-
1
-
-
84896724814
-
Genetics of single-cell protein abundance variation in large yeast populations
-
Albert, F. W., S. Treusch, A. H. Shockley, J. S. Bloom, and L. Kruglyak, 2014 Genetics of single-cell protein abundance variation in large yeast populations. Nature 506(7489): 494-497.
-
(2014)
Nature
, vol.506
, Issue.7489
, pp. 494-497
-
-
Albert, F.W.1
Treusch, S.2
Shockley, A.H.3
Bloom, J.S.4
Kruglyak, L.5
-
2
-
-
84938888109
-
Predicting the sequence specificities of DNA-and RNA-binding proteins by deep learning
-
Alipanahi, B., A. Delong, M. T. Weirauch, and B. J. Frey, 2015 Predicting the sequence specificities of DNA-and RNA-binding proteins by deep learning. Nat. Biotechnol. 33: 831-838.
-
(2015)
Nat. Biotechnol
, vol.33
, pp. 831-838
-
-
Alipanahi, B.1
Delong, A.2
Weirauch, M.T.3
Frey, B.J.4
-
3
-
-
84980022857
-
Deep learning for computational biology
-
Angermueller, C., T. Parnamaa, L. Parts, and O. Stegle, 2016 Deep learning for computational biology. Mol. Syst. Biol. 12(7): 878.
-
(2016)
Mol. Syst. Biol
, vol.12
, Issue.7
, pp. 878
-
-
Angermueller, C.1
Parnamaa, T.2
Parts, L.3
Stegle, O.4
-
4
-
-
0036139314
-
A neural network classifier capable of recognizing the patterns of all major subcellular structures in fluorescence microscope images of HeLa cells
-
Boland, M. V., and R. F. Murphy, 2001 A neural network classifier capable of recognizing the patterns of all major subcellular structures in fluorescence microscope images of HeLa cells. Bioinformatics 17(12): 1213-1223.
-
(2001)
Bioinformatics
, vol.17
, Issue.12
, pp. 1213-1223
-
-
Boland, M.V.1
Murphy, R.F.2
-
5
-
-
0032212323
-
Automated recognition of patterns characteristic of subcellular structures in fluorescence microscopy images
-
Boland, M. V., M. K. Markey, and R. F. Murphy, 1998 Automated recognition of patterns characteristic of subcellular structures in fluorescence microscopy images. Cytometry 33(3): 366-375.
-
(1998)
Cytometry
, vol.33
, Issue.3
, pp. 366-375
-
-
Boland, M.V.1
Markey, M.K.2
Murphy, R.F.3
-
6
-
-
84947810434
-
Using CellProfiler for automatic identification and measurement of biological objects in images
-
Bray, M. A., M. S. Vokes, and A. E. Carpenter, 2015 Using CellProfiler for automatic identification and measurement of biological objects in images. Curr. Protoc. Mol. Biol. 109: 14.17.1-14.17.13.
-
(2015)
Curr. Protoc. Mol. Biol
, vol.109
-
-
Bray, M.A.1
Vokes, M.S.2
Carpenter, A.E.3
-
7
-
-
0035478854
-
Random forests
-
Breiman, L., 2001 Random forests. Mach. Learn. 45(1): 5-32.
-
(2001)
Mach. Learn
, vol.45
, Issue.1
, pp. 5-32
-
-
Breiman, L.1
-
8
-
-
34547830883
-
Automated image analysis of protein localization in budding yeast
-
Chen, S. C., T. Zhao, G. J. Gordon, and R. F. Murphy, 2007 Automated image analysis of protein localization in budding yeast. Bioinformatics 23 (13): i66-i71.
-
(2007)
Bioinformatics
, vol.23
, Issue.13
, pp. i66-i71
-
-
Chen, S.C.1
Zhao, T.2
Gordon, G.J.3
Murphy, R.F.4
-
9
-
-
84930684870
-
Yeast proteome dynamics from single cell imaging and automated analysis
-
Chong, Y. T., J. L. Koh, H. Friesen, S. K. Duffy, M. J. Cox et al., 2015 Yeast proteome dynamics from single cell imaging and automated analysis. Cell 161(6): 1413-1424.
-
(2015)
Cell
, vol.161
, Issue.6
, pp. 1413-1424
-
-
Chong, Y.T.1
Koh, J.L.2
Friesen, H.3
Duffy, S.K.4
Cox, M.J.5
-
10
-
-
84877789057
-
Deep neural networks segment neuronal membranes in electron microscopy images
-
Lake Tahoe, NV
-
Ciresxan, D., A. Giusti, L. M. Gambardella, and J. Schmidhuber, 2012 Deep neural networks segment neuronal membranes in electron microscopy images. Proceedings of Advances in Neural Information Processing Systems 2012, Lake Tahoe, NV, pp. 2843-2851.
-
(2012)
Proceedings of Advances in Neural Information Processing Systems 2012
, pp. 2843-2851
-
-
Ciresxan, D.1
Giusti, A.2
Gambardella, L.M.3
Schmidhuber, J.4
-
11
-
-
84885899176
-
Mitosis detection in breast cancer histology images with deep neural networks
-
edited by K. Mori, I. Sakuma, Y. Sato, C. Barillot, and N. Navab. Springer-Verlag, Berlin
-
Ciresxan, D. C., A. Giusti, L. M. Gambardella, and J. Schmidhuber, 2013 Mitosis detection in breast cancer histology images with deep neural networks, pp. 411-418 in Medical Image Computing and Computer-Assisted Intervention-MICCAI 2013, edited by K. Mori, I. Sakuma, Y. Sato, C. Barillot, and N. Navab. Springer-Verlag, Berlin.
-
(2013)
Medical Image Computing and Computer-Assisted Intervention-MICCAI 2013
, pp. 411-418
-
-
Ciresxan, D.C.1
Giusti, A.2
Gambardella, L.M.3
Schmidhuber, J.4
-
12
-
-
84973587732
-
Kappa: coefficient of concordance
-
Cohen, J., 1960 Kappa: coefficient of concordance. Educ. Psychol. Meas. 20: 37.
-
(1960)
Educ. Psychol. Meas
, vol.20
, pp. 37
-
-
Cohen, J.1
-
13
-
-
36048945922
-
ImageJ for microscopy
-
Collins, T. J., 2007 ImageJ for microscopy. Biotechniques 43(Suppl. 1) 25-30.
-
(2007)
Biotechniques
, vol.43
, pp. 25-30
-
-
Collins, T.J.1
-
14
-
-
3042565868
-
Automatic identification of subcellular phenotypes on human cell arrays
-
Conrad, C., H. Erfle, P. Warnat, N. Daigle, T. Lorch et al., 2004 Automatic identification of subcellular phenotypes on human cell arrays. Genome Res. 14(6): 1130-1136.
-
(2004)
Genome Res
, vol.14
, Issue.6
, pp. 1130-1136
-
-
Conrad, C.1
Erfle, H.2
Warnat, P.3
Daigle, N.4
Lorch, T.5
-
15
-
-
0036264252
-
Automated recognition of intracellular organelles in confocal microscope images
-
Danckaert, A., E. Gonzalez-Couto, L. Bollondi, N. Thompson, and B. Hayes, 2002 Automated recognition of intracellular organelles in confocal microscope images. Traffic 3(1): 66-73.
-
(2002)
Traffic
, vol.3
, Issue.1
, pp. 66-73
-
-
Danckaert, A.1
Gonzalez-Couto, E.2
Bollondi, L.3
Thompson, N.4
Hayes, B.5
-
16
-
-
84904482223
-
-
Accessed: January 16, 2017
-
Donahue, J., Y. Jia, O. Vinyals, J. Hoffman, N. Zhang et al., 2013 Decaf: a deep convolutional activation feature for generic visual recognition. Available at: https://arxiv.org/abs/1310.1531. Accessed: January 16, 2017.
-
(2013)
Decaf: a deep convolutional activation feature for generic visual recognition
-
-
Donahue, J.1
Jia, Y.2
Vinyals, O.3
Hoffman, J.4
Zhang, N.5
-
17
-
-
84897399093
-
Noise genetics: inferring protein function by correlating phenotype with protein levels and localization in individual human cells
-
Farkash-Amar, S., A. Zimmer, E. Eden, A. Cohen, N. Geva-Zatorsky et al., 2014 Noise genetics: inferring protein function by correlating phenotype with protein levels and localization in individual human cells. PLoS Genet. 10(3): e1004176.
-
(2014)
PLoS Genet
, vol.10
, Issue.3
-
-
Farkash-Amar, S.1
Zimmer, A.2
Eden, E.3
Cohen, A.4
Geva-Zatorsky, N.5
-
18
-
-
84911400494
-
Rich feature hierarchies for accurate object detection and semantic segmentation
-
Columbus, OH
-
Girshick, R., J. Donahue, T. Darrell, and J. Malik, 2014 Rich feature hierarchies for accurate object detection and semantic segmentation. Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, pp. 580-587.
-
(2014)
Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition
, pp. 580-587
-
-
Girshick, R.1
Donahue, J.2
Darrell, T.3
Malik, J.4
-
19
-
-
84862277874
-
Understanding the difficulty of training deep feed forward neural networks
-
Chia Laguna Resort, Sardinia, Italy
-
Glorot, X., and Y. Bengio, 2010 Understanding the difficulty of training deep feed forward neural networks. Proceedings of the 13th International Conference on Artificial Intelligence and Statistics, Chia Laguna Resort, Sardinia, Italy, pp. 249-256.
-
(2010)
Proceedings of the 13th International Conference on Artificial Intelligence and Statistics
, pp. 249-256
-
-
Glorot, X.1
Bengio, Y.2
-
20
-
-
33845760114
-
Automated subcellular location determination and high-throughput microscopy
-
Glory, E., and R. F. Murphy, 2007 Automated subcellular location determination and high-throughput microscopy. Dev. Cell 12(1): 7-16.
-
(2007)
Dev. Cell
, vol.12
, Issue.1
, pp. 7-16
-
-
Glory, E.1
Murphy, R.F.2
-
21
-
-
84925264979
-
Local statistics allow quantification of cell-to-cell variability from highthroughput microscope images
-
Handfield, L. F., B. Strome, Y. T. Chong, and A. M. Moses, 2015 Local statistics allow quantification of cell-to-cell variability from highthroughput microscope images. Bioinformatics 31(6): 940-947.
-
(2015)
Bioinformatics
, vol.31
, Issue.6
, pp. 940-947
-
-
Handfield, L.F.1
Strome, B.2
Chong, Y.T.3
Moses, A.M.4
-
22
-
-
0018466704
-
Statistical and structural approaches to texture
-
Haralick, R. M., 1979 Statistical and structural approaches to texture. Proc. IEEE 67(5): 786-804.
-
(1979)
Proc. IEEE
, vol.67
, Issue.5
, pp. 786-804
-
-
Haralick, R.M.1
-
23
-
-
84958589374
-
-
Accessed: January 16, 2017
-
He, K., X. Zhang, S. Ren, and J. Sun, 2015 Deep residual learning for image recognition. Available at: https://arxiv.org/abs/1512.03385. Accessed: January 16, 2017.
-
(2015)
Deep residual learning for image recognition
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
24
-
-
85000705097
-
Systematic cell phenotyping
-
edited by J. M. Hancock. CRC Press, Boca Raton, FL
-
Hériché J.-K. 2014 Systematic cell phenotyping, pp. 86-110 in Phenomics, edited by J. M. Hancock. CRC Press, Boca Raton, FL.
-
(2014)
Phenomics
, pp. 86-110
-
-
Hériché, J.-K.1
-
25
-
-
0142184341
-
Global analysis of protein localization in budding yeast
-
Huh, W. K., J. V. Falvo, L. C. Gerke, A. S. Carroll, R. W. Howson et al., 2003 Global analysis of protein localization in budding yeast. Nature 425(6959): 686-691.
-
(2003)
Nature
, vol.425
, Issue.6959
, pp. 686-691
-
-
Huh, W.K.1
Falvo, J.V.2
Gerke, L.C.3
Carroll, A.S.4
Howson, R.W.5
-
27
-
-
0031062182
-
Object detection using Gabor filters
-
Jain, A. K., N. K. Ratha, and S. Lakshmanan, 1997 Object detection using Gabor filters. Pattern Recognit. 30(2): 295-309.
-
(1997)
Pattern Recognit
, vol.30
, Issue.2
, pp. 295-309
-
-
Jain, A.K.1
Ratha, N.K.2
Lakshmanan, S.3
-
28
-
-
84913580146
-
Caffe: convolutional architecture for fast feature embedding
-
Orlando, FL
-
Jia, Y., E. Shelhamer, J. Donahue, S. Karayev, J. Long et al., 2014 Caffe: convolutional architecture for fast feature embedding. Proceedings of the 22nd ACM International Conference on Multimedia, Orlando, FL, pp. 675-678.
-
(2014)
Proceedings of the 22nd ACM International Conference on Multimedia
, pp. 675-678
-
-
Jia, Y.1
Shelhamer, E.2
Donahue, J.3
Karayev, S.4
Long, J.5
-
29
-
-
79954500285
-
Improved structure, function and compatibility for CellProfiler: modular high-throughput image analysis software
-
Kamentsky, L., T. R. Jones, A. Fraser, M. A. Bray, D. J. Logan et al., 2011 Improved structure, function and compatibility for CellProfiler: modular high-throughput image analysis software. Bioinformatics 27(8): 1179-1180.
-
(2011)
Bioinformatics
, vol.27
, Issue.8
, pp. 1179-1180
-
-
Kamentsky, L.1
Jones, T.R.2
Fraser, A.3
Bray, M.A.4
Logan, D.J.5
-
30
-
-
84976908652
-
Basset: learning the regulatory code of the accessible genome with deep convolutional neural networks
-
Kelley, D. R., J. Snoek, and J. Rinn, 2016 Basset: learning the regulatory code of the accessible genome with deep convolutional neural networks. Genome Res. 26: 990-999.
-
(2016)
Genome Res
, vol.26
, pp. 990-999
-
-
Kelley, D.R.1
Snoek, J.2
Rinn, J.3
-
31
-
-
84930845786
-
CYCLoPs: a comprehensive database constructed from automated analysis of protein abundance and subcellular localization patterns in Saccharomyces cerevisiae
-
Koh, J. L., Y. T. Chong, H. Friesen,A. Moses, C. Boone et al., 2015 CYCLoPs: a comprehensive database constructed from automated analysis of protein abundance and subcellular localization patterns in Saccharomyces cerevisiae. G3 5(6): 1223-1232.
-
(2015)
G3
, vol.5
, Issue.6
, pp. 1223-1232
-
-
Koh, J.L.1
Chong, Y.T.2
Friesen, H.3
Moses, A.4
Boone, C.5
-
33
-
-
85018293362
-
Automated analysis of high-content microscopy data with deep learning
-
Kraus, O.Z., B.T. Grys, J. Ba, Y. Chong, B.J. Frey, C. Boone, and B.J. Andrews, 2017 Automated analysis of high-content microscopy data with deep learning. Mol. Syst. Biol. DOI: 10.15252/msb.20177551
-
(2017)
Mol. Syst. Biol
-
-
Kraus, O.Z.1
Grys, B.T.2
Ba, J.3
Chong, Y.4
Frey, B.J.5
Boone, C.6
Andrews, B.J.7
-
34
-
-
84876231242
-
Imagenet classification with deep convolutional neural networks
-
Lake Tahoe, NV
-
Krizhevsky, A., I. Sutskever, and G. E. Hinton, 2012 Imagenet classification with deep convolutional neural networks. Proceedings of Advances in Neural Information Processing Systems 2012, Lake Tahoe, NV, pp. 1097-1105.
-
(2012)
Proceedings of Advances in Neural Information Processing Systems 2012
, pp. 1097-1105
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
35
-
-
33847710201
-
CellProfiler: free, versatile software for automated biological image analysis
-
Lamprecht, M. R., D. M. Sabatini, and A. E. Carpenter, 2007 CellProfiler: free, versatile software for automated biological image analysis. Biotechniques 42(1): 71-75.
-
(2007)
Biotechniques
, vol.42
, Issue.1
, pp. 71-75
-
-
Lamprecht, M.R.1
Sabatini, D.M.2
Carpenter, A.E.3
-
37
-
-
0345040873
-
Classification and regression by random-Forest
-
Liaw, A., and M. Wiener, 2002 Classification and regression by random-Forest. R News 2(3): 18-22.
-
(2002)
R News
, vol.2
, Issue.3
, pp. 18-22
-
-
Liaw, A.1
Wiener, M.2
-
38
-
-
0141921564
-
Robust numerical features for description and classification of subcellular location patterns in fluorescence microscope images
-
Murphy, R. F., M. Velliste, and G. Porreca, 2003 Robust numerical features for description and classification of subcellular location patterns in fluorescence microscope images. J. VLSI Signal Process. Syst. Signal Image Video Technol. 35(3): 311-321.
-
(2003)
J. VLSI Signal Process. Syst. Signal Image Video Technol
, vol.35
, Issue.3
, pp. 311-321
-
-
Murphy, R.F.1
Velliste, M.2
Porreca, G.3
-
39
-
-
30044445643
-
Highdimensional and large-scale phenotyping of yeast mutants
-
Ohya, Y., J. Sese, M. Yukawa, F. Sano, Y. Nakatani et al., 2005 Highdimensional and large-scale phenotyping of yeast mutants. Proc. Natl. Acad. Sci. USA 102(52): 19015-19020.
-
(2005)
Proc. Natl. Acad. Sci. USA
, vol.102
, Issue.52
, pp. 19015-19020
-
-
Ohya, Y.1
Sese, J.2
Yukawa, M.3
Sano, F.4
Nakatani, Y.5
-
40
-
-
84902012139
-
Heritability and genetic basis of protein level variation in an outbred population
-
Parts, L., Y. C. Liu, M. M. Tekkedil, L. M. Steinmetz, A. A. Caudy et al., 2014 Heritability and genetic basis of protein level variation in an outbred population. Genome Res. 24(8): 1363-1370.
-
(2014)
Genome Res
, vol.24
, Issue.8
, pp. 1363-1370
-
-
Parts, L.1
Liu, Y.C.2
Tekkedil, M.M.3
Steinmetz, L.M.4
Caudy, A.A.5
-
41
-
-
77951959633
-
EBImage-an R package for image processing with applications to cellular phenotypes
-
Pau, G., F. Fuchs, O. Sklyar, M. Boutros, and W. Huber, 2010 EBImage-an R package for image processing with applications to cellular phenotypes. Bioinformatics 26(7): 979-981.
-
(2010)
Bioinformatics
, vol.26
, Issue.7
, pp. 979-981
-
-
Pau, G.1
Fuchs, F.2
Sklyar, O.3
Boutros, M.4
Huber, W.5
-
42
-
-
80555140075
-
Scikit-learn: machine learning in Python
-
Oct
-
Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion et al., 2011 Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12 (Oct): 2825-2830.
-
(2011)
J. Mach. Learn. Res
, vol.12
, pp. 2825-2830
-
-
Pedregosa, F.1
Varoquaux, G.2
Gramfort, A.3
Michel, V.4
Thirion, B.5
-
43
-
-
84958291921
-
TensorFlow: biology's gateway to deep learning?
-
Rampasek, L., and A. Goldenberg, 2016 TensorFlow: biology's gateway to deep learning? Cell Syst. 2: 12-14.
-
(2016)
Cell Syst
, vol.2
, pp. 12-14
-
-
Rampasek, L.1
Goldenberg, A.2
-
44
-
-
84908537903
-
CNN features off-the-shelf: an astounding baseline for recognition
-
Columbus, OH
-
Razavian, A., H. Azizpour, J. Sullivan, and S. Carlsson, 2014 CNN features off-the-shelf: an astounding baseline for recognition. Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, pp. 806-813.
-
(2014)
Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition
, pp. 806-813
-
-
Razavian, A.1
Azizpour, H.2
Sullivan, J.3
Carlsson, S.4
-
45
-
-
84951834022
-
U-Net: convolutional networks for biomedical image segmentation
-
edited by N. Navab, J. Hornegger, W. M. Wells, and A. F. Frangi. Springer, Heidelberg
-
Ronneberger, O., P. Fischer, and T. Brox, 2015 U-Net: convolutional networks for biomedical image segmentation, pp. 234-241 in Medical Image Computing and Computer-Assisted Intervention-MICCAI 2015, edited by N. Navab, J. Hornegger, W. M. Wells, and A. F. Frangi. Springer, Heidelberg.
-
(2015)
Medical Image Computing and Computer-Assisted Intervention-MICCAI 2015
, pp. 234-241
-
-
Ronneberger, O.1
Fischer, P.2
Brox, T.3
-
46
-
-
84910651844
-
Deep learning in neural networks: an overview
-
Schmidhuber, J., 2015 Deep learning in neural networks: an overview. Neural Netw. 61: 85-117.
-
(2015)
Neural Netw
, vol.61
, pp. 85-117
-
-
Schmidhuber, J.1
-
47
-
-
78649675858
-
Pattern recognition software and techniques for biological image analysis
-
Shamir, L., J. D. Delaney, N. Orlov, D. M. Eckley, and I. G. Goldberg, 2010 Pattern recognition software and techniques for biological image analysis. PLoS Comput. Biol. 6(11): e1000974.
-
(2010)
PLoS Comput. Biol
, vol.6
, Issue.11
-
-
Shamir, L.1
Delaney, J.D.2
Orlov, N.3
Eckley, D.M.4
Goldberg, I.G.5
-
49
-
-
84971231452
-
Unsupervised feature construction and knowledge extraction from genome-wide assays of breast cancer with denoising autoencoders
-
Tan, J., M. Ung, C. Cheng, and C. S. Greene, 2015 Unsupervised feature construction and knowledge extraction from genome-wide assays of breast cancer with denoising autoencoders. Pac. Symp. Biocomput. 20: 132-143.
-
(2015)
Pac. Symp. Biocomput
, vol.20
, pp. 132-143
-
-
Tan, J.1
Ung, M.2
Cheng, C.3
Greene, C.S.4
-
51
-
-
84946747440
-
Show and tell: a neural image caption generator
-
Boston, MA
-
Vinyals, O., A. Toshev, S. Bengio, and D. Erhan, 2015 Show and tell: a neural image caption generator. Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, pp. 3156-3164.
-
(2015)
Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition
, pp. 3156-3164
-
-
Vinyals, O.1
Toshev, A.2
Bengio, S.3
Erhan, D.4
-
52
-
-
75749095658
-
Integrating high-throughput genetic interaction mapping and high-content screening to explore yeast spindle morphogenesis
-
Vizeacoumar, F. J., N. van Dyk, F. S. Vizeacoumar, V. Cheung, J. Li et al., 2010 Integrating high-throughput genetic interaction mapping and high-content screening to explore yeast spindle morphogenesis. J. Cell Biol. 188(1): 69-81.
-
(2010)
J. Cell Biol
, vol.188
, Issue.1
, pp. 69-81
-
-
Vizeacoumar, F.J.1
van Dyk, N.2
Vizeacoumar, F.S.3
Cheung, V.4
Li, J.5
-
53
-
-
33747113980
-
Beugungstheorie des schneidenver-fahrens und seiner verbesserten form, der phasenkontrastmethode
-
von Zernike, F., 1934 Beugungstheorie des schneidenver-fahrens und seiner verbesserten form, der phasenkontrastmethode. Physica 1(7-12): 689-704.
-
(1934)
Physica
, vol.1
-
-
von Zernike, F.1
-
54
-
-
84897000871
-
gitter: a robust and accurate method for quantification of colony sizes from plate images
-
Wagih, O., and L. Parts, 2014 gitter: a robust and accurate method for quantification of colony sizes from plate images. G3 4(3): 547-552.
-
(2014)
G3
, vol.4
, Issue.3
, pp. 547-552
-
-
Wagih, O.1
Parts, L.2
-
55
-
-
84883585377
-
SGAtools: one-stop analysis and visualization of array-based genetic interaction screens
-
Web Server issue
-
Wagih, O, M. Usaj, A. Baryshnikova, B. VanderSluis, E. Kuzmin et al., 2013 SGAtools: one-stop analysis and visualization of array-based genetic interaction screens. Nucleic Acids Res. 41(Web Server issue): W591-W596.
-
(2013)
Nucleic Acids Res
, vol.41
, pp. W591-W596
-
-
Wagih, O.1
Usaj, M.2
Baryshnikova, A.3
VanderSluis, B.4
Kuzmin, E.5
-
56
-
-
84937508363
-
How transferable are features in deep neural networks?
-
Montréal, Canada
-
Yosinski, J., J. Clune, Y. Bengio, and H. Lipson, 2014 How transferable are features in deep neural networks? Proceedings of Advances Neural Information Processing Systems 2014, Montréal, Canada, pp. 3320-3328.
-
(2014)
Proceedings of Advances Neural Information Processing Systems 2014
, pp. 3320-3328
-
-
Yosinski, J.1
Clune, J.2
Bengio, Y.3
Lipson, H.4
-
57
-
-
84958257565
-
Predicting effects of noncoding variants with deep learning-based sequence model
-
Zhou, J., and O. G. Troyanskaya, 2015 Predicting effects of noncoding variants with deep learning-based sequence model. Nat. Methods 12: 931-934.
-
(2015)
Nat. Methods
, vol.12
, pp. 931-934
-
-
Zhou, J.1
Troyanskaya, O.G.2
|