILA MELANOGASTER; FLUORESCENCE IN SITU HYBRIDIZATION; FLUORESCENCE MICROSCOPY; GENE EXPRESSION; HIGH CONTENT SCREENING; HIGH THROUGHPUT SCREENING; HUMAN; IMAGE ANALYSIS; LEARNING ALGORITHM; NONHUMAN; PHENOTYPE; PRIORITY JOURNAL; PROBABILITY; REVIEW; VISION; BIOTECHNOLOGY; IMAGE PROCESSING; MACHINE LEARNING; SOFTWARE;

EID: 84958048475     PISSN: 10409238     EISSN: 15497798     Source Type: Journal    
DOI: 10.3109/10409238.2015.1135868     Document Type: Review
Times cited : (33)

References (98)
  • 1
    • 84938888109 scopus 로고    scopus 로고
    • Predicting the sequence specificities of DNA-and RNA-binding proteins by deep learning
    • Alipanahi B, Delong A, Weirauch MT, Frey BJ. (2015). Predicting the sequence specificities of DNA-and RNA-binding proteins by deep learning. Nat Biotechnol 33: 831-8.
    • (2015) Nat Biotechnol , vol.33 , pp. 831-838
    • Alipanahi, B.1    Delong, A.2    Weirauch, M.T.3    Frey, B.J.4
  • 3
    • 77952474987 scopus 로고    scopus 로고
    • Cellular heterogeneity: Do differences make a difference?
    • Altschuler SJ, Wu LF. (2010). Cellular heterogeneity: do differences make a difference? Cell 141: 559-63.
    • (2010) Cell , vol.141 , pp. 559-563
    • Altschuler, S.J.1    Wu, L.F.2
  • 4
    • 84880280631 scopus 로고    scopus 로고
    • ViSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia
    • Amir ED, Davis KL, Tadmor MD, et al. (2013). viSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia. Nat Biotechnol 31: 545-52.
    • (2013) Nat Biotechnol , vol.31 , pp. 545-552
    • Amir, E.D.1    Davis, K.L.2    Tadmor, M.D.3
  • 5
    • 84879815802 scopus 로고    scopus 로고
    • Multiple instance classification: Review, taxonomy and comparative study
    • Amores J. (2013). Multiple instance classification: review, taxonomy and comparative study. Artif Intell 201: 81-105.
    • (2013) Artif Intell , vol.201 , pp. 81-105
    • Amores, J.1
  • 6
    • 34250882643 scopus 로고    scopus 로고
    • Quantitative morphological signatures define local signaling networks regulating cell morphology
    • Bakal C, Aach J, Church G, Perrimon N. (2007). Quantitative morphological signatures define local signaling networks regulating cell morphology. Science 316: 1753-6.
    • (2007) Science , vol.316 , pp. 1753-1756
    • Bakal, C.1    Aach, J.2    Church, G.3    Perrimon, N.4
  • 7
    • 84887115231 scopus 로고    scopus 로고
    • Image-based transcriptomics in thousands of single human cells at single-molecule resolution
    • Battich N, Stoeger T, Pelkmans L. (2013). Image-based transcriptomics in thousands of single human cells at single-molecule resolution. Nat Methods 10: 1127-33.
    • (2013) Nat Methods , vol.10 , pp. 1127-1133
    • Battich, N.1    Stoeger, T.2    Pelkmans, L.3
  • 10
    • 0032212323 scopus 로고    scopus 로고
    • Automated recognition of patterns characteristic of subcellular structures in fluorescence microscopy images
    • Boland MV, Markey MK, Murphy RF. (1998). Automated recognition of patterns characteristic of subcellular structures in fluorescence microscopy images. Cytometry 33: 366-75.
    • (1998) Cytometry , vol.33 , pp. 366-375
    • Boland, M.V.1    Markey, M.K.2    Murphy, R.F.3
  • 11
    • 0036139314 scopus 로고    scopus 로고
    • A neural network classifier capable of recognizing the patterns of all major subcellular structures in fluorescence microscope images of HeLa cells
    • Boland MV, Murphy RF. (2001). A neural network classifier capable of recognizing the patterns of all major subcellular structures in fluorescence microscope images of HeLa cells. Bioinformatics 17: 1213-23.
    • (2001) Bioinformatics , vol.17 , pp. 1213-1223
    • Boland, M.V.1    Murphy, R.F.2
  • 12
    • 0034844730 scopus 로고    scopus 로고
    • Interactive graph cuts for optimal boundary & region segmentation of objects in ND images.Proceedings IEEE International Conference on Computer Vision
    • Boykov YY, Jolly MP. (2001). Interactive graph cuts for optimal boundary & region segmentation of objects in ND images.Proceedings IEEE International Conference on Computer Vision. ICCV 1: 105-12.
    • (2001) ICCV , vol.1 , pp. 105-112
    • Boykov, Y.Y.1    Jolly, M.P.2
  • 13
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman L. (2001). Random forests. Mach Learn 45: 5-32.
    • (2001) Mach Learn , vol.45 , pp. 5-32
    • Breiman, L.1
  • 14
    • 84876305060 scopus 로고    scopus 로고
    • A novel single-cell screening platform reveals proteome plasticity during yeast stress responses
    • Breker M, Gymrek M, Schuldiner M. (2013). A novel single-cell screening platform reveals proteome plasticity during yeast stress responses. J Cell Biol 200: 839-50.
    • (2013) J Cell Biol , vol.200 , pp. 839-850
    • Breker, M.1    Gymrek, M.2    Schuldiner, M.3
  • 15
    • 77953445258 scopus 로고    scopus 로고
    • High-content phenotypic profiling of drug response signatures across distinct cancer cells
    • Caie PD, Walls RE, Ingleston-Orme A, et al. (2010). High-content phenotypic profiling of drug response signatures across distinct cancer cells. Mol Cancer Ther 9: 1913-26.
    • (2010) Mol Cancer Ther , vol.9 , pp. 1913-1926
    • Caie, P.D.1    Walls, R.E.2    Ingleston-Orme, A.3
  • 16
    • 33845792555 scopus 로고    scopus 로고
    • CellProfiler: Image analysis software for identifying and quantifying cell phenotypes
    • Carpenter AE, Jones TR, Lamprecht MR, et al. (2006). CellProfiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol 7: R100.
    • (2006) Genome Biol , vol.7 , pp. R100
    • Carpenter, A.E.1    Jones, T.R.2    Lamprecht, M.R.3
  • 17
    • 0346728473 scopus 로고    scopus 로고
    • Systematic genome-wide screens of gene function
    • Carpenter AE, Sabatini DM. (2004). Systematic genome-wide screens of gene function. Nat Rev Genet 5: 11-22.
    • (2004) Nat Rev Genet , vol.5 , pp. 11-22
    • Carpenter, A.E.1    Sabatini, D.M.2
  • 19
    • 42649114797 scopus 로고    scopus 로고
    • Constraint factor graph cut-based active contour method for automated cellular image segmentation in RNAi screening
    • Chen C, Li H, Zhou X, Wong STC. (2008). Constraint factor graph cut-based active contour method for automated cellular image segmentation in RNAi screening. J Microsc 230: 177-91.
    • (2008) J Microsc , vol.230 , pp. 177-191
    • Chen, C.1    Li, H.2    Zhou, X.3    Wong, S.T.C.4
  • 21
    • 34547830883 scopus 로고    scopus 로고
    • Automated image analysis of protein localization in budding yeast
    • Chen SC, Zhao T, Gordon GJ, Murphy RF. (2007). Automated image analysis of protein localization in budding yeast. Bioinformatics 23: i66-71.
    • (2007) Bioinformatics , vol.23 , pp. i66-71
    • Chen, S.C.1    Zhao, T.2    Gordon, G.J.3    Murphy, R.F.4
  • 22
    • 84930684870 scopus 로고    scopus 로고
    • Yeast proteome dynamics from single cell imaging and automated analysis
    • Chong YT, Koh JLY, Friesen H, et al. (2015). Yeast proteome dynamics from single cell imaging and automated analysis. Cell 161: 1413-24.
    • (2015) Cell , vol.161 , pp. 1413-1424
    • Chong, Y.T.1    Koh, J.L.Y.2    Friesen, H.3
  • 24
    • 34249753618 scopus 로고
    • Support-vector networks
    • Cortes C, Vapnik V. (1995). Support-vector networks. Mach Learn 20: 273-97.
    • (1995) Mach Learn , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 25
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the em algorithm
    • Dempster A, Laird N, Rubin D. (1977). Maximum likelihood from incomplete data via the em algorithm. J R Stat Soc Series B 39: 1-38.
    • (1977) J R Stat Soc Series B , vol.39 , pp. 1-38
    • Dempster, A.1    Laird, N.2    Rubin, D.3
  • 26
    • 84907484453 scopus 로고    scopus 로고
    • Accurate cell segmentation in microscopy images using membrane patterns
    • Dimopoulos S, Mayer CE, Rudolf F, Stelling J. (2014). Accurate cell segmentation in microscopy images using membrane patterns. Bioinformatics 30: 2644-51.
    • (2014) Bioinformatics , vol.30 , pp. 2644-2651
    • Dimopoulos, S.1    Mayer, C.E.2    Rudolf, F.3    Stelling, J.4
  • 31
    • 33847172327 scopus 로고    scopus 로고
    • Clustering by passing messages between data points
    • Frey BJ, Dueck D. (2007). Clustering by passing messages between data points. Science 315: 972-6.
    • (2007) Science , vol.315 , pp. 972-976
    • Frey, B.J.1    Dueck, D.2
  • 32
    • 77953276042 scopus 로고    scopus 로고
    • Clustering phenotype populations by genome-wide RNAi and multiparametric imaging
    • Fuchs F, Pau G, Kranz D, et al. (2010). Clustering phenotype populations by genome-wide RNAi and multiparametric imaging. Mol Syst Biol 6: 370.
    • (2010) Mol Syst Biol , vol.6 , pp. 370
    • Fuchs, F.1    Pau, G.2    Kranz, D.3
  • 33
    • 0000293183 scopus 로고
    • Theory of communication. Part 1: The analysis of information
    • Gabor D. (1946). Theory of communication. Part 1: the analysis of information. J Inst Electr Eng 3 93: 429-41.
    • (1946) J Inst Electr Eng 3 , vol.93 , pp. 429-441
    • Gabor, D.1
  • 34
    • 28744458859 scopus 로고    scopus 로고
    • Bioconductor: Open software development for computational biology and bioinformatics
    • Gentleman RC, Carey VJ, Bates DM, et al. (2004). Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5: R80.
    • (2004) Genome Biol , vol.5 , pp. R80
    • Gentleman, R.C.1    Carey, V.J.2    Bates, D.M.3
  • 35
    • 26844565415 scopus 로고    scopus 로고
    • Unsupervised learning
    • Ghahramani Z. (2004). Unsupervised learning. Adv Lect Math 3176: 72-112.
    • (2004) Adv Lect Math , vol.3176 , pp. 72-112
    • Ghahramani, Z.1
  • 36
    • 84946802549 scopus 로고    scopus 로고
    • Deep speech: Scaling up end-to-end speech recognition
    • arXiv preprint. arXiv:1412.5567
    • Hannun A, Case C, Casper J, et al., (2014). Deep speech: scaling up end-to-end speech recognition. Comput Language. arXiv preprint. arXiv:1412.5567.
    • (2014) Comput Language
    • Hannun, A.1    Case, C.2    Casper, J.3
  • 37
    • 0018466704 scopus 로고
    • Statistical and structural approaches to texture
    • Haralick RM. (1979). Statistical and structural approaches to texture. Proc IEEE 67: 786-804.
    • (1979) Proc IEEE , vol.67 , pp. 786-804
    • Haralick, R.M.1
  • 38
    • 77956339402 scopus 로고    scopus 로고
    • CellCognition: Time-resolved phenotype annotation in high-throughput live cell imaging
    • Held M, Schmitz MHA, Fischer B, et al. (2010). CellCognition: time-resolved phenotype annotation in high-throughput live cell imaging. Nat Methods 7: 747-54.
    • (2010) Nat Methods , vol.7 , pp. 747-754
    • Held, M.1    Schmitz, M.H.A.2    Fischer, B.3
  • 39
    • 85032751458 scopus 로고    scopus 로고
    • Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups
    • Hinton G, Deng L, Yu D, et al. (2012). Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups. In IEEE Signal Process Mag 29: 82-97.
    • (2012) IEEE Signal Process Mag , vol.29 , pp. 82-97
    • Hinton, G.1    Deng, L.2    Yu, D.3
  • 40
    • 80053466067 scopus 로고    scopus 로고
    • Machine learning improves the precision and robustness of high-content screens: Using nonlinear multiparametric methods to analyze screening results
    • Horvath P, Wild T, Kutay U, Csucs G. (2011). Machine learning improves the precision and robustness of high-content screens: using nonlinear multiparametric methods to analyze screening results. J Biomol Screen 16: 1059-67.
    • (2011) J Biomol Screen , vol.16 , pp. 1059-1067
    • Horvath, P.1    Wild, T.2    Kutay, U.3    Csucs, G.4
  • 42
    • 60549104030 scopus 로고    scopus 로고
    • Scoring diverse cellular morphologies in image-based screens with iterative feedback and machine learning
    • Jones TR, Carpenter AE, Lamprecht MR, et al. (2009). Scoring diverse cellular morphologies in image-based screens with iterative feedback and machine learning. Proc Natl Acad Sci USA 106: 1826-31.
    • (2009) Proc Natl Acad Sci USA , vol.106 , pp. 1826-1831
    • Jones, T.R.1    Carpenter, A.E.2    Lamprecht, M.R.3
  • 43
    • 58149510531 scopus 로고    scopus 로고
    • CellProfiler Analyst: Data exploration and analysis software for complex image-based screens
    • Jones TR, Kang IH, Wheeler DB, et al. (2008). CellProfiler Analyst: data exploration and analysis software for complex image-based screens. BMC Bioinformatics 9: 482.
    • (2008) BMC Bioinformatics , vol.9 , pp. 482
    • Jones, T.R.1    Kang, I.H.2    Wheeler, D.B.3
  • 46
    • 77949524803 scopus 로고    scopus 로고
    • Temporal clustering by affinity propagation reveals transcriptional modules in Arabidopsis thaliana
    • Kiddle SJ, Windram OPF, McHattie S, et al. (2010). Temporal clustering by affinity propagation reveals transcriptional modules in Arabidopsis thaliana. Bioinformatics 26: 355-62.
    • (2010) Bioinformatics , vol.26 , pp. 355-362
    • Kiddle, S.J.1    Windram, O.P.F.2    McHattie, S.3
  • 48
    • 84942876357 scopus 로고    scopus 로고
    • Integration of high-content screening and untargeted metabolomics for comprehensive functional annotation of natural product libraries
    • Kurita KL, Glassey E, Linington RG. (2015). Integration of high-content screening and untargeted metabolomics for comprehensive functional annotation of natural product libraries. Proc Natl Acad Sci USA 112: 11999-2004.
    • (2015) Proc Natl Acad Sci USA , vol.112 , pp. 11999-12004
    • Kurita, K.L.1    Glassey, E.2    Linington, R.G.3
  • 51
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • LeCun Y, Bottou L, Bengio Y, Haffner P. (1998). Gradient-based learning applied to document recognition. Proc IEEE 86: 2278-324
    • (1998) Proc IEEE , vol.86 , pp. 2278-2324
    • LeCun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 52
    • 35748982103 scopus 로고    scopus 로고
    • Clustering by soft-constraint affinity propagation: Applications to gene-expression data
    • Leone M, Sumedha, Weigt M. (2007). Clustering by soft-constraint affinity propagation: applications to gene-expression data. Bioinformatics 23: 2708-15.
    • (2007) Bioinformatics , vol.23 , pp. 2708-2715
    • Leone, M.1    Sumedha, W.M.2
  • 53
    • 84902462761 scopus 로고    scopus 로고
    • Deep learning of the tissue-regulated splicing code
    • Leung MK, Xiong HY, Lee LJ, Frey BJ. (2014). Deep learning of the tissue-regulated splicing code. Bioinformatics 30: i121-9.
    • (2014) Bioinformatics , vol.30 , pp. i121-i129
    • Leung, M.K.1    Xiong, H.Y.2    Lee, L.J.3    Frey, B.J.4
  • 54
    • 84927125938 scopus 로고    scopus 로고
    • Single-cell and multivariate approaches in genetic perturbation screens
    • Liberali P, Snijder B, Pelkmans L. (2014). Single-cell and multivariate approaches in genetic perturbation screens. Nat Rev Genet 16: 18-32.
    • (2014) Nat Rev Genet , vol.16 , pp. 18-32
    • Liberali, P.1    Snijder, B.2    Pelkmans, L.3
  • 56
    • 84887943419 scopus 로고    scopus 로고
    • Comparison of methods for image-based profiling of cellular morphological responses to small-molecule treatment
    • Ljosa V, Caie PD, ter Horst R, et al. (2013). Comparison of methods for image-based profiling of cellular morphological responses to small-molecule treatment. J Biomol Screen 18: 1321-9.
    • (2013) J Biomol Screen , vol.18 , pp. 1321-1329
    • Ljosa, V.1    Caie, P.D.2    Ter Horst, R.3
  • 57
    • 84863198481 scopus 로고    scopus 로고
    • Annotated high-throughput microscopy image sets for validation
    • Ljosa V, Sokolnicki KL, Carpenter AE. (2012). Annotated high-throughput microscopy image sets for validation. Nat Methods 9: 637.
    • (2012) Nat Methods , vol.9 , pp. 637
    • Ljosa, V.1    Sokolnicki, K.L.2    Carpenter, A.E.3
  • 58
    • 34250216344 scopus 로고    scopus 로고
    • Image-based multivariate profiling of drug responses from single cells
    • Loo LH, Wu LF, Altschuler SJ. (2007). Image-based multivariate profiling of drug responses from single cells. Nat Methods 4: 445-53.
    • (2007) Nat Methods , vol.4 , pp. 445-453
    • Loo, L.H.1    Wu, L.F.2    Altschuler, S.J.3
  • 59
    • 84923367417 scopus 로고    scopus 로고
    • Deep neural nets as a method for quantitative structure-activity relationships
    • Ma J, Sheridan RP, Liaw A, et al. (2015). Deep neural nets as a method for quantitative structure-activity relationships. J Chem Inf Model 55: 263-74.
    • (2015) J Chem Inf Model , vol.55 , pp. 263-274
    • Ma, J.1    Sheridan, R.P.2    Liaw, A.3
  • 61
    • 0030153642 scopus 로고    scopus 로고
    • Deformable models in medical image analysis: A survey
    • McInerney T, Terzopoulos D. (1996). Deformable models in medical image analysis: a survey. Med Image Anal 1: 91-108.
    • (1996) Med Image Anal , vol.1 , pp. 91-108
    • McInerney, T.1    Terzopoulos, D.2
  • 62
    • 85032750965 scopus 로고    scopus 로고
    • Cell segmentation: 50 years down the road
    • Meijering E. (2012). Cell segmentation: 50 years down the road. IEEE Signal Proc Mag 29: 140-5.
    • (2012) IEEE Signal Proc Mag , vol.29 , pp. 140-145
    • Meijering, E.1
  • 63
    • 84905496728 scopus 로고    scopus 로고
    • Phenotypic screening in cancer drug discovery-past, present and future
    • Moffat JG, Rudolph J, Bailey D. (2014). Phenotypic screening in cancer drug discovery-past, present and future. Nat Rev Drug Discov 13: 588-602.
    • (2014) Nat Rev Drug Discov , vol.13 , pp. 588-602
    • Moffat, J.G.1    Rudolph, J.2    Bailey, D.3
  • 64
    • 84859336916 scopus 로고    scopus 로고
    • CellOrganizer: Image-derived models of subcellular organization and protein distribution
    • Murphy RF. (2012). CellOrganizer: image-derived models of subcellular organization and protein distribution. Methods Cell Biol 110: 179-93.
    • (2012) Methods Cell Biol , vol.110 , pp. 179-193
    • Murphy, R.F.1
  • 65
    • 67349273304 scopus 로고    scopus 로고
    • Multidimensional quantification of subcellular morphology of Saccharomyces cerevisiae using CalMorph, the high-throughput image-processing program
    • Negishi T, Nogami S, Ohya Y. (2009). Multidimensional quantification of subcellular morphology of Saccharomyces cerevisiae using CalMorph, the high-throughput image-processing program. J Biotechnol 141: 109-17.
    • (2009) J Biotechnol , vol.141 , pp. 109-117
    • Negishi, T.1    Nogami, S.2    Ohya, Y.3
  • 66
    • 26444512083 scopus 로고    scopus 로고
    • Toward automatic phenotyping of developing embryos from videos
    • Ning F, Delhomme D, LeCun Y, et al. (2005). Toward automatic phenotyping of developing embryos from videos. IEEE Trans Image Process 14: 1360-71.
    • (2005) IEEE Trans Image Process , vol.14 , pp. 1360-1371
    • Ning, F.1    Delhomme, D.2    LeCun, Y.3
  • 67
    • 49349108623 scopus 로고
    • A threshold selection method from gray-level histograms
    • Otsu N. (1975). A threshold selection method from gray-level histograms. Automatica 11: 23-7.
    • (1975) Automatica , vol.11 , pp. 23-27
    • Otsu, N.1
  • 68
    • 84898956708 scopus 로고    scopus 로고
    • Extracting regions of interest from biological images with convolutional sparse block coding
    • In: Lake Tahoe, NV
    • Pachitariu M, Packer AM, Pettit N, et al. (2013). Extracting regions of interest from biological images with convolutional sparse block coding. In: Advances in Neural Information Processing Systems. Lake Tahoe, NV; 1745-53.
    • (2013) Advances in Neural Information Processing Systems , pp. 1745-1753
    • Pachitariu, M.1    Packer, A.M.2    Pettit, N.3
  • 69
    • 8444223104 scopus 로고    scopus 로고
    • Multidimensional drug profiling by automated microscopy
    • Perlman ZE, Slack MD, Feng Y, et al. (2004). Multidimensional drug profiling by automated microscopy. Science 306: 1194-8.
    • (2004) Science , vol.306 , pp. 1194-1198
    • Perlman, Z.E.1    Slack, M.D.2    Feng, Y.3
  • 70
    • 84863192185 scopus 로고    scopus 로고
    • PhenoRipper: Software for rapidly profiling microscopy images
    • Rajaram S, Pavie B, Wu LF, Altschuler SJ. (2012). PhenoRipper: software for rapidly profiling microscopy images. Nat Methods 9: 635-7.
    • (2012) Nat Methods , vol.9 , pp. 635-637
    • Rajaram, S.1    Pavie, B.2    Wu, L.F.3    Altschuler, S.J.4
  • 71
    • 70449419850 scopus 로고    scopus 로고
    • CellClassifier: Supervised learning of cellular phenotypes
    • Rämö P, Sacher R, Snijder B, et al. (2009). CellClassifier: supervised learning of cellular phenotypes. Bioinformatics 25: 3028-30.
    • (2009) Bioinformatics , vol.25 , pp. 3028-3030
    • Rämö, P.1    Sacher, R.2    Snijder, B.3
  • 73
    • 0022471098 scopus 로고
    • Learning representations by back-propagating errors
    • Rumelhart DE, Hinton GE, Williams RJ. (1986). Learning representations by back-propagating errors. Nature 323: 533-6.
    • (1986) Nature , vol.323 , pp. 533-536
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 74
    • 84947041871 scopus 로고    scopus 로고
    • Imagenet large scale visual recognition challenge
    • Russakovsky O, Deng J, Su H, et al. (2014). Imagenet large scale visual recognition challenge. Int J Comput Vis 115: 211-52.
    • (2014) Int J Comput Vis , vol.115 , pp. 211-252
    • Russakovsky, O.1    Deng, J.2    Su, H.3
  • 75
    • 35748932917 scopus 로고    scopus 로고
    • A review of feature selection techniques in bioinformatics
    • Saeys Y, Inza I, Larrañaga P. (2007). A review of feature selection techniques in bioinformatics. Bioinformatics 23: 2507-17.
    • (2007) Bioinformatics , vol.23 , pp. 2507-2517
    • Saeys, Y.1    Inza, I.2    Larrañaga, P.3
  • 77
    • 84928205754 scopus 로고    scopus 로고
    • High-throughput functional genomics using CRISPR-Cas9
    • Shalem O, Sanjana NE, Zhang F. (2015). High-throughput functional genomics using CRISPR-Cas9. Nat Rev Genet 16: 299-311.
    • (2015) Nat Rev Genet , vol.16 , pp. 299-311
    • Shalem, O.1    Sanjana, N.E.2    Zhang, F.3
  • 78
    • 78649675858 scopus 로고    scopus 로고
    • Pattern recognition software and techniques for biological image analysis
    • Shamir L, Delaney JD, Orlov N, et al. (2010). Pattern recognition software and techniques for biological image analysis. PLoS Comput Biol 6: e1000974.
    • (2010) PLoS Comput Biol , vol.6 , pp. e1000974
    • Shamir, L.1    Delaney, J.D.2    Orlov, N.3
  • 79
    • 48349111792 scopus 로고    scopus 로고
    • Wndchrm-an open source utility for biological image analysis
    • Shamir L, Orlov N, Eckley DM, et al. (2008). Wndchrm-an open source utility for biological image analysis. Source Code Biol Med 3: 13-17.
    • (2008) Source Code Biol Med , vol.3 , pp. 13-17
    • Shamir, L.1    Orlov, N.2    Eckley, D.M.3
  • 80
    • 77956015614 scopus 로고    scopus 로고
    • Automated image analysis for high-content screening and analysis
    • Shariff A, Kangas J, Coelho LP, et al. (2010). Automated image analysis for high-content screening and analysis. J Biomol Screen 15: 726-34.
    • (2010) J Biomol Screen , vol.15 , pp. 726-734
    • Shariff, A.1    Kangas, J.2    Coelho, L.P.3
  • 82
    • 77952257945 scopus 로고    scopus 로고
    • Patterns of basal signaling heterogeneity can distinguish cellular populations with different drug sensitivities
    • Singh DK, Ku CJ, Wichaidit C, et al. (2010). Patterns of basal signaling heterogeneity can distinguish cellular populations with different drug sensitivities. Mol Syst Biol 6: 369.
    • (2010) Mol Syst Biol , vol.6 , pp. 369
    • Singh, D.K.1    Ku, C.J.2    Wichaidit, C.3
  • 83
    • 84902210226 scopus 로고    scopus 로고
    • Increasing the content of high-content screening: An overview
    • Singh S, Carpenter AE, Genovesio A. (2014). Increasing the content of high-content screening: an overview. J Biomol Screen 19: 640-50.
    • (2014) J Biomol Screen , vol.19 , pp. 640-650
    • Singh, S.1    Carpenter, A.E.2    Genovesio, A.3
  • 84
    • 78951470515 scopus 로고    scopus 로고
    • Origins of regulated cell-to-cell variability
    • Snijder B, Pelkmans L. (2011). Origins of regulated cell-to-cell variability. Nat Rev 12: 119-25.
    • (2011) Nat Rev , vol.12 , pp. 119-125
    • Snijder, B.1    Pelkmans, L.2
  • 85
    • 84890498817 scopus 로고    scopus 로고
    • Machine learning in cell biology-teaching computers to recognize phenotypes
    • Sommer C, Gerlich DW. (2013). Machine learning in cell biology-teaching computers to recognize phenotypes. J Cell Sci 126: 5529-39.
    • (2013) J Cell Sci , vol.126 , pp. 5529-5539
    • Sommer, C.1    Gerlich, D.W.2
  • 87
    • 84865715286 scopus 로고    scopus 로고
    • Dissecting DNA damage response pathways by analysing protein localization and abundance changes during DNA replication stress
    • Tkach JM, Yimit A, Lee AY, et al. (2012). Dissecting DNA damage response pathways by analysing protein localization and abundance changes during DNA replication stress. Nat Cell Biol 14: 966-76.
    • (2012) Nat Cell Biol , vol.14 , pp. 966-976
    • Tkach, J.M.1    Yimit, A.2    Lee, A.Y.3
  • 89
    • 0035861532 scopus 로고    scopus 로고
    • Systematic genetic analysis with ordered arrays of yeast deletion mutants
    • Tong AHY, Evangelista M, Parsons AB, et al. (2001). Systematic genetic analysis with ordered arrays of yeast deletion mutants. Science 294: 2364-8.
    • (2001) Science , vol.294 , pp. 2364-2368
    • Tong, A.H.Y.1    Evangelista, M.2    Parsons, A.B.3
  • 90
    • 10744230485 scopus 로고    scopus 로고
    • Global mapping of the yeast genetic interaction network
    • Tong AHY, Lesage G, Bader GD, et al. (2004). Global mapping of the yeast genetic interaction network. Science 303: 808-13.
    • (2004) Science , vol.303 , pp. 808-813
    • Tong, A.H.Y.1    Lesage, G.2    Bader, G.D.3
  • 91
    • 75749095658 scopus 로고    scopus 로고
    • Integrating high-throughput genetic interaction mapping and high-content screening to explore yeast spindle morphogenesis
    • Vizeacoumar FJ, van Dyk N, S Vizeacoumar F, et al. (2010). Integrating high-throughput genetic interaction mapping and high-content screening to explore yeast spindle morphogenesis. J Cell Biol 188: 69-81.
    • (2010) J Cell Biol , vol.188 , pp. 69-81
    • Vizeacoumar, F.J.1    Van Dyk, N.2    Vizeacoumar F, S.3
  • 92
    • 84863195344 scopus 로고    scopus 로고
    • An image analysis toolbox for high-throughput C. Elegans assays
    • Wahlby C, Kamentsky L, Liu ZH, et al. (2012). An image analysis toolbox for high-throughput C. Elegans assays. Nat Methods 9: 714-16.
    • (2012) Nat Methods , vol.9 , pp. 714-716
    • Wahlby, C.1    Kamentsky, L.2    Liu, Z.H.3
  • 93
    • 3042547731 scopus 로고    scopus 로고
    • Combining intensity, edge and shape information for 2D and 3D segmentation of cell nuclei in tissue sections
    • Wählby, C, Sintorn, IM, Erlandsson, F, et al. (2004). Combining intensity, edge and shape information for 2D and 3D segmentation of cell nuclei in tissue sections. J Microsc 215: 67-76.
    • (2004) J Microsc , vol.215 , pp. 67-76
    • Wählby, C.1    Sintorn, I.M.2    Erlandsson, F.3
  • 94
    • 84923276179 scopus 로고    scopus 로고
    • RNA splicing. The human splicing code reveals new insights into the genetic determinants of disease
    • Xiong HY, Alipanahi B, Lee LJ, et al. (2015). RNA splicing. The human splicing code reveals new insights into the genetic determinants of disease. Science 347: 1254806.
    • (2015) Science , vol.347 , pp. 1254806
    • Xiong, H.Y.1    Alipanahi, B.2    Lee, L.J.3
  • 96
    • 84880328076 scopus 로고    scopus 로고
    • A screen for morphological complexity identifies regulators of switch-like transitions between discrete cell shapes
    • Yin Z, Sadok A, Sailem H, et al. (2013). A screen for morphological complexity identifies regulators of switch-like transitions between discrete cell shapes. Nat Cell Biol 15: 860-71.
    • (2013) Nat Cell Biol , vol.15 , pp. 860-871
    • Yin, Z.1    Sadok, A.2    Sailem, H.3
  • 97
    • 37249026328 scopus 로고    scopus 로고
    • Integrating high-content screening and ligand-target prediction to identify mechanism of action
    • Young DW, Bender A, Hoyt J, et al. (2008). Integrating high-content screening and ligand-target prediction to identify mechanism of action. Nat Chem Biol 4: 59-68.
    • (2008) Nat Chem Biol , vol.4 , pp. 59-68
    • Young, D.W.1    Bender, A.2    Hoyt, J.3
  • 98
    • 84863203974 scopus 로고    scopus 로고
    • Unsupervised modeling of cell morphology dynamics for time-lapse microscopy
    • Zhong Q, Busetto AG, Fededa JP, et al. (2012). Unsupervised modeling of cell morphology dynamics for time-lapse microscopy. Nat Methods 9: 711-13.
    • (2012) Nat Methods , vol.9 , pp. 711-713
    • Zhong, Q.1    Busetto, A.G.2    Fededa, J.P.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.