-
1
-
-
84938888109
-
Predicting the sequence specificities of DNA-and RNA-binding proteins by deep learning
-
Alipanahi, B., A. Delong, M.T. Weirauch, and B.J. Frey. 2015. Predicting the sequence specificities of DNA-and RNA-binding proteins by deep learning. Nat. Biotechnol. 33:831-838. http://dx.doi.org/10.1038/nbt.3300
-
(2015)
Nat. Biotechnol
, vol.33
, pp. 831-838
-
-
Alipanahi, B.1
Delong, A.2
Weirauch, M.T.3
Frey, B.J.4
-
2
-
-
85039571873
-
A linear method for deviation in large databases
-
E. Simoudis, J. Han, and U. Fayyad, editors. AAAI Press, Menlo Park, CA
-
Arning, A., R. Agrawal, and P. Raghavan. 1996. A linear method for deviation in large databases. In KDD '96 Proceedings of the Second International Conference on Knowledge Discovery and Data Mining.E. Simoudis, J. Han, and U. Fayyad, editors. AAAI Press, Menlo Park, CA. 164-169.
-
(1996)
KDD '96 Proceedings of the Second International Conference on Knowledge Discovery and Data Mining
, pp. 164-169
-
-
Arning, A.1
Agrawal, R.2
Raghavan, P.3
-
3
-
-
34250882643
-
Quantitative morphological signatures define local signaling networks regulating cell morphology
-
Bakal, C., J. Aach, G. Church, and N. Perrimon. 2007. Quantitative morphological signatures define local signaling networks regulating cell morphology. Science. 316:1753-1756. http://dx.doi.org/10.1126/science.1140324
-
(2007)
Science
, vol.316
, pp. 1753-1756
-
-
Bakal, C.1
Aach, J.2
Church, G.3
Perrimon, N.4
-
5
-
-
84912550395
-
Performance evaluation of image segmentation algorithms on microscopic image data
-
Beneš, M., and B. Zitová. 2015. Performance evaluation of image segmentation algorithms on microscopic image data. J. Microsc. 257:65-85. http://dx.doi.org/10.1111/jmi.12186
-
(2015)
J. Microsc
, vol.257
, pp. 65-85
-
-
Beneš, M.1
Zitová, B.2
-
8
-
-
0032212323
-
Automated recognition of patterns characteristic of subcellular structures in fluorescence microscopy images
-
Boland, M.V., M.K. Markey, and R.F. Murphy. 1998. Automated recognition of patterns characteristic of subcellular structures in fluorescence microscopy images. Cytometry. 33:366-375. http://dx.doi.org/10.1002/(SICI)1097-0320(19981101)33:3<366::AID-CYTO12>3.0.CO;2-R
-
(1998)
Cytometry
, vol.33
, pp. 366-375
-
-
Boland, M.V.1
Markey, M.K.2
Murphy, R.F.3
-
9
-
-
0842309871
-
Genome-wide RNAi analysis of growth and viability in Drosophila cells
-
and Heidelberg Fly Array Consortium
-
Boutros, M., A.A. Kiger, S. Armknecht, K. Kerr, M. Hild, B. Koch, S.A. Haas, R. Paro, N. Perrimon, and Heidelberg Fly Array Consortium. 2004. Genome-wide RNAi analysis of growth and viability in Drosophila cells. Science. 303:832-835. http://dx.doi.org/10.1126/science.1091266
-
(2004)
Science
, vol.303
, pp. 832-835
-
-
Boutros, M.1
Kiger, A.A.2
Armknecht, S.3
Kerr, K.4
Hild, M.5
Koch, B.6
Haas, S.A.7
Paro, R.8
Perrimon, N.9
-
10
-
-
0039253819
-
LOF: Identifying density-based local outliers
-
M. Dunham, J.F. Naughton, W. Chen, and N. Koudas, editors. ACM, New York, NY
-
Breunig, M.M., H.-P. Kriegel, R.T. Ng, and J. Sander. 2000. LOF: Identifying density-based local outliers. In SIG MOD '00 Proceedings of the 2000 ACM SIG MOD International Conference on Management of Data.M. Dunham, J.F. Naughton, W. Chen, and N. Koudas, editors. ACM, New York, NY. 93-104. http://dx.doi.org/10.1145/335191.335388
-
(2000)
SIG MOD '00 Proceedings of the 2000 ACM SIG MOD International Conference on Management of Data
, pp. 93-104
-
-
Breunig, M.M.1
Kriegel, H.-P.2
Ng, R.T.3
Sander, J.4
-
11
-
-
84962815651
-
Applications in image-based profiling of perturbations
-
Caicedo, J.C., S. Singh, and A.E. Carpenter. 2016. Applications in image-based profiling of perturbations. Curr. Opin. Biotechnol. 39:134-142. http://dx.doi.org/10.1016/j.copbio.2016.04.003
-
(2016)
Curr. Opin. Biotechnol
, vol.39
, pp. 134-142
-
-
Caicedo, J.C.1
Singh, S.2
Carpenter, A.E.3
-
12
-
-
84931265689
-
Automatic detection of white matter hyperintensities in healthy aging and pathology using magnetic resonance imaging: A review
-
Caligiuri, M.E., P. Perrotta, A. Augimeri, F. Rocca, A. Quattrone, and A. Cherubini. 2015. Automatic detection of white matter hyperintensities in healthy aging and pathology using magnetic resonance imaging: A review. Neuroinformatics. 13:261-276. http://dx.doi.org/10.1007/s12021-015-9260-y
-
(2015)
Neuroinformatics
, vol.13
, pp. 261-276
-
-
Caligiuri, M.E.1
Perrotta, P.2
Augimeri, A.3
Rocca, F.4
Quattrone, A.5
Cherubini, A.6
-
13
-
-
0022808786
-
A computational approach to edge detection
-
Canny, J. 1986. A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 8:679-698. http://dx.doi.org/10.1109/TPAMI.1986.4767851
-
(1986)
IEEE Trans. Pattern Anal. Mach. Intell
, vol.8
, pp. 679-698
-
-
Canny, J.1
-
14
-
-
33845792555
-
CellProfiler: Image analysis software for identifying and quantifying cell phenotypes
-
Carpenter, A.E., T.R. Jones, M.R. Lamprecht, C. Clarke, I.H. Kang, O. Friman, D.A. Guertin, J.H. Chang, R.A. Lindquist, J. Moffat, et al. 2006. CellProfiler: Image analysis software for identifying and quantifying cell phenotypes. Genome Biol. 7:R100. http://dx.doi.org/10.1186/gb-2006-7-10-r100
-
(2006)
Genome Biol
, vol.7
, pp. R100
-
-
Carpenter, A.E.1
Jones, T.R.2
Lamprecht, M.R.3
Clarke, C.4
Kang, I.H.5
Friman, O.6
Guertin, D.A.7
Chang, J.H.8
Lindquist, R.A.9
Moffat, J.10
-
15
-
-
0037209490
-
EM procedures using mean field-like approximations for Markov model-based image segmentation
-
Celeux, G., F. Forbes, and N. Peyrard. 2003. EM procedures using mean field-like approximations for Markov model-based image segmentation. Pattern Recognit. 36:131-144. http://dx.doi.org/10.1016/S0031-3203(02)00027-4
-
(2003)
Pattern Recognit
, vol.36
, pp. 131-144
-
-
Celeux, G.1
Forbes, F.2
Peyrard, N.3
-
16
-
-
84953744675
-
Learning a hierarchical representation of the yeast transcriptomic machinery using an autoencoder model
-
Chen, L., C. Cai, V. Chen, and X. Lu. 2016a. Learning a hierarchical representation of the yeast transcriptomic machinery using an autoencoder model. BMC Bioinformatics. 17:9. http://dx.doi.org/10.1186/s12859-015-0852-1
-
(2016)
BMC Bioinformatics
, vol.17
, pp. 9
-
-
Chen, L.1
Cai, C.2
Chen, V.3
Lu, X.4
-
17
-
-
50249090921
-
-
Toronto (ON), Canada
-
Chen, S.C., T. Zhao, C.J. Gordon, and R.F. Murphy. 2006. A novel graphical model approach to segmenting cell images. IEEE Symposium on Computational Intelligence and Bioinformatics and Computational Biology. Toronto (ON), Canada; 482-9 doi:http://dx.doi.org/10.1109/CIBCB.2006.330975
-
(2006)
A novel graphical model approach to segmenting cell images. IEEE Symposium on Computational Intelligence and Bioinformatics and Computational Biology
, pp. 482-489
-
-
Chen, S.C.1
Zhao, T.2
Gordon, C.J.3
Murphy, R.F.4
-
18
-
-
84976420628
-
Gene expression inference with deep learning
-
Chen, Y., Y. Li, R. Narayan, A. Subramanian, and X. Xie. 2016b. Gene expression inference with deep learning. Bioinformatics. 32:1832-1839. http://dx.doi.org/10.1093/bioinformatics/btw074
-
(2016)
Bioinformatics
, vol.32
, pp. 1832-1839
-
-
Chen, Y.1
Li, Y.2
Narayan, R.3
Subramanian, A.4
Xie, X.5
-
19
-
-
84930684870
-
Yeast proteome dynamics from single cell imaging and automated analysis
-
Chong, Y.T., J.L.Y. Koh, H. Friesen, S.K. Duffy, M.J. Cox, A. Moses, J. Moffat, C. Boone, and B.J. Andrews. 2015. Yeast proteome dynamics from single cell imaging and automated analysis. Cell. 161:1413-1424. http://dx.doi.org/10.1016/j.cell.2015.04.051
-
(2015)
Cell
, vol.161
, pp. 1413-1424
-
-
Chong, Y.T.1
Koh, J.L.Y.2
Friesen, H.3
Duffy, S.K.4
Cox, M.J.5
Moses, A.6
Moffat, J.7
Boone, C.8
Andrews, B.J.9
-
20
-
-
3042565868
-
Automatic identification of subcellular phenotypes on human cell arrays
-
Conrad, C., H. Erfle, P. Warnat, N. Daigle, T. Lörch, J. Ellenberg, R. Pepperkok, and R. Eils. 2004. Automatic identification of subcellular phenotypes on human cell arrays. Genome Res. 14:1130-1136. http://dx.doi.org/10.1101/gr.2383804
-
(2004)
Genome Res
, vol.14
, pp. 1130-1136
-
-
Conrad, C.1
Erfle, H.2
Warnat, P.3
Daigle, N.4
Lörch, T.5
Ellenberg, J.6
Pepperkok, R.7
Eils, R.8
-
21
-
-
84863208608
-
Biological imaging software tools
-
Eliceiri, K.W., M.R. Berthold, I.G. Goldberg, L. Ibáñez, B.S. Manjunath, M.E. Martone, R.F. Murphy, H. Peng, A.L. Plant, B. Roysam, et al. 2012. Biological imaging software tools. Nat. Methods. 9:697-710. http://dx.doi.org/10.1038/nmeth.2084
-
(2012)
Nat. Methods
, vol.9
, pp. 697-710
-
-
Eliceiri, K.W.1
Berthold, M.R.2
Goldberg, I.G.3
Ibáñez, L.4
Manjunath, B.S.5
Martone, M.E.6
Murphy, R.F.7
Peng, H.8
Plant, A.L.9
Roysam, B.10
-
22
-
-
77953276042
-
Clustering phenotype populations by genome-wide RNAi and multiparametric imaging
-
Fuchs, F., G. Pau, D. Kranz, O. Sklyar, C. Budjan, S. Steinbrink, T. Horn, A. Pedal, W. Huber, and M. Boutros. 2010. Clustering phenotype populations by genome-wide RNAi and multiparametric imaging. Mol. Syst. Biol. 6:370. http://dx.doi.org/10.1038/msb.2010.25
-
(2010)
Mol. Syst. Biol
, vol.6
, pp. 370
-
-
Fuchs, F.1
Pau, G.2
Kranz, D.3
Sklyar, O.4
Budjan, C.5
Steinbrink, S.6
Horn, T.7
Pedal, A.8
Huber, W.9
Boutros, M.10
-
23
-
-
0000293183
-
Theory of communication. Part 1: The analysis of information
-
Gabor, D. 1946. Theory of communication. Part 1: The analysis of information. Journal of the Institution of Electrical Engineers. 93:429-457. http://dx.doi.org/10.1049/ji-3-2.1946.0074
-
(1946)
Journal of the Institution of Electrical Engineers
, vol.93
, pp. 429-457
-
-
Gabor, D.1
-
24
-
-
84891388151
-
Multiplex cytological profiling assay to measure diverse cellular states
-
Gustafsdottir, S.M., V. Ljosa, K.L. Sokolnicki, J. Anthony Wilson, D. Walpita, M.M. Kemp, K. Petri Seiler, H.A. Carrel, T.R. Golub, S.L. Schreiber, et al. 2013. Multiplex cytological profiling assay to measure diverse cellular states. PLoS One. 8:e80999. http://dx.doi.org/10.1371/journal.pone.0080999
-
(2013)
PLoS One
, vol.8
, pp. e80999
-
-
Gustafsdottir, S.M.1
Ljosa, V.2
Sokolnicki, K.L.3
Anthony Wilson, J.4
Walpita, D.5
Kemp, M.M.6
Petri Seiler, K.7
Carrel, H.A.8
Golub, T.R.9
Schreiber, S.L.10
-
25
-
-
84879542641
-
Unsupervised clustering of subcellular protein expression patterns in highthroughput microscopy images reveals protein complexes and functional relationships between proteins
-
Handfield, L.-F., Y.T. Chong, J. Simmons, B.J. Andrews, and A.M. Moses. 2013. Unsupervised clustering of subcellular protein expression patterns in highthroughput microscopy images reveals protein complexes and functional relationships between proteins. PLOS Comput. Biol. 9:e1003085. http://dx.doi.org/10.1371/journal.pcbi.1003085
-
(2013)
PLOS Comput. Biol
, vol.9
, pp. e1003085
-
-
Handfield, L.-F.1
Chong, Y.T.2
Simmons, J.3
Andrews, B.J.4
Moses, A.M.5
-
26
-
-
0018466704
-
Statistical and structural approaches to texture
-
Haralick, R.M. 1979. Statistical and structural approaches to texture. Proc. IEEE. 67:786-804. http://dx.doi.org/10.1109/PROC.1979.11328
-
(1979)
Proc. IEEE
, vol.67
, pp. 786-804
-
-
Haralick, R.M.1
-
27
-
-
0003684449
-
-
New York, NY: Springer
-
Hastie, T., R. Tibshirani, J. Friedman, and J. Franklin. 2005. The elements of statistical learning: data mining, inference and prediction. New York, NY: Springer, p 1-745.
-
(2005)
The elements of statistical learning: Data mining, inference and prediction
, pp. 1-745
-
-
Hastie, T.1
Tibshirani, R.2
Friedman, J.3
Franklin, J.4
-
28
-
-
0037410488
-
Discovering cluster-based local outliers
-
He, Z., X. Xu, and S. Deng. 2003. Discovering cluster-based local outliers. Pattern Recognit. Lett. 24:1641-1650. http://dx.doi.org/10.1016/S0167-8655(03)00003-5
-
(2003)
Pattern Recognit. Lett
, vol.24
, pp. 1641-1650
-
-
He, Z.1
Xu, X.2
Deng, S.3
-
29
-
-
77956339402
-
CellCognition: Timeresolved phenotype annotation in high-throughput live cell imaging
-
Held, M., M.H. Schmitz, B. Fischer, T. Walter, B. Neumann, M.H. Olma, M. Peter, J. Ellenberg, and D.W. Gerlich. 2010. CellCognition: Timeresolved phenotype annotation in high-throughput live cell imaging. Nat. Methods. 7:747-754. http://dx.doi.org/10.1038/nmeth.1486
-
(2010)
Nat. Methods
, vol.7
, pp. 747-754
-
-
Held, M.1
Schmitz, M.H.2
Fischer, B.3
Walter, T.4
Neumann, B.5
Olma, M.H.6
Peter, M.7
Ellenberg, J.8
Gerlich, D.W.9
-
30
-
-
7544223741
-
A survey of outlier detection methodologies
-
Hodge, V.J., and J.I.M. Austin. 2004. A survey of outlier detection methodologies. J. Artif. Intell. Res. 22:85-126. http://dx.doi.org/10.1023/B:AIRE.0000045502.10941.a9
-
(2004)
J. Artif. Intell. Res
, vol.22
, pp. 85-126
-
-
Hodge, V.J.1
Austin, J.I.M.2
-
31
-
-
79953289737
-
Mapping of signaling networks through synthetic genetic interaction analysis by RNAi
-
Horn, T., T. Sandmann, B. Fischer, E. Axelsson, W. Huber, and M. Boutros. 2011. Mapping of signaling networks through synthetic genetic interaction analysis by RNAi. Nat. Methods. 8:341-346. http://dx.doi.org/10.1038/nmeth.1581
-
(2011)
Nat. Methods
, vol.8
, pp. 341-346
-
-
Horn, T.1
Sandmann, T.2
Fischer, B.3
Axelsson, E.4
Huber, W.5
Boutros, M.6
-
32
-
-
84893405732
-
Data clustering: A review
-
Jain, K., M.N. Murty, and P.J. Flynn. 1999. Data clustering: A review. ACM Comput. Surv. 31:264-323. http://dx.doi.org/10.1145/331499.331504
-
(1999)
ACM Comput. Surv
, vol.31
, pp. 264-323
-
-
Jain, K.1
Murty, M.N.2
Flynn, P.J.3
-
33
-
-
84953337050
-
A Genome-wide RNAi Screen for Microtubule Bundle Formation and Lysosome Motility Regulation in Drosophila S2 Cells
-
Jolly, A.L., C.H. Luan, B.E. Dusel, S.F. Dunne, M. Winding, V.J. Dixit, C. Robins, J.L. Saluk, D.J. Logan, A.E. Carpenter, et al. 2016. A Genome-wide RNAi Screen for Microtubule Bundle Formation and Lysosome Motility Regulation in Drosophila S2 Cells. Cell Reports. 14:611-620. http://dx.doi.org/10.1016/j.celrep.2015.12.051
-
(2016)
Cell Reports
, vol.14
, pp. 611-620
-
-
Jolly, A.L.1
Luan, C.H.2
Dusel, B.E.3
Dunne, S.F.4
Winding, M.5
Dixit, V.J.6
Robins, C.7
Saluk, J.L.8
Logan, D.J.9
Carpenter, A.E.10
-
34
-
-
84959493552
-
Image outlier detection and feature extraction via L1-norm-based 2D probabilistic PCA
-
Ju, F., Y. Sun, J. Gao, Y. Hu, and B. Yin. 2015. Image outlier detection and feature extraction via L1-norm-based 2D probabilistic PCA. IEEE Trans. Image Process. 24:4834-4846. http://dx.doi.org/10.1109/TIP.2015.2469136
-
(2015)
IEEE Trans. Image Process
, vol.24
, pp. 4834-4846
-
-
Ju, F.1
Sun, Y.2
Gao, J.3
Hu, Y.4
Yin, B.5
-
35
-
-
84859027204
-
A chemical screen probing the relationship between mitochondrial content and cell size
-
Kitami, T., D.J. Logan, J. Negri, T. Hasaka, N.J. Tolliday, A.E. Carpenter, B.M. Spiegelman, and V.K. Mootha. 2012. A chemical screen probing the relationship between mitochondrial content and cell size. PLoS One. 7:e33755. http://dx.doi.org/10.1371/journal.pone.0033755
-
(2012)
PLoS One
, vol.7
, pp. e33755
-
-
Kitami, T.1
Logan, D.J.2
Negri, J.3
Hasaka, T.4
Tolliday, N.J.5
Carpenter, A.E.6
Spiegelman, B.M.7
Mootha, V.K.8
-
36
-
-
0002948319
-
Algorithms for mining distance-based outliers in large datasets
-
A. Gupta, O. Shmueli, and J. Widom, editors. Morgan Kaufman Publishers, San Francisco, CA
-
Knorr, E.M., and R.T. Ng. 1998. Algorithms for mining distance-based outliers in large datasets. In VLDB '98 Proceedings of the 24rd International Conference on Very Large Data Bases.A. Gupta, O. Shmueli, and J. Widom, editors. Morgan Kaufman Publishers, San Francisco, CA. 392-403.
-
(1998)
VLDB '98 Proceedings of the 24rd International Conference on Very Large Data Bases
, pp. 392-403
-
-
Knorr, E.M.1
Ng, R.T.2
-
37
-
-
84958048475
-
Computer vision for high content screening
-
Kraus, O.Z., and B.J. Frey. 2016. Computer vision for high content screening. Crit. Rev. Biochem. Mol. Biol. 51:102-109. http://dx.doi.org/10.3109/10409238.2015.1135868
-
(2016)
Crit. Rev. Biochem. Mol. Biol
, vol.51
, pp. 102-109
-
-
Kraus, O.Z.1
Frey, B.J.2
-
38
-
-
84976510674
-
Classifying and segmenting microscopy images with deep multiple instance learning
-
Kraus, O.Z., J.L. Ba, and B.J. Frey. 2016. Classifying and segmenting microscopy images with deep multiple instance learning. Bioinformatics. 32:i52-i59. http://dx.doi.org/10.1093/bioinformatics/btw252
-
(2016)
Bioinformatics
, vol.32
, pp. i52-i59
-
-
Kraus, O.Z.1
Ba, J.L.2
Frey, B.J.3
-
39
-
-
84876231242
-
ImageNet classification with deep convolutional neural networks
-
Krizhevsky, A., I. Sutskever, and G.E. Hinton. 2012. ImageNet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 1-9. http://dx.doi.org/10.1016/j.protcy.2014.09.007
-
(2012)
Adv. Neural Inf. Process. Syst
, pp. 1-9
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
40
-
-
84930630277
-
Deep learning
-
LeCun, Y., Y. Bengio, and G. Hinton. 2015. Deep learning. Nature. 521:436-444. http://dx.doi.org/10.1038/nature14539
-
(2015)
Nature
, vol.521
, pp. 436-444
-
-
LeCun, Y.1
Bengio, Y.2
Hinton, G.3
-
41
-
-
84940421624
-
Outlier detection and removal improves accuracy of machine learning approach to multispectral burn diagnostic imaging
-
Li, W., W. Mo, X. Zhang, J.J. Squiers, Y. Lu, E.W. Sellke, W. Fan, J.M. DiMaio, and J.E. Thatcher. 2015. Outlier detection and removal improves accuracy of machine learning approach to multispectral burn diagnostic imaging. J. Biomed. Opt. 20:121305. http://dx.doi.org/10.1117/1.JBO.20.12.121305
-
(2015)
J. Biomed. Opt
, vol.20
, pp. 121305
-
-
Li, W.1
Mo, W.2
Zhang, X.3
Squiers, J.J.4
Lu, Y.5
Sellke, E.W.6
Fan, W.7
DiMaio, J.M.8
Thatcher, J.E.9
-
42
-
-
84929510967
-
Machine learning applications in genetics and genomics
-
Libbrecht, M.W., and W.S. Noble. 2015. Machine learning applications in genetics and genomics. Nat. Rev. Genet. 16:321-332. http://dx.doi.org/10.1038/nrg3920
-
(2015)
Nat. Rev. Genet
, vol.16
, pp. 321-332
-
-
Libbrecht, M.W.1
Noble, W.S.2
-
43
-
-
84927125938
-
Single-cell and multivariate approaches in genetic perturbation screens
-
Liberali, P., B. Snijder, and L. Pelkmans. 2015. Single-cell and multivariate approaches in genetic perturbation screens. Nat. Rev. Genet. 16:18-32. http://dx.doi.org/10.1038/nrg3768
-
(2015)
Nat. Rev. Genet
, vol.16
, pp. 18-32
-
-
Liberali, P.1
Snijder, B.2
Pelkmans, L.3
-
44
-
-
84887943419
-
Comparison of methods for image-based profiling of cellular morphological responses to small-molecule treatment
-
Ljosa, V., P.D. Caie, R. Ter Horst, K.L. Sokolnicki, E.L. Jenkins, S. Daya, M.E. Roberts, T.R. Jones, S. Singh, A. Genovesio, et al. 2013. Comparison of methods for image-based profiling of cellular morphological responses to small-molecule treatment. J. Biomol. Screen. 18:1321-1329. http://dx.doi.org/10.1177/1087057113503553
-
(2013)
J. Biomol. Screen
, vol.18
, pp. 1321-1329
-
-
Ljosa, V.1
Caie, P.D.2
Ter Horst, R.3
Sokolnicki, K.L.4
Jenkins, E.L.5
Daya, S.6
Roberts, M.E.7
Jones, T.R.8
Singh, S.9
Genovesio, A.10
-
45
-
-
34250216344
-
Image-based multivariate profiling of drug responses from single cells
-
Loo, L.-H., L.F. Wu, and S.J. Altschuler. 2007. Image-based multivariate profiling of drug responses from single cells. Nat. Methods. 4:445-453. http://dx.doi.org/10.1038/nmeth1032
-
(2007)
Nat. Methods
, vol.4
, pp. 445-453
-
-
Loo, L.-H.1
Wu, L.F.2
Altschuler, S.J.3
-
46
-
-
84964647459
-
High-content screening for quantitative cell biology
-
Mattiazzi Usaj, M., E.B. Styles, A.J. Verster, H. Friesen, C. Boone, and B.J. Andrews. 2016. High-content screening for quantitative cell biology. Trends Cell Biol. 26:598-611. http://dx.doi.org/10.1016/j.tcb.2016.03.008
-
(2016)
Trends Cell Biol
, vol.26
, pp. 598-611
-
-
Mattiazzi Usaj, M.1
Styles, E.B.2
Verster, A.J.3
Friesen, H.4
Boone, C.5
Andrews, B.J.6
-
47
-
-
85032750965
-
Cell segmentation: 50 years down the road
-
Meijering, E. 2012. Cell segmentation: 50 years down the road. IEEE Signal. Proc. Mag. 29:140-145. http://dx.doi.org/10.1109/MSP.2012.2204190
-
(2012)
IEEE Signal. Proc. Mag
, vol.29
, pp. 140-145
-
-
Meijering, E.1
-
48
-
-
67349273304
-
Multidimensional quantification of subcellular morphology of Saccharomyces cerevisiae using CalMorph, the high-throughput image-processing program
-
Negishi, T., S. Nogami, and Y. Ohya. 2009. Multidimensional quantification of subcellular morphology of Saccharomyces cerevisiae using CalMorph, the high-throughput image-processing program. J. Biotechnol. 141:109-117. http://dx.doi.org/10.1016/j.jbiotec.2009.03.014
-
(2009)
J. Biotechnol
, vol.141
, pp. 109-117
-
-
Negishi, T.1
Nogami, S.2
Ohya, Y.3
-
49
-
-
77950387346
-
Phenotypic profiling of the human genome by time-lapse microscopy reveals cell division genes
-
Neumann, B., T. Walter, J.-K. Hériché, J. Bulkescher, H. Erfle, C. Conrad, P. Rogers, I. Poser, M. Held, U. Liebel, et al. 2010. Phenotypic profiling of the human genome by time-lapse microscopy reveals cell division genes. Nature. 464:721-727. http://dx.doi.org/10.1038/nature08869
-
(2010)
Nature
, vol.464
, pp. 721-727
-
-
Neumann, B.1
Walter, T.2
Hériché, J.-K.3
Bulkescher, J.4
Erfle, H.5
Conrad, C.6
Rogers, P.7
Poser, I.8
Held, M.9
Liebel, U.10
-
50
-
-
59549087165
-
On discriminative vs generative classifiers: A comparison of logistic regression and naive Bayes
-
Ng, A., and A. Jordan. 2002. On discriminative vs generative classifiers: A comparison of logistic regression and naive Bayes. Adv. Neural Inf. Process. Syst. 14:841-848.
-
(2002)
Adv. Neural Inf. Process. Syst
, vol.14
, pp. 841-848
-
-
Ng, A.1
Jordan, A.2
-
51
-
-
33845703344
-
What is a support vector machine?
-
Noble, W.S. 2006. What is a support vector machine? Nat. Biotechnol. 24:1565-1567. http://dx.doi.org/10.1038/nbt1206-1565
-
(2006)
Nat. Biotechnol
, vol.24
, pp. 1565-1567
-
-
Noble, W.S.1
-
52
-
-
84880211540
-
TAN GO: A generic tool for high-throughput 3D image analysis for studying nuclear organization
-
Ollion, J., J. Cochennec, F. Loll, C. Escudé, and T. Boudier. 2013. TAN GO: A generic tool for high-throughput 3D image analysis for studying nuclear organization. Bioinformatics. 29:1840-1841. http://dx.doi.org/10.1093/bioinformatics/btt276
-
(2013)
Bioinformatics
, vol.29
, pp. 1840-1841
-
-
Ollion, J.1
Cochennec, J.2
Loll, F.3
Escudé, C.4
Boudier, T.5
-
53
-
-
80053412531
-
Distance-based outlier detection: Consolidation and renewed bearing
-
Orair, G.H., C.H.C. Teixeira, W.J. Meira, Y. Wang, and S. Parthasarathy. 2010. Distance-based outlier detection: Consolidation and renewed bearing. Proc. VLDB Endowment. 3:1469-1480. http://dx.doi.org/10.14778/1920841.1921021
-
(2010)
Proc. VLDB Endowment
, vol.3
, pp. 1469-1480
-
-
Orair, G.H.1
Teixeira, C.H.C.2
Meira, W.J.3
Wang, Y.4
Parthasarathy, S.5
-
54
-
-
84874611717
-
High-throughput hyperdimensional vertebrate phenotyping
-
Pardo-Martin, C., A. Allalou, J. Medina, P.M. Eimon, C. Wählby, and M. Fatih Yanik. 2013. High-throughput hyperdimensional vertebrate phenotyping. Nat. Commun. 4:1467. http://dx.doi.org/10.1038/ncomms2475
-
(2013)
Nat. Commun
, vol.4
, pp. 1467
-
-
Pardo-Martin, C.1
Allalou, A.2
Medina, J.3
Eimon, P.M.4
Wählby, C.5
Fatih Yanik, M.6
-
55
-
-
84979990727
-
Accurate classification of protein subcellular localization from high throughput microscopy images using deep learning
-
(PreprintpostedApril28,2016)
-
Pärnamaa, T., and L. Parts. 2016. Accurate classification of protein subcellular localization from high throughput microscopy images using deep learning. bioRxiv. doi: http://dx.doi.org/10.1101/050757(PreprintpostedApril28,2016).
-
(2016)
BioRxiv
-
-
Pärnamaa, T.1
Parts, L.2
-
56
-
-
8444223104
-
Multidimensional drug profiling by automated microscopy
-
Perlman, Z.E., M.D. Slack, Y. Feng, T.J. Mitchison, L.F. Wu, and S.J. Altschuler. 2004. Multidimensional drug profiling by automated microscopy. Science. 306:1194-1198. http://dx.doi.org/10.1126/science.1100709
-
(2004)
Science
, vol.306
, pp. 1194-1198
-
-
Perlman, Z.E.1
Slack, M.D.2
Feng, Y.3
Mitchison, T.J.4
Wu, L.F.5
Altschuler, S.J.6
-
57
-
-
84863192185
-
PhenoRipper: Software for rapidly profiling microscopy images
-
Rajaram, S., B. Pavie, L.F. Wu, and S.J. Altschuler. 2012. PhenoRipper: Software for rapidly profiling microscopy images. Nat. Methods. 9:635-637. http://dx.doi.org/10.1038/nmeth.2097
-
(2012)
Nat. Methods
, vol.9
, pp. 635-637
-
-
Rajaram, S.1
Pavie, B.2
Wu, L.F.3
Altschuler, S.J.4
-
58
-
-
0039845384
-
Efficient algorithms for mining outliers from large data sets
-
Ramaswamy, S., R. Rastogi, and K. Shim. 2000. Efficient algorithms for mining outliers from large data sets. SIG MOD Rec. 427-438. http://dx.doi.org/10.1145/342009.335437
-
(2000)
SIG MOD Rec
, pp. 427-438
-
-
Ramaswamy, S.1
Rastogi, R.2
Shim, K.3
-
59
-
-
84930622375
-
Functional genome-wide siRNA screen identifies KIAA0586 as mutated in Joubert syndrome
-
Roosing, S., M. Hofree, S. Kim, E. Scott, B. Copeland, M. Romani, J.L. Silhavy, R.O. Rosti, J. Schroth, T. Mazza, et al. 2015. Functional genome-wide siRNA screen identifies KIAA0586 as mutated in Joubert syndrome. eLife. 4:e06602. http://dx.doi.org/10.7554/eLife.06602
-
(2015)
eLife
, vol.4
, pp. e06602
-
-
Roosing, S.1
Hofree, M.2
Kim, S.3
Scott, E.4
Copeland, B.5
Romani, M.6
Silhavy, J.L.7
Rosti, R.O.8
Schroth, J.9
Mazza, T.10
-
60
-
-
35748932917
-
A review of feature selection techniques in bioinformatics
-
Saeys, Y., I. Inza, and P. Larrañaga. 2007. A review of feature selection techniques in bioinformatics. Bioinformatics. 23:2507-2517. http://dx.doi.org/10.1093/bioinformatics/btm344
-
(2007)
Bioinformatics
, vol.23
, pp. 2507-2517
-
-
Saeys, Y.1
Inza, I.2
Larrañaga, P.3
-
61
-
-
77956399552
-
Live-cell imaging RNAi screen identifies PP2A-B55alpha and importin-beta1 as key mitotic exit regulators in human cells
-
Schmitz, M.H.A., M. Held, V. Janssens, J.R.A. Hutchins, O. Hudecz, E. Ivanova, J. Goris, L. Trinkle-Mulcahy, A.I. Lamond, I. Poser, et al. 2010. Live-cell imaging RNAi screen identifies PP2A-B55alpha and importin-beta1 as key mitotic exit regulators in human cells. Nat. Cell Biol. 12:886-893. http://dx.doi.org/10.1038/ncb2092
-
(2010)
Nat. Cell Biol
, vol.12
, pp. 886-893
-
-
Schmitz, M.H.A.1
Held, M.2
Janssens, V.3
Hutchins, J.R.A.4
Hudecz, O.5
Ivanova, E.6
Goris, J.7
Trinkle-Mulcahy, L.8
Lamond, A.I.9
Poser, I.10
-
62
-
-
77955398968
-
Quantifying phenotypic variation in isogenic Caenorhabditis elegans expressing Phsp-16.2:Gfp by clustering 2D expression patterns
-
Seewald, A.K., J. Cypser, A. Mendenhall, and T. Johnson. 2010. Quantifying phenotypic variation in isogenic Caenorhabditis elegans expressing Phsp-16.2:gfp by clustering 2D expression patterns. PLoS One. 5:e11426. http://dx.doi.org/10.1371/journal.pone.0011426
-
(2010)
PLoS One
, vol.5
, pp. e11426
-
-
Seewald, A.K.1
Cypser, J.2
Mendenhall, A.3
Johnson, T.4
-
63
-
-
84902210226
-
Increasing the content of high-content screening: An overview
-
Singh, S., A.E. Carpenter, and A. Genovesio. 2014. Increasing the content of high-content screening: An overview. J. Biomol. Screen. 19:640-650. http://dx.doi.org/10.1177/1087057114528537
-
(2014)
J. Biomol. Screen
, vol.19
, pp. 640-650
-
-
Singh, S.1
Carpenter, A.E.2
Genovesio, A.3
-
64
-
-
70349466529
-
Population context determines cell-to-cell variability in endocytosis and virus infection
-
Snijder, B., R. Sacher, P. Rämö, E.-M. Damm, P. Liberali, and L. Pelkmans. 2009. Population context determines cell-to-cell variability in endocytosis and virus infection. Nature. 461:520-523. http://dx.doi.org/10.1038/nature08282
-
(2009)
Nature
, vol.461
, pp. 520-523
-
-
Snijder, B.1
Sacher, R.2
Rämö, P.3
Damm, E.-M.4
Liberali, P.5
Pelkmans, L.6
-
65
-
-
84872256757
-
Machine learning and its applications to biology
-
Tarca, A.L., V.J. Carey, X.W. Chen, R. Romero, and S. Drăghici. 2007. Machine learning and its applications to biology. PLOS Comput. Biol. 3:e116. http://dx.doi.org/10.1371/journal.pcbi.0030116
-
(2007)
PLOS Comput. Biol
, vol.3
, pp. e116
-
-
Tarca, A.L.1
Carey, V.J.2
Chen, X.W.3
Romero, R.4
Drăghici, S.5
-
66
-
-
84860703985
-
Cell size control in yeast
-
Turner, J.J., J.C. Ewald, and J.M. Skotheim. 2012. Cell size control in yeast. Curr. Biol. 22:R350-R359. http://dx.doi.org/10.1016/j.cub.2012.02.041
-
(2012)
Curr. Biol
, vol.22
, pp. R350-R359
-
-
Turner, J.J.1
Ewald, J.C.2
Skotheim, J.M.3
-
67
-
-
57249084011
-
Visualizing high-dimensional data using t-SNE
-
Van Der Maaten, L., and G. Hinton. 2008. Visualizing high-dimensional data using t-SNE. J. Mach. Learn. Res. 9:2579-2605. http://dx.doi.org/10.1007/s10479-011-0841-3
-
(2008)
J. Mach. Learn. Res
, vol.9
, pp. 2579-2605
-
-
Van Der Maaten, L.1
Hinton, G.2
-
68
-
-
3042547731
-
Combining intensity, edge and shape information for 2D and 3D segmentation of cell nuclei in tissue sections
-
Wählby, C., I.M. Sintorn, F. Erlandsson, G. Borgefors, and E. Bengtsson. 2004. Combining intensity, edge and shape information for 2D and 3D segmentation of cell nuclei in tissue sections. J. Microsc. 215:67-76. http://dx.doi.org/10.1111/j.0022-2720.2004.01338.x
-
(2004)
J. Microsc
, vol.215
, pp. 67-76
-
-
Wählby, C.1
Sintorn, I.M.2
Erlandsson, F.3
Borgefors, G.4
Bengtsson, E.5
-
69
-
-
37749002713
-
Cellular phenotype recognition for high-content RNA interference genome-wide screening
-
Wang, J., X. Zhou, P.L. Bradley, S.-F. Chang, N. Perrimon, and S.T.C. Wong. 2008. Cellular phenotype recognition for high-content RNA interference genome-wide screening. J. Biomol. Screen. 13:29-39. http://dx.doi.org/10.1177/1087057107311223
-
(2008)
J. Biomol. Screen
, vol.13
, pp. 29-39
-
-
Wang, J.1
Zhou, X.2
Bradley, P.L.3
Chang, S.-F.4
Perrimon, N.5
Wong, S.T.C.6
-
70
-
-
84955475516
-
Predicting DNA methylation state of CpG dinucleotide using genome topological features and deep networks
-
Wang, Y., T. Liu, D. Xu, H. Shi, C. Zhang, Y.-Y. Mo, and Z. Wang. 2016. Predicting DNA methylation state of CpG dinucleotide using genome topological features and deep networks. Sci. Rep. 6:19598. http://dx.doi.org/10.1038/srep19598
-
(2016)
Sci. Rep
, vol.6
, pp. 19598
-
-
Wang, Y.1
Liu, T.2
Xu, D.3
Shi, H.4
Zhang, C.5
Mo, Y.-Y.6
Wang, Z.7
-
71
-
-
84874323459
-
Label-free detection of neuronal differentiation in cell populations using high-throughput livecell imaging of PC12 cells
-
Weber, S., M.L. Fernández-Cachón, J.M. Nascimento, S. Knauer, B. Offermann, R.F. Murphy, M. Boerries, and H. Busch. 2013. Label-free detection of neuronal differentiation in cell populations using high-throughput livecell imaging of PC12 cells. PLoS One. 8:e56690. http://dx.doi.org/10.1371/journal.pone.0056690
-
(2013)
PLoS One
, vol.8
, pp. e56690
-
-
Weber, S.1
Fernández-Cachón, M.L.2
Nascimento, J.M.3
Knauer, S.4
Offermann, B.5
Murphy, R.F.6
Boerries, M.7
Busch, H.8
-
72
-
-
84898948710
-
Feature selection for SVMs
-
Weston, J., S. Mukherjee, O. Chapelle, M. Pontil, T. Poggio, and V. Vapnik. 2000. Feature selection for SVMs. NIPS 2000: Neural Information Processing Systems 13. 668-674.
-
(2000)
NIPS 2000: Neural Information Processing Systems
, vol.13
, pp. 668-674
-
-
Weston, J.1
Mukherjee, S.2
Chapelle, O.3
Pontil, M.4
Poggio, T.5
Vapnik, V.6
-
73
-
-
37249026328
-
Integrating high-content screening and ligand-target prediction to identify mechanism of action
-
Young, D.W., A. Bender, J. Hoyt, E. McWhinnie, G.-W. Chirn, C.Y. Tao, J.A. Tallarico, M. Labow, J.L. Jenkins, T.J. Mitchison, and Y. Feng. 2008. Integrating high-content screening and ligand-target prediction to identify mechanism of action. Nat. Chem. Biol. 4:59-68. http://dx.doi.org/10.1038/nchembio.2007.53
-
(2008)
Nat. Chem. Biol
, vol.4
, pp. 59-68
-
-
Young, D.W.1
Bender, A.2
Hoyt, J.3
McWhinnie, E.4
Chirn, G.-W.5
Tao, C.Y.6
Tallarico, J.A.7
Labow, M.8
Jenkins, J.L.9
Mitchison, T.J.10
Feng, Y.11
-
74
-
-
84958257565
-
Predicting effects of noncoding variants with deep learning-based sequence model
-
Zhou, J., and O.G. Troyanskaya. 2015. Predicting effects of noncoding variants with deep learning-based sequence model. Nat. Methods. 12:931-934. http://dx.doi.org/10.1038/nmeth.3547
-
(2015)
Nat. Methods
, vol.12
, pp. 931-934
-
-
Zhou, J.1
Troyanskaya, O.G.2
|