메뉴 건너뛰기




Volumn 7, Issue 5, 2017, Pages 1385-1392

Accurate classification of protein subcellular localization from high-throughput microscopy images using deep learning

Author keywords

Deep learning; High content; Microscopy; ScreeningMachine learning; Yeast

Indexed keywords

CELLULAR DISTRIBUTION; CLASSIFICATION; CLASSIFIER; HUMAN; LEARNING; MICROSCOPY; NERVOUS SYSTEM; NONHUMAN; YEAST; COMPUTER ASSISTED DIAGNOSIS; FLUORESCENCE MICROSCOPY; HIGH THROUGHPUT SCREENING; MACHINE LEARNING; METABOLISM; PROCEDURES; PROTEIN TRANSPORT; ULTRASTRUCTURE;

EID: 85019234865     PISSN: None     EISSN: 21601836     Source Type: Journal    
DOI: 10.1534/g3.116.033654     Document Type: Article
Times cited : (131)

References (57)
  • 1
    • 84896724814 scopus 로고    scopus 로고
    • Genetics of single-cell protein abundance variation in large yeast populations
    • Albert, F. W., S. Treusch, A. H. Shockley, J. S. Bloom, and L. Kruglyak, 2014 Genetics of single-cell protein abundance variation in large yeast populations. Nature 506(7489): 494-497.
    • (2014) Nature , vol.506 , Issue.7489 , pp. 494-497
    • Albert, F.W.1    Treusch, S.2    Shockley, A.H.3    Bloom, J.S.4    Kruglyak, L.5
  • 2
    • 84938888109 scopus 로고    scopus 로고
    • Predicting the sequence specificities of DNA-and RNA-binding proteins by deep learning
    • Alipanahi, B., A. Delong, M. T. Weirauch, and B. J. Frey, 2015 Predicting the sequence specificities of DNA-and RNA-binding proteins by deep learning. Nat. Biotechnol. 33: 831-838.
    • (2015) Nat. Biotechnol , vol.33 , pp. 831-838
    • Alipanahi, B.1    Delong, A.2    Weirauch, M.T.3    Frey, B.J.4
  • 4
    • 0036139314 scopus 로고    scopus 로고
    • A neural network classifier capable of recognizing the patterns of all major subcellular structures in fluorescence microscope images of HeLa cells
    • Boland, M. V., and R. F. Murphy, 2001 A neural network classifier capable of recognizing the patterns of all major subcellular structures in fluorescence microscope images of HeLa cells. Bioinformatics 17(12): 1213-1223.
    • (2001) Bioinformatics , vol.17 , Issue.12 , pp. 1213-1223
    • Boland, M.V.1    Murphy, R.F.2
  • 5
    • 0032212323 scopus 로고    scopus 로고
    • Automated recognition of patterns characteristic of subcellular structures in fluorescence microscopy images
    • Boland, M. V., M. K. Markey, and R. F. Murphy, 1998 Automated recognition of patterns characteristic of subcellular structures in fluorescence microscopy images. Cytometry 33(3): 366-375.
    • (1998) Cytometry , vol.33 , Issue.3 , pp. 366-375
    • Boland, M.V.1    Markey, M.K.2    Murphy, R.F.3
  • 6
    • 84947810434 scopus 로고    scopus 로고
    • Using CellProfiler for automatic identification and measurement of biological objects in images
    • Bray, M. A., M. S. Vokes, and A. E. Carpenter, 2015 Using CellProfiler for automatic identification and measurement of biological objects in images. Curr. Protoc. Mol. Biol. 109: 14.17.1-14.17.13.
    • (2015) Curr. Protoc. Mol. Biol , vol.109
    • Bray, M.A.1    Vokes, M.S.2    Carpenter, A.E.3
  • 7
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman, L., 2001 Random forests. Mach. Learn. 45(1): 5-32.
    • (2001) Mach. Learn , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 8
    • 34547830883 scopus 로고    scopus 로고
    • Automated image analysis of protein localization in budding yeast
    • Chen, S. C., T. Zhao, G. J. Gordon, and R. F. Murphy, 2007 Automated image analysis of protein localization in budding yeast. Bioinformatics 23 (13): i66-i71.
    • (2007) Bioinformatics , vol.23 , Issue.13 , pp. i66-i71
    • Chen, S.C.1    Zhao, T.2    Gordon, G.J.3    Murphy, R.F.4
  • 9
    • 84930684870 scopus 로고    scopus 로고
    • Yeast proteome dynamics from single cell imaging and automated analysis
    • Chong, Y. T., J. L. Koh, H. Friesen, S. K. Duffy, M. J. Cox et al., 2015 Yeast proteome dynamics from single cell imaging and automated analysis. Cell 161(6): 1413-1424.
    • (2015) Cell , vol.161 , Issue.6 , pp. 1413-1424
    • Chong, Y.T.1    Koh, J.L.2    Friesen, H.3    Duffy, S.K.4    Cox, M.J.5
  • 11
    • 84885899176 scopus 로고    scopus 로고
    • Mitosis detection in breast cancer histology images with deep neural networks
    • edited by K. Mori, I. Sakuma, Y. Sato, C. Barillot, and N. Navab. Springer-Verlag, Berlin
    • Ciresxan, D. C., A. Giusti, L. M. Gambardella, and J. Schmidhuber, 2013 Mitosis detection in breast cancer histology images with deep neural networks, pp. 411-418 in Medical Image Computing and Computer-Assisted Intervention-MICCAI 2013, edited by K. Mori, I. Sakuma, Y. Sato, C. Barillot, and N. Navab. Springer-Verlag, Berlin.
    • (2013) Medical Image Computing and Computer-Assisted Intervention-MICCAI 2013 , pp. 411-418
    • Ciresxan, D.C.1    Giusti, A.2    Gambardella, L.M.3    Schmidhuber, J.4
  • 12
    • 84973587732 scopus 로고
    • Kappa: coefficient of concordance
    • Cohen, J., 1960 Kappa: coefficient of concordance. Educ. Psychol. Meas. 20: 37.
    • (1960) Educ. Psychol. Meas , vol.20 , pp. 37
    • Cohen, J.1
  • 13
    • 36048945922 scopus 로고    scopus 로고
    • ImageJ for microscopy
    • Collins, T. J., 2007 ImageJ for microscopy. Biotechniques 43(Suppl. 1) 25-30.
    • (2007) Biotechniques , vol.43 , pp. 25-30
    • Collins, T.J.1
  • 14
    • 3042565868 scopus 로고    scopus 로고
    • Automatic identification of subcellular phenotypes on human cell arrays
    • Conrad, C., H. Erfle, P. Warnat, N. Daigle, T. Lorch et al., 2004 Automatic identification of subcellular phenotypes on human cell arrays. Genome Res. 14(6): 1130-1136.
    • (2004) Genome Res , vol.14 , Issue.6 , pp. 1130-1136
    • Conrad, C.1    Erfle, H.2    Warnat, P.3    Daigle, N.4    Lorch, T.5
  • 15
    • 0036264252 scopus 로고    scopus 로고
    • Automated recognition of intracellular organelles in confocal microscope images
    • Danckaert, A., E. Gonzalez-Couto, L. Bollondi, N. Thompson, and B. Hayes, 2002 Automated recognition of intracellular organelles in confocal microscope images. Traffic 3(1): 66-73.
    • (2002) Traffic , vol.3 , Issue.1 , pp. 66-73
    • Danckaert, A.1    Gonzalez-Couto, E.2    Bollondi, L.3    Thompson, N.4    Hayes, B.5
  • 17
    • 84897399093 scopus 로고    scopus 로고
    • Noise genetics: inferring protein function by correlating phenotype with protein levels and localization in individual human cells
    • Farkash-Amar, S., A. Zimmer, E. Eden, A. Cohen, N. Geva-Zatorsky et al., 2014 Noise genetics: inferring protein function by correlating phenotype with protein levels and localization in individual human cells. PLoS Genet. 10(3): e1004176.
    • (2014) PLoS Genet , vol.10 , Issue.3
    • Farkash-Amar, S.1    Zimmer, A.2    Eden, E.3    Cohen, A.4    Geva-Zatorsky, N.5
  • 20
    • 33845760114 scopus 로고    scopus 로고
    • Automated subcellular location determination and high-throughput microscopy
    • Glory, E., and R. F. Murphy, 2007 Automated subcellular location determination and high-throughput microscopy. Dev. Cell 12(1): 7-16.
    • (2007) Dev. Cell , vol.12 , Issue.1 , pp. 7-16
    • Glory, E.1    Murphy, R.F.2
  • 21
    • 84925264979 scopus 로고    scopus 로고
    • Local statistics allow quantification of cell-to-cell variability from highthroughput microscope images
    • Handfield, L. F., B. Strome, Y. T. Chong, and A. M. Moses, 2015 Local statistics allow quantification of cell-to-cell variability from highthroughput microscope images. Bioinformatics 31(6): 940-947.
    • (2015) Bioinformatics , vol.31 , Issue.6 , pp. 940-947
    • Handfield, L.F.1    Strome, B.2    Chong, Y.T.3    Moses, A.M.4
  • 22
    • 0018466704 scopus 로고
    • Statistical and structural approaches to texture
    • Haralick, R. M., 1979 Statistical and structural approaches to texture. Proc. IEEE 67(5): 786-804.
    • (1979) Proc. IEEE , vol.67 , Issue.5 , pp. 786-804
    • Haralick, R.M.1
  • 24
    • 85000705097 scopus 로고    scopus 로고
    • Systematic cell phenotyping
    • edited by J. M. Hancock. CRC Press, Boca Raton, FL
    • Hériché J.-K. 2014 Systematic cell phenotyping, pp. 86-110 in Phenomics, edited by J. M. Hancock. CRC Press, Boca Raton, FL.
    • (2014) Phenomics , pp. 86-110
    • Hériché, J.-K.1
  • 25
    • 0142184341 scopus 로고    scopus 로고
    • Global analysis of protein localization in budding yeast
    • Huh, W. K., J. V. Falvo, L. C. Gerke, A. S. Carroll, R. W. Howson et al., 2003 Global analysis of protein localization in budding yeast. Nature 425(6959): 686-691.
    • (2003) Nature , vol.425 , Issue.6959 , pp. 686-691
    • Huh, W.K.1    Falvo, J.V.2    Gerke, L.C.3    Carroll, A.S.4    Howson, R.W.5
  • 27
    • 0031062182 scopus 로고    scopus 로고
    • Object detection using Gabor filters
    • Jain, A. K., N. K. Ratha, and S. Lakshmanan, 1997 Object detection using Gabor filters. Pattern Recognit. 30(2): 295-309.
    • (1997) Pattern Recognit , vol.30 , Issue.2 , pp. 295-309
    • Jain, A.K.1    Ratha, N.K.2    Lakshmanan, S.3
  • 29
    • 79954500285 scopus 로고    scopus 로고
    • Improved structure, function and compatibility for CellProfiler: modular high-throughput image analysis software
    • Kamentsky, L., T. R. Jones, A. Fraser, M. A. Bray, D. J. Logan et al., 2011 Improved structure, function and compatibility for CellProfiler: modular high-throughput image analysis software. Bioinformatics 27(8): 1179-1180.
    • (2011) Bioinformatics , vol.27 , Issue.8 , pp. 1179-1180
    • Kamentsky, L.1    Jones, T.R.2    Fraser, A.3    Bray, M.A.4    Logan, D.J.5
  • 30
    • 84976908652 scopus 로고    scopus 로고
    • Basset: learning the regulatory code of the accessible genome with deep convolutional neural networks
    • Kelley, D. R., J. Snoek, and J. Rinn, 2016 Basset: learning the regulatory code of the accessible genome with deep convolutional neural networks. Genome Res. 26: 990-999.
    • (2016) Genome Res , vol.26 , pp. 990-999
    • Kelley, D.R.1    Snoek, J.2    Rinn, J.3
  • 31
    • 84930845786 scopus 로고    scopus 로고
    • CYCLoPs: a comprehensive database constructed from automated analysis of protein abundance and subcellular localization patterns in Saccharomyces cerevisiae
    • Koh, J. L., Y. T. Chong, H. Friesen,A. Moses, C. Boone et al., 2015 CYCLoPs: a comprehensive database constructed from automated analysis of protein abundance and subcellular localization patterns in Saccharomyces cerevisiae. G3 5(6): 1223-1232.
    • (2015) G3 , vol.5 , Issue.6 , pp. 1223-1232
    • Koh, J.L.1    Chong, Y.T.2    Friesen, H.3    Moses, A.4    Boone, C.5
  • 35
    • 33847710201 scopus 로고    scopus 로고
    • CellProfiler: free, versatile software for automated biological image analysis
    • Lamprecht, M. R., D. M. Sabatini, and A. E. Carpenter, 2007 CellProfiler: free, versatile software for automated biological image analysis. Biotechniques 42(1): 71-75.
    • (2007) Biotechniques , vol.42 , Issue.1 , pp. 71-75
    • Lamprecht, M.R.1    Sabatini, D.M.2    Carpenter, A.E.3
  • 37
    • 0345040873 scopus 로고    scopus 로고
    • Classification and regression by random-Forest
    • Liaw, A., and M. Wiener, 2002 Classification and regression by random-Forest. R News 2(3): 18-22.
    • (2002) R News , vol.2 , Issue.3 , pp. 18-22
    • Liaw, A.1    Wiener, M.2
  • 38
    • 0141921564 scopus 로고    scopus 로고
    • Robust numerical features for description and classification of subcellular location patterns in fluorescence microscope images
    • Murphy, R. F., M. Velliste, and G. Porreca, 2003 Robust numerical features for description and classification of subcellular location patterns in fluorescence microscope images. J. VLSI Signal Process. Syst. Signal Image Video Technol. 35(3): 311-321.
    • (2003) J. VLSI Signal Process. Syst. Signal Image Video Technol , vol.35 , Issue.3 , pp. 311-321
    • Murphy, R.F.1    Velliste, M.2    Porreca, G.3
  • 39
    • 30044445643 scopus 로고    scopus 로고
    • Highdimensional and large-scale phenotyping of yeast mutants
    • Ohya, Y., J. Sese, M. Yukawa, F. Sano, Y. Nakatani et al., 2005 Highdimensional and large-scale phenotyping of yeast mutants. Proc. Natl. Acad. Sci. USA 102(52): 19015-19020.
    • (2005) Proc. Natl. Acad. Sci. USA , vol.102 , Issue.52 , pp. 19015-19020
    • Ohya, Y.1    Sese, J.2    Yukawa, M.3    Sano, F.4    Nakatani, Y.5
  • 40
    • 84902012139 scopus 로고    scopus 로고
    • Heritability and genetic basis of protein level variation in an outbred population
    • Parts, L., Y. C. Liu, M. M. Tekkedil, L. M. Steinmetz, A. A. Caudy et al., 2014 Heritability and genetic basis of protein level variation in an outbred population. Genome Res. 24(8): 1363-1370.
    • (2014) Genome Res , vol.24 , Issue.8 , pp. 1363-1370
    • Parts, L.1    Liu, Y.C.2    Tekkedil, M.M.3    Steinmetz, L.M.4    Caudy, A.A.5
  • 41
    • 77951959633 scopus 로고    scopus 로고
    • EBImage-an R package for image processing with applications to cellular phenotypes
    • Pau, G., F. Fuchs, O. Sklyar, M. Boutros, and W. Huber, 2010 EBImage-an R package for image processing with applications to cellular phenotypes. Bioinformatics 26(7): 979-981.
    • (2010) Bioinformatics , vol.26 , Issue.7 , pp. 979-981
    • Pau, G.1    Fuchs, F.2    Sklyar, O.3    Boutros, M.4    Huber, W.5
  • 43
    • 84958291921 scopus 로고    scopus 로고
    • TensorFlow: biology's gateway to deep learning?
    • Rampasek, L., and A. Goldenberg, 2016 TensorFlow: biology's gateway to deep learning? Cell Syst. 2: 12-14.
    • (2016) Cell Syst , vol.2 , pp. 12-14
    • Rampasek, L.1    Goldenberg, A.2
  • 45
    • 84951834022 scopus 로고    scopus 로고
    • U-Net: convolutional networks for biomedical image segmentation
    • edited by N. Navab, J. Hornegger, W. M. Wells, and A. F. Frangi. Springer, Heidelberg
    • Ronneberger, O., P. Fischer, and T. Brox, 2015 U-Net: convolutional networks for biomedical image segmentation, pp. 234-241 in Medical Image Computing and Computer-Assisted Intervention-MICCAI 2015, edited by N. Navab, J. Hornegger, W. M. Wells, and A. F. Frangi. Springer, Heidelberg.
    • (2015) Medical Image Computing and Computer-Assisted Intervention-MICCAI 2015 , pp. 234-241
    • Ronneberger, O.1    Fischer, P.2    Brox, T.3
  • 46
    • 84910651844 scopus 로고    scopus 로고
    • Deep learning in neural networks: an overview
    • Schmidhuber, J., 2015 Deep learning in neural networks: an overview. Neural Netw. 61: 85-117.
    • (2015) Neural Netw , vol.61 , pp. 85-117
    • Schmidhuber, J.1
  • 47
    • 78649675858 scopus 로고    scopus 로고
    • Pattern recognition software and techniques for biological image analysis
    • Shamir, L., J. D. Delaney, N. Orlov, D. M. Eckley, and I. G. Goldberg, 2010 Pattern recognition software and techniques for biological image analysis. PLoS Comput. Biol. 6(11): e1000974.
    • (2010) PLoS Comput. Biol , vol.6 , Issue.11
    • Shamir, L.1    Delaney, J.D.2    Orlov, N.3    Eckley, D.M.4    Goldberg, I.G.5
  • 49
    • 84971231452 scopus 로고    scopus 로고
    • Unsupervised feature construction and knowledge extraction from genome-wide assays of breast cancer with denoising autoencoders
    • Tan, J., M. Ung, C. Cheng, and C. S. Greene, 2015 Unsupervised feature construction and knowledge extraction from genome-wide assays of breast cancer with denoising autoencoders. Pac. Symp. Biocomput. 20: 132-143.
    • (2015) Pac. Symp. Biocomput , vol.20 , pp. 132-143
    • Tan, J.1    Ung, M.2    Cheng, C.3    Greene, C.S.4
  • 52
    • 75749095658 scopus 로고    scopus 로고
    • Integrating high-throughput genetic interaction mapping and high-content screening to explore yeast spindle morphogenesis
    • Vizeacoumar, F. J., N. van Dyk, F. S. Vizeacoumar, V. Cheung, J. Li et al., 2010 Integrating high-throughput genetic interaction mapping and high-content screening to explore yeast spindle morphogenesis. J. Cell Biol. 188(1): 69-81.
    • (2010) J. Cell Biol , vol.188 , Issue.1 , pp. 69-81
    • Vizeacoumar, F.J.1    van Dyk, N.2    Vizeacoumar, F.S.3    Cheung, V.4    Li, J.5
  • 53
    • 33747113980 scopus 로고
    • Beugungstheorie des schneidenver-fahrens und seiner verbesserten form, der phasenkontrastmethode
    • von Zernike, F., 1934 Beugungstheorie des schneidenver-fahrens und seiner verbesserten form, der phasenkontrastmethode. Physica 1(7-12): 689-704.
    • (1934) Physica , vol.1
    • von Zernike, F.1
  • 54
    • 84897000871 scopus 로고    scopus 로고
    • gitter: a robust and accurate method for quantification of colony sizes from plate images
    • Wagih, O., and L. Parts, 2014 gitter: a robust and accurate method for quantification of colony sizes from plate images. G3 4(3): 547-552.
    • (2014) G3 , vol.4 , Issue.3 , pp. 547-552
    • Wagih, O.1    Parts, L.2
  • 55
    • 84883585377 scopus 로고    scopus 로고
    • SGAtools: one-stop analysis and visualization of array-based genetic interaction screens
    • Web Server issue
    • Wagih, O, M. Usaj, A. Baryshnikova, B. VanderSluis, E. Kuzmin et al., 2013 SGAtools: one-stop analysis and visualization of array-based genetic interaction screens. Nucleic Acids Res. 41(Web Server issue): W591-W596.
    • (2013) Nucleic Acids Res , vol.41 , pp. W591-W596
    • Wagih, O.1    Usaj, M.2    Baryshnikova, A.3    VanderSluis, B.4    Kuzmin, E.5
  • 57
    • 84958257565 scopus 로고    scopus 로고
    • Predicting effects of noncoding variants with deep learning-based sequence model
    • Zhou, J., and O. G. Troyanskaya, 2015 Predicting effects of noncoding variants with deep learning-based sequence model. Nat. Methods 12: 931-934.
    • (2015) Nat. Methods , vol.12 , pp. 931-934
    • Zhou, J.1    Troyanskaya, O.G.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.