-
1
-
-
84938888109
-
Predicting the sequence specificities of DNA-and RNA-binding proteins by deep learning
-
Alipanahi B, Delong A, Weirauch MT, Frey BJ. (2015). Predicting the sequence specificities of DNA-and RNA-binding proteins by deep learning. Nat Biotechnol 33: 831-8.
-
(2015)
Nat Biotechnol
, vol.33
, pp. 831-838
-
-
Alipanahi, B.1
Delong, A.2
Weirauch, M.T.3
Frey, B.J.4
-
3
-
-
77952474987
-
Cellular heterogeneity: Do differences make a difference?
-
Altschuler SJ, Wu LF. (2010). Cellular heterogeneity: do differences make a difference? Cell 141: 559-63.
-
(2010)
Cell
, vol.141
, pp. 559-563
-
-
Altschuler, S.J.1
Wu, L.F.2
-
4
-
-
84880280631
-
ViSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia
-
Amir ED, Davis KL, Tadmor MD, et al. (2013). viSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia. Nat Biotechnol 31: 545-52.
-
(2013)
Nat Biotechnol
, vol.31
, pp. 545-552
-
-
Amir, E.D.1
Davis, K.L.2
Tadmor, M.D.3
-
5
-
-
84879815802
-
Multiple instance classification: Review, taxonomy and comparative study
-
Amores J. (2013). Multiple instance classification: review, taxonomy and comparative study. Artif Intell 201: 81-105.
-
(2013)
Artif Intell
, vol.201
, pp. 81-105
-
-
Amores, J.1
-
6
-
-
34250882643
-
Quantitative morphological signatures define local signaling networks regulating cell morphology
-
Bakal C, Aach J, Church G, Perrimon N. (2007). Quantitative morphological signatures define local signaling networks regulating cell morphology. Science 316: 1753-6.
-
(2007)
Science
, vol.316
, pp. 1753-1756
-
-
Bakal, C.1
Aach, J.2
Church, G.3
Perrimon, N.4
-
7
-
-
84887115231
-
Image-based transcriptomics in thousands of single human cells at single-molecule resolution
-
Battich N, Stoeger T, Pelkmans L. (2013). Image-based transcriptomics in thousands of single human cells at single-molecule resolution. Nat Methods 10: 1127-33.
-
(2013)
Nat Methods
, vol.10
, pp. 1127-1133
-
-
Battich, N.1
Stoeger, T.2
Pelkmans, L.3
-
10
-
-
0032212323
-
Automated recognition of patterns characteristic of subcellular structures in fluorescence microscopy images
-
Boland MV, Markey MK, Murphy RF. (1998). Automated recognition of patterns characteristic of subcellular structures in fluorescence microscopy images. Cytometry 33: 366-75.
-
(1998)
Cytometry
, vol.33
, pp. 366-375
-
-
Boland, M.V.1
Markey, M.K.2
Murphy, R.F.3
-
11
-
-
0036139314
-
A neural network classifier capable of recognizing the patterns of all major subcellular structures in fluorescence microscope images of HeLa cells
-
Boland MV, Murphy RF. (2001). A neural network classifier capable of recognizing the patterns of all major subcellular structures in fluorescence microscope images of HeLa cells. Bioinformatics 17: 1213-23.
-
(2001)
Bioinformatics
, vol.17
, pp. 1213-1223
-
-
Boland, M.V.1
Murphy, R.F.2
-
12
-
-
0034844730
-
Interactive graph cuts for optimal boundary & region segmentation of objects in ND images.Proceedings IEEE International Conference on Computer Vision
-
Boykov YY, Jolly MP. (2001). Interactive graph cuts for optimal boundary & region segmentation of objects in ND images.Proceedings IEEE International Conference on Computer Vision. ICCV 1: 105-12.
-
(2001)
ICCV
, vol.1
, pp. 105-112
-
-
Boykov, Y.Y.1
Jolly, M.P.2
-
13
-
-
0035478854
-
Random forests
-
Breiman L. (2001). Random forests. Mach Learn 45: 5-32.
-
(2001)
Mach Learn
, vol.45
, pp. 5-32
-
-
Breiman, L.1
-
14
-
-
84876305060
-
A novel single-cell screening platform reveals proteome plasticity during yeast stress responses
-
Breker M, Gymrek M, Schuldiner M. (2013). A novel single-cell screening platform reveals proteome plasticity during yeast stress responses. J Cell Biol 200: 839-50.
-
(2013)
J Cell Biol
, vol.200
, pp. 839-850
-
-
Breker, M.1
Gymrek, M.2
Schuldiner, M.3
-
15
-
-
77953445258
-
High-content phenotypic profiling of drug response signatures across distinct cancer cells
-
Caie PD, Walls RE, Ingleston-Orme A, et al. (2010). High-content phenotypic profiling of drug response signatures across distinct cancer cells. Mol Cancer Ther 9: 1913-26.
-
(2010)
Mol Cancer Ther
, vol.9
, pp. 1913-1926
-
-
Caie, P.D.1
Walls, R.E.2
Ingleston-Orme, A.3
-
16
-
-
33845792555
-
CellProfiler: Image analysis software for identifying and quantifying cell phenotypes
-
Carpenter AE, Jones TR, Lamprecht MR, et al. (2006). CellProfiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol 7: R100.
-
(2006)
Genome Biol
, vol.7
, pp. R100
-
-
Carpenter, A.E.1
Jones, T.R.2
Lamprecht, M.R.3
-
17
-
-
0346728473
-
Systematic genome-wide screens of gene function
-
Carpenter AE, Sabatini DM. (2004). Systematic genome-wide screens of gene function. Nat Rev Genet 5: 11-22.
-
(2004)
Nat Rev Genet
, vol.5
, pp. 11-22
-
-
Carpenter, A.E.1
Sabatini, D.M.2
-
19
-
-
42649114797
-
Constraint factor graph cut-based active contour method for automated cellular image segmentation in RNAi screening
-
Chen C, Li H, Zhou X, Wong STC. (2008). Constraint factor graph cut-based active contour method for automated cellular image segmentation in RNAi screening. J Microsc 230: 177-91.
-
(2008)
J Microsc
, vol.230
, pp. 177-191
-
-
Chen, C.1
Li, H.2
Zhou, X.3
Wong, S.T.C.4
-
20
-
-
50249090921
-
A novel graphical model approach to segmenting cell images
-
Chen SC, Zhao T, Gordon GJ, Murphy RF. (2006). A novel graphical model approach to segmenting cell images. In: IEEE Symposium on Computational Intelligence and Bioinformatics and Computational Biology, Toronto (ON), Canada; 482-9.
-
(2006)
IEEE Symposium on Computational Intelligence and Bioinformatics and Computational Biology, Toronto (ON), Canada
, pp. 482-489
-
-
Chen, S.C.1
Zhao, T.2
Gordon, G.J.3
Murphy, R.F.4
-
21
-
-
34547830883
-
Automated image analysis of protein localization in budding yeast
-
Chen SC, Zhao T, Gordon GJ, Murphy RF. (2007). Automated image analysis of protein localization in budding yeast. Bioinformatics 23: i66-71.
-
(2007)
Bioinformatics
, vol.23
, pp. i66-71
-
-
Chen, S.C.1
Zhao, T.2
Gordon, G.J.3
Murphy, R.F.4
-
22
-
-
84930684870
-
Yeast proteome dynamics from single cell imaging and automated analysis
-
Chong YT, Koh JLY, Friesen H, et al. (2015). Yeast proteome dynamics from single cell imaging and automated analysis. Cell 161: 1413-24.
-
(2015)
Cell
, vol.161
, pp. 1413-1424
-
-
Chong, Y.T.1
Koh, J.L.Y.2
Friesen, H.3
-
23
-
-
84877789057
-
Deep neural networks segment neuronal membranes in electron microscopy images
-
Ciresan, D, Giusti, A, Gambardella, LM, Schmidhuber, J. (2012). Deep neural networks segment neuronal membranes in electron microscopy images. Adv Neural Inf Process Syst 2843-51.
-
(2012)
Adv Neural Inf Process Syst
, pp. 2843-2851
-
-
Ciresan, D.1
Giusti, A.2
Gambardella, L.M.3
Schmidhuber, J.4
-
24
-
-
34249753618
-
Support-vector networks
-
Cortes C, Vapnik V. (1995). Support-vector networks. Mach Learn 20: 273-97.
-
(1995)
Mach Learn
, vol.20
, pp. 273-297
-
-
Cortes, C.1
Vapnik, V.2
-
25
-
-
0002629270
-
Maximum likelihood from incomplete data via the em algorithm
-
Dempster A, Laird N, Rubin D. (1977). Maximum likelihood from incomplete data via the em algorithm. J R Stat Soc Series B 39: 1-38.
-
(1977)
J R Stat Soc Series B
, vol.39
, pp. 1-38
-
-
Dempster, A.1
Laird, N.2
Rubin, D.3
-
26
-
-
84907484453
-
Accurate cell segmentation in microscopy images using membrane patterns
-
Dimopoulos S, Mayer CE, Rudolf F, Stelling J. (2014). Accurate cell segmentation in microscopy images using membrane patterns. Bioinformatics 30: 2644-51.
-
(2014)
Bioinformatics
, vol.30
, pp. 2644-2651
-
-
Dimopoulos, S.1
Mayer, C.E.2
Rudolf, F.3
Stelling, J.4
-
31
-
-
33847172327
-
Clustering by passing messages between data points
-
Frey BJ, Dueck D. (2007). Clustering by passing messages between data points. Science 315: 972-6.
-
(2007)
Science
, vol.315
, pp. 972-976
-
-
Frey, B.J.1
Dueck, D.2
-
32
-
-
77953276042
-
Clustering phenotype populations by genome-wide RNAi and multiparametric imaging
-
Fuchs F, Pau G, Kranz D, et al. (2010). Clustering phenotype populations by genome-wide RNAi and multiparametric imaging. Mol Syst Biol 6: 370.
-
(2010)
Mol Syst Biol
, vol.6
, pp. 370
-
-
Fuchs, F.1
Pau, G.2
Kranz, D.3
-
33
-
-
0000293183
-
Theory of communication. Part 1: The analysis of information
-
Gabor D. (1946). Theory of communication. Part 1: the analysis of information. J Inst Electr Eng 3 93: 429-41.
-
(1946)
J Inst Electr Eng 3
, vol.93
, pp. 429-441
-
-
Gabor, D.1
-
34
-
-
28744458859
-
Bioconductor: Open software development for computational biology and bioinformatics
-
Gentleman RC, Carey VJ, Bates DM, et al. (2004). Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5: R80.
-
(2004)
Genome Biol
, vol.5
, pp. R80
-
-
Gentleman, R.C.1
Carey, V.J.2
Bates, D.M.3
-
35
-
-
26844565415
-
Unsupervised learning
-
Ghahramani Z. (2004). Unsupervised learning. Adv Lect Math 3176: 72-112.
-
(2004)
Adv Lect Math
, vol.3176
, pp. 72-112
-
-
Ghahramani, Z.1
-
36
-
-
84946802549
-
Deep speech: Scaling up end-to-end speech recognition
-
arXiv preprint. arXiv:1412.5567
-
Hannun A, Case C, Casper J, et al., (2014). Deep speech: scaling up end-to-end speech recognition. Comput Language. arXiv preprint. arXiv:1412.5567.
-
(2014)
Comput Language
-
-
Hannun, A.1
Case, C.2
Casper, J.3
-
37
-
-
0018466704
-
Statistical and structural approaches to texture
-
Haralick RM. (1979). Statistical and structural approaches to texture. Proc IEEE 67: 786-804.
-
(1979)
Proc IEEE
, vol.67
, pp. 786-804
-
-
Haralick, R.M.1
-
38
-
-
77956339402
-
CellCognition: Time-resolved phenotype annotation in high-throughput live cell imaging
-
Held M, Schmitz MHA, Fischer B, et al. (2010). CellCognition: time-resolved phenotype annotation in high-throughput live cell imaging. Nat Methods 7: 747-54.
-
(2010)
Nat Methods
, vol.7
, pp. 747-754
-
-
Held, M.1
Schmitz, M.H.A.2
Fischer, B.3
-
39
-
-
85032751458
-
Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups
-
Hinton G, Deng L, Yu D, et al. (2012). Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups. In IEEE Signal Process Mag 29: 82-97.
-
(2012)
IEEE Signal Process Mag
, vol.29
, pp. 82-97
-
-
Hinton, G.1
Deng, L.2
Yu, D.3
-
40
-
-
80053466067
-
Machine learning improves the precision and robustness of high-content screens: Using nonlinear multiparametric methods to analyze screening results
-
Horvath P, Wild T, Kutay U, Csucs G. (2011). Machine learning improves the precision and robustness of high-content screens: using nonlinear multiparametric methods to analyze screening results. J Biomol Screen 16: 1059-67.
-
(2011)
J Biomol Screen
, vol.16
, pp. 1059-1067
-
-
Horvath, P.1
Wild, T.2
Kutay, U.3
Csucs, G.4
-
42
-
-
60549104030
-
Scoring diverse cellular morphologies in image-based screens with iterative feedback and machine learning
-
Jones TR, Carpenter AE, Lamprecht MR, et al. (2009). Scoring diverse cellular morphologies in image-based screens with iterative feedback and machine learning. Proc Natl Acad Sci USA 106: 1826-31.
-
(2009)
Proc Natl Acad Sci USA
, vol.106
, pp. 1826-1831
-
-
Jones, T.R.1
Carpenter, A.E.2
Lamprecht, M.R.3
-
43
-
-
58149510531
-
CellProfiler Analyst: Data exploration and analysis software for complex image-based screens
-
Jones TR, Kang IH, Wheeler DB, et al. (2008). CellProfiler Analyst: data exploration and analysis software for complex image-based screens. BMC Bioinformatics 9: 482.
-
(2008)
BMC Bioinformatics
, vol.9
, pp. 482
-
-
Jones, T.R.1
Kang, I.H.2
Wheeler, D.B.3
-
46
-
-
77949524803
-
Temporal clustering by affinity propagation reveals transcriptional modules in Arabidopsis thaliana
-
Kiddle SJ, Windram OPF, McHattie S, et al. (2010). Temporal clustering by affinity propagation reveals transcriptional modules in Arabidopsis thaliana. Bioinformatics 26: 355-62.
-
(2010)
Bioinformatics
, vol.26
, pp. 355-362
-
-
Kiddle, S.J.1
Windram, O.P.F.2
McHattie, S.3
-
48
-
-
84942876357
-
Integration of high-content screening and untargeted metabolomics for comprehensive functional annotation of natural product libraries
-
Kurita KL, Glassey E, Linington RG. (2015). Integration of high-content screening and untargeted metabolomics for comprehensive functional annotation of natural product libraries. Proc Natl Acad Sci USA 112: 11999-2004.
-
(2015)
Proc Natl Acad Sci USA
, vol.112
, pp. 11999-12004
-
-
Kurita, K.L.1
Glassey, E.2
Linington, R.G.3
-
51
-
-
0032203257
-
Gradient-based learning applied to document recognition
-
LeCun Y, Bottou L, Bengio Y, Haffner P. (1998). Gradient-based learning applied to document recognition. Proc IEEE 86: 2278-324
-
(1998)
Proc IEEE
, vol.86
, pp. 2278-2324
-
-
LeCun, Y.1
Bottou, L.2
Bengio, Y.3
Haffner, P.4
-
52
-
-
35748982103
-
Clustering by soft-constraint affinity propagation: Applications to gene-expression data
-
Leone M, Sumedha, Weigt M. (2007). Clustering by soft-constraint affinity propagation: applications to gene-expression data. Bioinformatics 23: 2708-15.
-
(2007)
Bioinformatics
, vol.23
, pp. 2708-2715
-
-
Leone, M.1
Sumedha, W.M.2
-
54
-
-
84927125938
-
Single-cell and multivariate approaches in genetic perturbation screens
-
Liberali P, Snijder B, Pelkmans L. (2014). Single-cell and multivariate approaches in genetic perturbation screens. Nat Rev Genet 16: 18-32.
-
(2014)
Nat Rev Genet
, vol.16
, pp. 18-32
-
-
Liberali, P.1
Snijder, B.2
Pelkmans, L.3
-
56
-
-
84887943419
-
Comparison of methods for image-based profiling of cellular morphological responses to small-molecule treatment
-
Ljosa V, Caie PD, ter Horst R, et al. (2013). Comparison of methods for image-based profiling of cellular morphological responses to small-molecule treatment. J Biomol Screen 18: 1321-9.
-
(2013)
J Biomol Screen
, vol.18
, pp. 1321-1329
-
-
Ljosa, V.1
Caie, P.D.2
Ter Horst, R.3
-
57
-
-
84863198481
-
Annotated high-throughput microscopy image sets for validation
-
Ljosa V, Sokolnicki KL, Carpenter AE. (2012). Annotated high-throughput microscopy image sets for validation. Nat Methods 9: 637.
-
(2012)
Nat Methods
, vol.9
, pp. 637
-
-
Ljosa, V.1
Sokolnicki, K.L.2
Carpenter, A.E.3
-
58
-
-
34250216344
-
Image-based multivariate profiling of drug responses from single cells
-
Loo LH, Wu LF, Altschuler SJ. (2007). Image-based multivariate profiling of drug responses from single cells. Nat Methods 4: 445-53.
-
(2007)
Nat Methods
, vol.4
, pp. 445-453
-
-
Loo, L.H.1
Wu, L.F.2
Altschuler, S.J.3
-
59
-
-
84923367417
-
Deep neural nets as a method for quantitative structure-activity relationships
-
Ma J, Sheridan RP, Liaw A, et al. (2015). Deep neural nets as a method for quantitative structure-activity relationships. J Chem Inf Model 55: 263-74.
-
(2015)
J Chem Inf Model
, vol.55
, pp. 263-274
-
-
Ma, J.1
Sheridan, R.P.2
Liaw, A.3
-
61
-
-
0030153642
-
Deformable models in medical image analysis: A survey
-
McInerney T, Terzopoulos D. (1996). Deformable models in medical image analysis: a survey. Med Image Anal 1: 91-108.
-
(1996)
Med Image Anal
, vol.1
, pp. 91-108
-
-
McInerney, T.1
Terzopoulos, D.2
-
62
-
-
85032750965
-
Cell segmentation: 50 years down the road
-
Meijering E. (2012). Cell segmentation: 50 years down the road. IEEE Signal Proc Mag 29: 140-5.
-
(2012)
IEEE Signal Proc Mag
, vol.29
, pp. 140-145
-
-
Meijering, E.1
-
63
-
-
84905496728
-
Phenotypic screening in cancer drug discovery-past, present and future
-
Moffat JG, Rudolph J, Bailey D. (2014). Phenotypic screening in cancer drug discovery-past, present and future. Nat Rev Drug Discov 13: 588-602.
-
(2014)
Nat Rev Drug Discov
, vol.13
, pp. 588-602
-
-
Moffat, J.G.1
Rudolph, J.2
Bailey, D.3
-
64
-
-
84859336916
-
CellOrganizer: Image-derived models of subcellular organization and protein distribution
-
Murphy RF. (2012). CellOrganizer: image-derived models of subcellular organization and protein distribution. Methods Cell Biol 110: 179-93.
-
(2012)
Methods Cell Biol
, vol.110
, pp. 179-193
-
-
Murphy, R.F.1
-
65
-
-
67349273304
-
Multidimensional quantification of subcellular morphology of Saccharomyces cerevisiae using CalMorph, the high-throughput image-processing program
-
Negishi T, Nogami S, Ohya Y. (2009). Multidimensional quantification of subcellular morphology of Saccharomyces cerevisiae using CalMorph, the high-throughput image-processing program. J Biotechnol 141: 109-17.
-
(2009)
J Biotechnol
, vol.141
, pp. 109-117
-
-
Negishi, T.1
Nogami, S.2
Ohya, Y.3
-
66
-
-
26444512083
-
Toward automatic phenotyping of developing embryos from videos
-
Ning F, Delhomme D, LeCun Y, et al. (2005). Toward automatic phenotyping of developing embryos from videos. IEEE Trans Image Process 14: 1360-71.
-
(2005)
IEEE Trans Image Process
, vol.14
, pp. 1360-1371
-
-
Ning, F.1
Delhomme, D.2
LeCun, Y.3
-
67
-
-
49349108623
-
A threshold selection method from gray-level histograms
-
Otsu N. (1975). A threshold selection method from gray-level histograms. Automatica 11: 23-7.
-
(1975)
Automatica
, vol.11
, pp. 23-27
-
-
Otsu, N.1
-
68
-
-
84898956708
-
Extracting regions of interest from biological images with convolutional sparse block coding
-
In: Lake Tahoe, NV
-
Pachitariu M, Packer AM, Pettit N, et al. (2013). Extracting regions of interest from biological images with convolutional sparse block coding. In: Advances in Neural Information Processing Systems. Lake Tahoe, NV; 1745-53.
-
(2013)
Advances in Neural Information Processing Systems
, pp. 1745-1753
-
-
Pachitariu, M.1
Packer, A.M.2
Pettit, N.3
-
69
-
-
8444223104
-
Multidimensional drug profiling by automated microscopy
-
Perlman ZE, Slack MD, Feng Y, et al. (2004). Multidimensional drug profiling by automated microscopy. Science 306: 1194-8.
-
(2004)
Science
, vol.306
, pp. 1194-1198
-
-
Perlman, Z.E.1
Slack, M.D.2
Feng, Y.3
-
70
-
-
84863192185
-
PhenoRipper: Software for rapidly profiling microscopy images
-
Rajaram S, Pavie B, Wu LF, Altschuler SJ. (2012). PhenoRipper: software for rapidly profiling microscopy images. Nat Methods 9: 635-7.
-
(2012)
Nat Methods
, vol.9
, pp. 635-637
-
-
Rajaram, S.1
Pavie, B.2
Wu, L.F.3
Altschuler, S.J.4
-
71
-
-
70449419850
-
CellClassifier: Supervised learning of cellular phenotypes
-
Rämö P, Sacher R, Snijder B, et al. (2009). CellClassifier: supervised learning of cellular phenotypes. Bioinformatics 25: 3028-30.
-
(2009)
Bioinformatics
, vol.25
, pp. 3028-3030
-
-
Rämö, P.1
Sacher, R.2
Snijder, B.3
-
73
-
-
0022471098
-
Learning representations by back-propagating errors
-
Rumelhart DE, Hinton GE, Williams RJ. (1986). Learning representations by back-propagating errors. Nature 323: 533-6.
-
(1986)
Nature
, vol.323
, pp. 533-536
-
-
Rumelhart, D.E.1
Hinton, G.E.2
Williams, R.J.3
-
74
-
-
84947041871
-
Imagenet large scale visual recognition challenge
-
Russakovsky O, Deng J, Su H, et al. (2014). Imagenet large scale visual recognition challenge. Int J Comput Vis 115: 211-52.
-
(2014)
Int J Comput Vis
, vol.115
, pp. 211-252
-
-
Russakovsky, O.1
Deng, J.2
Su, H.3
-
75
-
-
35748932917
-
A review of feature selection techniques in bioinformatics
-
Saeys Y, Inza I, Larrañaga P. (2007). A review of feature selection techniques in bioinformatics. Bioinformatics 23: 2507-17.
-
(2007)
Bioinformatics
, vol.23
, pp. 2507-2517
-
-
Saeys, Y.1
Inza, I.2
Larrañaga, P.3
-
76
-
-
84961401001
-
Use of watersheds in contour detection
-
Serge, B, Lantuéj, C. (1979). Use of watersheds in contour detection. In: Workshop on Image Processing, Real-time Edge and Motion Detection, Rennes, France.
-
(1979)
Workshop on Image Processing, Real-time Edge and Motion Detection, Rennes, France
-
-
Serge, B.1
Lantuéj, C.2
-
77
-
-
84928205754
-
High-throughput functional genomics using CRISPR-Cas9
-
Shalem O, Sanjana NE, Zhang F. (2015). High-throughput functional genomics using CRISPR-Cas9. Nat Rev Genet 16: 299-311.
-
(2015)
Nat Rev Genet
, vol.16
, pp. 299-311
-
-
Shalem, O.1
Sanjana, N.E.2
Zhang, F.3
-
78
-
-
78649675858
-
Pattern recognition software and techniques for biological image analysis
-
Shamir L, Delaney JD, Orlov N, et al. (2010). Pattern recognition software and techniques for biological image analysis. PLoS Comput Biol 6: e1000974.
-
(2010)
PLoS Comput Biol
, vol.6
, pp. e1000974
-
-
Shamir, L.1
Delaney, J.D.2
Orlov, N.3
-
79
-
-
48349111792
-
Wndchrm-an open source utility for biological image analysis
-
Shamir L, Orlov N, Eckley DM, et al. (2008). Wndchrm-an open source utility for biological image analysis. Source Code Biol Med 3: 13-17.
-
(2008)
Source Code Biol Med
, vol.3
, pp. 13-17
-
-
Shamir, L.1
Orlov, N.2
Eckley, D.M.3
-
80
-
-
77956015614
-
Automated image analysis for high-content screening and analysis
-
Shariff A, Kangas J, Coelho LP, et al. (2010). Automated image analysis for high-content screening and analysis. J Biomol Screen 15: 726-34.
-
(2010)
J Biomol Screen
, vol.15
, pp. 726-734
-
-
Shariff, A.1
Kangas, J.2
Coelho, L.P.3
-
82
-
-
77952257945
-
Patterns of basal signaling heterogeneity can distinguish cellular populations with different drug sensitivities
-
Singh DK, Ku CJ, Wichaidit C, et al. (2010). Patterns of basal signaling heterogeneity can distinguish cellular populations with different drug sensitivities. Mol Syst Biol 6: 369.
-
(2010)
Mol Syst Biol
, vol.6
, pp. 369
-
-
Singh, D.K.1
Ku, C.J.2
Wichaidit, C.3
-
83
-
-
84902210226
-
Increasing the content of high-content screening: An overview
-
Singh S, Carpenter AE, Genovesio A. (2014). Increasing the content of high-content screening: an overview. J Biomol Screen 19: 640-50.
-
(2014)
J Biomol Screen
, vol.19
, pp. 640-650
-
-
Singh, S.1
Carpenter, A.E.2
Genovesio, A.3
-
84
-
-
78951470515
-
Origins of regulated cell-to-cell variability
-
Snijder B, Pelkmans L. (2011). Origins of regulated cell-to-cell variability. Nat Rev 12: 119-25.
-
(2011)
Nat Rev
, vol.12
, pp. 119-125
-
-
Snijder, B.1
Pelkmans, L.2
-
85
-
-
84890498817
-
Machine learning in cell biology-teaching computers to recognize phenotypes
-
Sommer C, Gerlich DW. (2013). Machine learning in cell biology-teaching computers to recognize phenotypes. J Cell Sci 126: 5529-39.
-
(2013)
J Cell Sci
, vol.126
, pp. 5529-5539
-
-
Sommer, C.1
Gerlich, D.W.2
-
86
-
-
84937522268
-
-
Szegedy C, Liu W, Jia Y, et al. (2015). Going deeper with convolutions. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA; 1-19.
-
(2015)
Going Deeper with Convolutions. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA
, pp. 1-19
-
-
Szegedy, C.1
Liu, W.2
Jia, Y.3
-
87
-
-
84865715286
-
Dissecting DNA damage response pathways by analysing protein localization and abundance changes during DNA replication stress
-
Tkach JM, Yimit A, Lee AY, et al. (2012). Dissecting DNA damage response pathways by analysing protein localization and abundance changes during DNA replication stress. Nat Cell Biol 14: 966-76.
-
(2012)
Nat Cell Biol
, vol.14
, pp. 966-976
-
-
Tkach, J.M.1
Yimit, A.2
Lee, A.Y.3
-
89
-
-
0035861532
-
Systematic genetic analysis with ordered arrays of yeast deletion mutants
-
Tong AHY, Evangelista M, Parsons AB, et al. (2001). Systematic genetic analysis with ordered arrays of yeast deletion mutants. Science 294: 2364-8.
-
(2001)
Science
, vol.294
, pp. 2364-2368
-
-
Tong, A.H.Y.1
Evangelista, M.2
Parsons, A.B.3
-
90
-
-
10744230485
-
Global mapping of the yeast genetic interaction network
-
Tong AHY, Lesage G, Bader GD, et al. (2004). Global mapping of the yeast genetic interaction network. Science 303: 808-13.
-
(2004)
Science
, vol.303
, pp. 808-813
-
-
Tong, A.H.Y.1
Lesage, G.2
Bader, G.D.3
-
91
-
-
75749095658
-
Integrating high-throughput genetic interaction mapping and high-content screening to explore yeast spindle morphogenesis
-
Vizeacoumar FJ, van Dyk N, S Vizeacoumar F, et al. (2010). Integrating high-throughput genetic interaction mapping and high-content screening to explore yeast spindle morphogenesis. J Cell Biol 188: 69-81.
-
(2010)
J Cell Biol
, vol.188
, pp. 69-81
-
-
Vizeacoumar, F.J.1
Van Dyk, N.2
Vizeacoumar F, S.3
-
92
-
-
84863195344
-
An image analysis toolbox for high-throughput C. Elegans assays
-
Wahlby C, Kamentsky L, Liu ZH, et al. (2012). An image analysis toolbox for high-throughput C. Elegans assays. Nat Methods 9: 714-16.
-
(2012)
Nat Methods
, vol.9
, pp. 714-716
-
-
Wahlby, C.1
Kamentsky, L.2
Liu, Z.H.3
-
93
-
-
3042547731
-
Combining intensity, edge and shape information for 2D and 3D segmentation of cell nuclei in tissue sections
-
Wählby, C, Sintorn, IM, Erlandsson, F, et al. (2004). Combining intensity, edge and shape information for 2D and 3D segmentation of cell nuclei in tissue sections. J Microsc 215: 67-76.
-
(2004)
J Microsc
, vol.215
, pp. 67-76
-
-
Wählby, C.1
Sintorn, I.M.2
Erlandsson, F.3
-
94
-
-
84923276179
-
RNA splicing. The human splicing code reveals new insights into the genetic determinants of disease
-
Xiong HY, Alipanahi B, Lee LJ, et al. (2015). RNA splicing. The human splicing code reveals new insights into the genetic determinants of disease. Science 347: 1254806.
-
(2015)
Science
, vol.347
, pp. 1254806
-
-
Xiong, H.Y.1
Alipanahi, B.2
Lee, L.J.3
-
95
-
-
84905230329
-
-
Xu Y, Mo T, Feng Q, et al. (2014). Deep learning of feature representation with multiple instance learning for medical image analysis. 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Florence, Italy.
-
(2014)
Deep Learning of Feature Representation with Multiple Instance Learning for Medical Image Analysis. 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Florence, Italy.
-
-
Xu, Y.1
Mo, T.2
Feng, Q.3
-
96
-
-
84880328076
-
A screen for morphological complexity identifies regulators of switch-like transitions between discrete cell shapes
-
Yin Z, Sadok A, Sailem H, et al. (2013). A screen for morphological complexity identifies regulators of switch-like transitions between discrete cell shapes. Nat Cell Biol 15: 860-71.
-
(2013)
Nat Cell Biol
, vol.15
, pp. 860-871
-
-
Yin, Z.1
Sadok, A.2
Sailem, H.3
-
97
-
-
37249026328
-
Integrating high-content screening and ligand-target prediction to identify mechanism of action
-
Young DW, Bender A, Hoyt J, et al. (2008). Integrating high-content screening and ligand-target prediction to identify mechanism of action. Nat Chem Biol 4: 59-68.
-
(2008)
Nat Chem Biol
, vol.4
, pp. 59-68
-
-
Young, D.W.1
Bender, A.2
Hoyt, J.3
-
98
-
-
84863203974
-
Unsupervised modeling of cell morphology dynamics for time-lapse microscopy
-
Zhong Q, Busetto AG, Fededa JP, et al. (2012). Unsupervised modeling of cell morphology dynamics for time-lapse microscopy. Nat Methods 9: 711-13.
-
(2012)
Nat Methods
, vol.9
, pp. 711-713
-
-
Zhong, Q.1
Busetto, A.G.2
Fededa, J.P.3
|