메뉴 건너뛰기




Volumn 216, Issue 1, 2017, Pages 65-71

Machine learning and computer vision approaches for phenotypic profiling

Author keywords

[No Author keywords available]

Indexed keywords

ARTICLE; BACK PROPAGATION; BIOINFORMATICS; CELL CYCLE; CELL SELECTION; CLASSIFICATION ALGORITHM; CLASSIFIER; CLUSTER ANALYSIS; COMPUTER; CYTOLOGY; EXTRACTION; GENE EXPRESSION; HUMAN; LINEAR SYSTEM; MACHINE LEARNING; MOLECULAR BIOLOGY; NONLINEAR SYSTEM; PHENOTYPE; PRINCIPAL COMPONENT ANALYSIS; PRIORITY JOURNAL; PROTEIN LOCALIZATION; SUPPORT VECTOR MACHINE; ANIMAL; CONFOCAL MICROSCOPY; FLUORESCENCE MICROSCOPY; HIGH THROUGHPUT SCREENING; IMAGE PROCESSING; PROCEDURES; STATISTICAL MODEL;

EID: 85008602558     PISSN: 00219525     EISSN: 15408140     Source Type: Journal    
DOI: 10.1083/jcb.201610026     Document Type: Article
Times cited : (131)

References (74)
  • 1
    • 84938888109 scopus 로고    scopus 로고
    • Predicting the sequence specificities of DNA-and RNA-binding proteins by deep learning
    • Alipanahi, B., A. Delong, M.T. Weirauch, and B.J. Frey. 2015. Predicting the sequence specificities of DNA-and RNA-binding proteins by deep learning. Nat. Biotechnol. 33:831-838. http://dx.doi.org/10.1038/nbt.3300
    • (2015) Nat. Biotechnol , vol.33 , pp. 831-838
    • Alipanahi, B.1    Delong, A.2    Weirauch, M.T.3    Frey, B.J.4
  • 3
    • 34250882643 scopus 로고    scopus 로고
    • Quantitative morphological signatures define local signaling networks regulating cell morphology
    • Bakal, C., J. Aach, G. Church, and N. Perrimon. 2007. Quantitative morphological signatures define local signaling networks regulating cell morphology. Science. 316:1753-1756. http://dx.doi.org/10.1126/science.1140324
    • (2007) Science , vol.316 , pp. 1753-1756
    • Bakal, C.1    Aach, J.2    Church, G.3    Perrimon, N.4
  • 5
    • 84912550395 scopus 로고    scopus 로고
    • Performance evaluation of image segmentation algorithms on microscopic image data
    • Beneš, M., and B. Zitová. 2015. Performance evaluation of image segmentation algorithms on microscopic image data. J. Microsc. 257:65-85. http://dx.doi.org/10.1111/jmi.12186
    • (2015) J. Microsc , vol.257 , pp. 65-85
    • Beneš, M.1    Zitová, B.2
  • 6
    • 33749501637 scopus 로고    scopus 로고
    • Robust cell image segmentation methods
    • Bengtsson, E., C. Wählby, and J. Lindblad. 2004. Robust cell image segmentation methods. Pattern Recognit. Image Anal. 14:157-167. http://dx.doi.org/10.1017/CBO9781107415324.004
    • (2004) Pattern Recognit. Image Anal , vol.14 , pp. 157-167
    • Bengtsson, E.1    Wählby, C.2    Lindblad, J.3
  • 8
    • 0032212323 scopus 로고    scopus 로고
    • Automated recognition of patterns characteristic of subcellular structures in fluorescence microscopy images
    • Boland, M.V., M.K. Markey, and R.F. Murphy. 1998. Automated recognition of patterns characteristic of subcellular structures in fluorescence microscopy images. Cytometry. 33:366-375. http://dx.doi.org/10.1002/(SICI)1097-0320(19981101)33:3<366::AID-CYTO12>3.0.CO;2-R
    • (1998) Cytometry , vol.33 , pp. 366-375
    • Boland, M.V.1    Markey, M.K.2    Murphy, R.F.3
  • 9
    • 0842309871 scopus 로고    scopus 로고
    • Genome-wide RNAi analysis of growth and viability in Drosophila cells
    • and Heidelberg Fly Array Consortium
    • Boutros, M., A.A. Kiger, S. Armknecht, K. Kerr, M. Hild, B. Koch, S.A. Haas, R. Paro, N. Perrimon, and Heidelberg Fly Array Consortium. 2004. Genome-wide RNAi analysis of growth and viability in Drosophila cells. Science. 303:832-835. http://dx.doi.org/10.1126/science.1091266
    • (2004) Science , vol.303 , pp. 832-835
    • Boutros, M.1    Kiger, A.A.2    Armknecht, S.3    Kerr, K.4    Hild, M.5    Koch, B.6    Haas, S.A.7    Paro, R.8    Perrimon, N.9
  • 11
    • 84962815651 scopus 로고    scopus 로고
    • Applications in image-based profiling of perturbations
    • Caicedo, J.C., S. Singh, and A.E. Carpenter. 2016. Applications in image-based profiling of perturbations. Curr. Opin. Biotechnol. 39:134-142. http://dx.doi.org/10.1016/j.copbio.2016.04.003
    • (2016) Curr. Opin. Biotechnol , vol.39 , pp. 134-142
    • Caicedo, J.C.1    Singh, S.2    Carpenter, A.E.3
  • 12
    • 84931265689 scopus 로고    scopus 로고
    • Automatic detection of white matter hyperintensities in healthy aging and pathology using magnetic resonance imaging: A review
    • Caligiuri, M.E., P. Perrotta, A. Augimeri, F. Rocca, A. Quattrone, and A. Cherubini. 2015. Automatic detection of white matter hyperintensities in healthy aging and pathology using magnetic resonance imaging: A review. Neuroinformatics. 13:261-276. http://dx.doi.org/10.1007/s12021-015-9260-y
    • (2015) Neuroinformatics , vol.13 , pp. 261-276
    • Caligiuri, M.E.1    Perrotta, P.2    Augimeri, A.3    Rocca, F.4    Quattrone, A.5    Cherubini, A.6
  • 13
    • 0022808786 scopus 로고
    • A computational approach to edge detection
    • Canny, J. 1986. A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 8:679-698. http://dx.doi.org/10.1109/TPAMI.1986.4767851
    • (1986) IEEE Trans. Pattern Anal. Mach. Intell , vol.8 , pp. 679-698
    • Canny, J.1
  • 15
    • 0037209490 scopus 로고    scopus 로고
    • EM procedures using mean field-like approximations for Markov model-based image segmentation
    • Celeux, G., F. Forbes, and N. Peyrard. 2003. EM procedures using mean field-like approximations for Markov model-based image segmentation. Pattern Recognit. 36:131-144. http://dx.doi.org/10.1016/S0031-3203(02)00027-4
    • (2003) Pattern Recognit , vol.36 , pp. 131-144
    • Celeux, G.1    Forbes, F.2    Peyrard, N.3
  • 16
    • 84953744675 scopus 로고    scopus 로고
    • Learning a hierarchical representation of the yeast transcriptomic machinery using an autoencoder model
    • Chen, L., C. Cai, V. Chen, and X. Lu. 2016a. Learning a hierarchical representation of the yeast transcriptomic machinery using an autoencoder model. BMC Bioinformatics. 17:9. http://dx.doi.org/10.1186/s12859-015-0852-1
    • (2016) BMC Bioinformatics , vol.17 , pp. 9
    • Chen, L.1    Cai, C.2    Chen, V.3    Lu, X.4
  • 18
    • 84976420628 scopus 로고    scopus 로고
    • Gene expression inference with deep learning
    • Chen, Y., Y. Li, R. Narayan, A. Subramanian, and X. Xie. 2016b. Gene expression inference with deep learning. Bioinformatics. 32:1832-1839. http://dx.doi.org/10.1093/bioinformatics/btw074
    • (2016) Bioinformatics , vol.32 , pp. 1832-1839
    • Chen, Y.1    Li, Y.2    Narayan, R.3    Subramanian, A.4    Xie, X.5
  • 23
    • 0000293183 scopus 로고
    • Theory of communication. Part 1: The analysis of information
    • Gabor, D. 1946. Theory of communication. Part 1: The analysis of information. Journal of the Institution of Electrical Engineers. 93:429-457. http://dx.doi.org/10.1049/ji-3-2.1946.0074
    • (1946) Journal of the Institution of Electrical Engineers , vol.93 , pp. 429-457
    • Gabor, D.1
  • 25
    • 84879542641 scopus 로고    scopus 로고
    • Unsupervised clustering of subcellular protein expression patterns in highthroughput microscopy images reveals protein complexes and functional relationships between proteins
    • Handfield, L.-F., Y.T. Chong, J. Simmons, B.J. Andrews, and A.M. Moses. 2013. Unsupervised clustering of subcellular protein expression patterns in highthroughput microscopy images reveals protein complexes and functional relationships between proteins. PLOS Comput. Biol. 9:e1003085. http://dx.doi.org/10.1371/journal.pcbi.1003085
    • (2013) PLOS Comput. Biol , vol.9 , pp. e1003085
    • Handfield, L.-F.1    Chong, Y.T.2    Simmons, J.3    Andrews, B.J.4    Moses, A.M.5
  • 26
    • 0018466704 scopus 로고
    • Statistical and structural approaches to texture
    • Haralick, R.M. 1979. Statistical and structural approaches to texture. Proc. IEEE. 67:786-804. http://dx.doi.org/10.1109/PROC.1979.11328
    • (1979) Proc. IEEE , vol.67 , pp. 786-804
    • Haralick, R.M.1
  • 28
    • 0037410488 scopus 로고    scopus 로고
    • Discovering cluster-based local outliers
    • He, Z., X. Xu, and S. Deng. 2003. Discovering cluster-based local outliers. Pattern Recognit. Lett. 24:1641-1650. http://dx.doi.org/10.1016/S0167-8655(03)00003-5
    • (2003) Pattern Recognit. Lett , vol.24 , pp. 1641-1650
    • He, Z.1    Xu, X.2    Deng, S.3
  • 30
    • 7544223741 scopus 로고    scopus 로고
    • A survey of outlier detection methodologies
    • Hodge, V.J., and J.I.M. Austin. 2004. A survey of outlier detection methodologies. J. Artif. Intell. Res. 22:85-126. http://dx.doi.org/10.1023/B:AIRE.0000045502.10941.a9
    • (2004) J. Artif. Intell. Res , vol.22 , pp. 85-126
    • Hodge, V.J.1    Austin, J.I.M.2
  • 31
    • 79953289737 scopus 로고    scopus 로고
    • Mapping of signaling networks through synthetic genetic interaction analysis by RNAi
    • Horn, T., T. Sandmann, B. Fischer, E. Axelsson, W. Huber, and M. Boutros. 2011. Mapping of signaling networks through synthetic genetic interaction analysis by RNAi. Nat. Methods. 8:341-346. http://dx.doi.org/10.1038/nmeth.1581
    • (2011) Nat. Methods , vol.8 , pp. 341-346
    • Horn, T.1    Sandmann, T.2    Fischer, B.3    Axelsson, E.4    Huber, W.5    Boutros, M.6
  • 32
    • 84893405732 scopus 로고    scopus 로고
    • Data clustering: A review
    • Jain, K., M.N. Murty, and P.J. Flynn. 1999. Data clustering: A review. ACM Comput. Surv. 31:264-323. http://dx.doi.org/10.1145/331499.331504
    • (1999) ACM Comput. Surv , vol.31 , pp. 264-323
    • Jain, K.1    Murty, M.N.2    Flynn, P.J.3
  • 34
    • 84959493552 scopus 로고    scopus 로고
    • Image outlier detection and feature extraction via L1-norm-based 2D probabilistic PCA
    • Ju, F., Y. Sun, J. Gao, Y. Hu, and B. Yin. 2015. Image outlier detection and feature extraction via L1-norm-based 2D probabilistic PCA. IEEE Trans. Image Process. 24:4834-4846. http://dx.doi.org/10.1109/TIP.2015.2469136
    • (2015) IEEE Trans. Image Process , vol.24 , pp. 4834-4846
    • Ju, F.1    Sun, Y.2    Gao, J.3    Hu, Y.4    Yin, B.5
  • 36
    • 0002948319 scopus 로고    scopus 로고
    • Algorithms for mining distance-based outliers in large datasets
    • A. Gupta, O. Shmueli, and J. Widom, editors. Morgan Kaufman Publishers, San Francisco, CA
    • Knorr, E.M., and R.T. Ng. 1998. Algorithms for mining distance-based outliers in large datasets. In VLDB '98 Proceedings of the 24rd International Conference on Very Large Data Bases.A. Gupta, O. Shmueli, and J. Widom, editors. Morgan Kaufman Publishers, San Francisco, CA. 392-403.
    • (1998) VLDB '98 Proceedings of the 24rd International Conference on Very Large Data Bases , pp. 392-403
    • Knorr, E.M.1    Ng, R.T.2
  • 37
    • 84958048475 scopus 로고    scopus 로고
    • Computer vision for high content screening
    • Kraus, O.Z., and B.J. Frey. 2016. Computer vision for high content screening. Crit. Rev. Biochem. Mol. Biol. 51:102-109. http://dx.doi.org/10.3109/10409238.2015.1135868
    • (2016) Crit. Rev. Biochem. Mol. Biol , vol.51 , pp. 102-109
    • Kraus, O.Z.1    Frey, B.J.2
  • 38
    • 84976510674 scopus 로고    scopus 로고
    • Classifying and segmenting microscopy images with deep multiple instance learning
    • Kraus, O.Z., J.L. Ba, and B.J. Frey. 2016. Classifying and segmenting microscopy images with deep multiple instance learning. Bioinformatics. 32:i52-i59. http://dx.doi.org/10.1093/bioinformatics/btw252
    • (2016) Bioinformatics , vol.32 , pp. i52-i59
    • Kraus, O.Z.1    Ba, J.L.2    Frey, B.J.3
  • 39
    • 84876231242 scopus 로고    scopus 로고
    • ImageNet classification with deep convolutional neural networks
    • Krizhevsky, A., I. Sutskever, and G.E. Hinton. 2012. ImageNet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 1-9. http://dx.doi.org/10.1016/j.protcy.2014.09.007
    • (2012) Adv. Neural Inf. Process. Syst , pp. 1-9
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 40
    • 84930630277 scopus 로고    scopus 로고
    • Deep learning
    • LeCun, Y., Y. Bengio, and G. Hinton. 2015. Deep learning. Nature. 521:436-444. http://dx.doi.org/10.1038/nature14539
    • (2015) Nature , vol.521 , pp. 436-444
    • LeCun, Y.1    Bengio, Y.2    Hinton, G.3
  • 41
    • 84940421624 scopus 로고    scopus 로고
    • Outlier detection and removal improves accuracy of machine learning approach to multispectral burn diagnostic imaging
    • Li, W., W. Mo, X. Zhang, J.J. Squiers, Y. Lu, E.W. Sellke, W. Fan, J.M. DiMaio, and J.E. Thatcher. 2015. Outlier detection and removal improves accuracy of machine learning approach to multispectral burn diagnostic imaging. J. Biomed. Opt. 20:121305. http://dx.doi.org/10.1117/1.JBO.20.12.121305
    • (2015) J. Biomed. Opt , vol.20 , pp. 121305
    • Li, W.1    Mo, W.2    Zhang, X.3    Squiers, J.J.4    Lu, Y.5    Sellke, E.W.6    Fan, W.7    DiMaio, J.M.8    Thatcher, J.E.9
  • 42
    • 84929510967 scopus 로고    scopus 로고
    • Machine learning applications in genetics and genomics
    • Libbrecht, M.W., and W.S. Noble. 2015. Machine learning applications in genetics and genomics. Nat. Rev. Genet. 16:321-332. http://dx.doi.org/10.1038/nrg3920
    • (2015) Nat. Rev. Genet , vol.16 , pp. 321-332
    • Libbrecht, M.W.1    Noble, W.S.2
  • 43
    • 84927125938 scopus 로고    scopus 로고
    • Single-cell and multivariate approaches in genetic perturbation screens
    • Liberali, P., B. Snijder, and L. Pelkmans. 2015. Single-cell and multivariate approaches in genetic perturbation screens. Nat. Rev. Genet. 16:18-32. http://dx.doi.org/10.1038/nrg3768
    • (2015) Nat. Rev. Genet , vol.16 , pp. 18-32
    • Liberali, P.1    Snijder, B.2    Pelkmans, L.3
  • 45
    • 34250216344 scopus 로고    scopus 로고
    • Image-based multivariate profiling of drug responses from single cells
    • Loo, L.-H., L.F. Wu, and S.J. Altschuler. 2007. Image-based multivariate profiling of drug responses from single cells. Nat. Methods. 4:445-453. http://dx.doi.org/10.1038/nmeth1032
    • (2007) Nat. Methods , vol.4 , pp. 445-453
    • Loo, L.-H.1    Wu, L.F.2    Altschuler, S.J.3
  • 47
    • 85032750965 scopus 로고    scopus 로고
    • Cell segmentation: 50 years down the road
    • Meijering, E. 2012. Cell segmentation: 50 years down the road. IEEE Signal. Proc. Mag. 29:140-145. http://dx.doi.org/10.1109/MSP.2012.2204190
    • (2012) IEEE Signal. Proc. Mag , vol.29 , pp. 140-145
    • Meijering, E.1
  • 48
    • 67349273304 scopus 로고    scopus 로고
    • Multidimensional quantification of subcellular morphology of Saccharomyces cerevisiae using CalMorph, the high-throughput image-processing program
    • Negishi, T., S. Nogami, and Y. Ohya. 2009. Multidimensional quantification of subcellular morphology of Saccharomyces cerevisiae using CalMorph, the high-throughput image-processing program. J. Biotechnol. 141:109-117. http://dx.doi.org/10.1016/j.jbiotec.2009.03.014
    • (2009) J. Biotechnol , vol.141 , pp. 109-117
    • Negishi, T.1    Nogami, S.2    Ohya, Y.3
  • 50
    • 59549087165 scopus 로고    scopus 로고
    • On discriminative vs generative classifiers: A comparison of logistic regression and naive Bayes
    • Ng, A., and A. Jordan. 2002. On discriminative vs generative classifiers: A comparison of logistic regression and naive Bayes. Adv. Neural Inf. Process. Syst. 14:841-848.
    • (2002) Adv. Neural Inf. Process. Syst , vol.14 , pp. 841-848
    • Ng, A.1    Jordan, A.2
  • 51
    • 33845703344 scopus 로고    scopus 로고
    • What is a support vector machine?
    • Noble, W.S. 2006. What is a support vector machine? Nat. Biotechnol. 24:1565-1567. http://dx.doi.org/10.1038/nbt1206-1565
    • (2006) Nat. Biotechnol , vol.24 , pp. 1565-1567
    • Noble, W.S.1
  • 52
    • 84880211540 scopus 로고    scopus 로고
    • TAN GO: A generic tool for high-throughput 3D image analysis for studying nuclear organization
    • Ollion, J., J. Cochennec, F. Loll, C. Escudé, and T. Boudier. 2013. TAN GO: A generic tool for high-throughput 3D image analysis for studying nuclear organization. Bioinformatics. 29:1840-1841. http://dx.doi.org/10.1093/bioinformatics/btt276
    • (2013) Bioinformatics , vol.29 , pp. 1840-1841
    • Ollion, J.1    Cochennec, J.2    Loll, F.3    Escudé, C.4    Boudier, T.5
  • 53
    • 80053412531 scopus 로고    scopus 로고
    • Distance-based outlier detection: Consolidation and renewed bearing
    • Orair, G.H., C.H.C. Teixeira, W.J. Meira, Y. Wang, and S. Parthasarathy. 2010. Distance-based outlier detection: Consolidation and renewed bearing. Proc. VLDB Endowment. 3:1469-1480. http://dx.doi.org/10.14778/1920841.1921021
    • (2010) Proc. VLDB Endowment , vol.3 , pp. 1469-1480
    • Orair, G.H.1    Teixeira, C.H.C.2    Meira, W.J.3    Wang, Y.4    Parthasarathy, S.5
  • 55
    • 84979990727 scopus 로고    scopus 로고
    • Accurate classification of protein subcellular localization from high throughput microscopy images using deep learning
    • (PreprintpostedApril28,2016)
    • Pärnamaa, T., and L. Parts. 2016. Accurate classification of protein subcellular localization from high throughput microscopy images using deep learning. bioRxiv. doi: http://dx.doi.org/10.1101/050757(PreprintpostedApril28,2016).
    • (2016) BioRxiv
    • Pärnamaa, T.1    Parts, L.2
  • 56
    • 8444223104 scopus 로고    scopus 로고
    • Multidimensional drug profiling by automated microscopy
    • Perlman, Z.E., M.D. Slack, Y. Feng, T.J. Mitchison, L.F. Wu, and S.J. Altschuler. 2004. Multidimensional drug profiling by automated microscopy. Science. 306:1194-1198. http://dx.doi.org/10.1126/science.1100709
    • (2004) Science , vol.306 , pp. 1194-1198
    • Perlman, Z.E.1    Slack, M.D.2    Feng, Y.3    Mitchison, T.J.4    Wu, L.F.5    Altschuler, S.J.6
  • 57
    • 84863192185 scopus 로고    scopus 로고
    • PhenoRipper: Software for rapidly profiling microscopy images
    • Rajaram, S., B. Pavie, L.F. Wu, and S.J. Altschuler. 2012. PhenoRipper: Software for rapidly profiling microscopy images. Nat. Methods. 9:635-637. http://dx.doi.org/10.1038/nmeth.2097
    • (2012) Nat. Methods , vol.9 , pp. 635-637
    • Rajaram, S.1    Pavie, B.2    Wu, L.F.3    Altschuler, S.J.4
  • 58
    • 0039845384 scopus 로고    scopus 로고
    • Efficient algorithms for mining outliers from large data sets
    • Ramaswamy, S., R. Rastogi, and K. Shim. 2000. Efficient algorithms for mining outliers from large data sets. SIG MOD Rec. 427-438. http://dx.doi.org/10.1145/342009.335437
    • (2000) SIG MOD Rec , pp. 427-438
    • Ramaswamy, S.1    Rastogi, R.2    Shim, K.3
  • 60
    • 35748932917 scopus 로고    scopus 로고
    • A review of feature selection techniques in bioinformatics
    • Saeys, Y., I. Inza, and P. Larrañaga. 2007. A review of feature selection techniques in bioinformatics. Bioinformatics. 23:2507-2517. http://dx.doi.org/10.1093/bioinformatics/btm344
    • (2007) Bioinformatics , vol.23 , pp. 2507-2517
    • Saeys, Y.1    Inza, I.2    Larrañaga, P.3
  • 62
    • 77955398968 scopus 로고    scopus 로고
    • Quantifying phenotypic variation in isogenic Caenorhabditis elegans expressing Phsp-16.2:Gfp by clustering 2D expression patterns
    • Seewald, A.K., J. Cypser, A. Mendenhall, and T. Johnson. 2010. Quantifying phenotypic variation in isogenic Caenorhabditis elegans expressing Phsp-16.2:gfp by clustering 2D expression patterns. PLoS One. 5:e11426. http://dx.doi.org/10.1371/journal.pone.0011426
    • (2010) PLoS One , vol.5 , pp. e11426
    • Seewald, A.K.1    Cypser, J.2    Mendenhall, A.3    Johnson, T.4
  • 63
    • 84902210226 scopus 로고    scopus 로고
    • Increasing the content of high-content screening: An overview
    • Singh, S., A.E. Carpenter, and A. Genovesio. 2014. Increasing the content of high-content screening: An overview. J. Biomol. Screen. 19:640-650. http://dx.doi.org/10.1177/1087057114528537
    • (2014) J. Biomol. Screen , vol.19 , pp. 640-650
    • Singh, S.1    Carpenter, A.E.2    Genovesio, A.3
  • 64
    • 70349466529 scopus 로고    scopus 로고
    • Population context determines cell-to-cell variability in endocytosis and virus infection
    • Snijder, B., R. Sacher, P. Rämö, E.-M. Damm, P. Liberali, and L. Pelkmans. 2009. Population context determines cell-to-cell variability in endocytosis and virus infection. Nature. 461:520-523. http://dx.doi.org/10.1038/nature08282
    • (2009) Nature , vol.461 , pp. 520-523
    • Snijder, B.1    Sacher, R.2    Rämö, P.3    Damm, E.-M.4    Liberali, P.5    Pelkmans, L.6
  • 65
  • 66
    • 84860703985 scopus 로고    scopus 로고
    • Cell size control in yeast
    • Turner, J.J., J.C. Ewald, and J.M. Skotheim. 2012. Cell size control in yeast. Curr. Biol. 22:R350-R359. http://dx.doi.org/10.1016/j.cub.2012.02.041
    • (2012) Curr. Biol , vol.22 , pp. R350-R359
    • Turner, J.J.1    Ewald, J.C.2    Skotheim, J.M.3
  • 67
    • 57249084011 scopus 로고    scopus 로고
    • Visualizing high-dimensional data using t-SNE
    • Van Der Maaten, L., and G. Hinton. 2008. Visualizing high-dimensional data using t-SNE. J. Mach. Learn. Res. 9:2579-2605. http://dx.doi.org/10.1007/s10479-011-0841-3
    • (2008) J. Mach. Learn. Res , vol.9 , pp. 2579-2605
    • Van Der Maaten, L.1    Hinton, G.2
  • 68
    • 3042547731 scopus 로고    scopus 로고
    • Combining intensity, edge and shape information for 2D and 3D segmentation of cell nuclei in tissue sections
    • Wählby, C., I.M. Sintorn, F. Erlandsson, G. Borgefors, and E. Bengtsson. 2004. Combining intensity, edge and shape information for 2D and 3D segmentation of cell nuclei in tissue sections. J. Microsc. 215:67-76. http://dx.doi.org/10.1111/j.0022-2720.2004.01338.x
    • (2004) J. Microsc , vol.215 , pp. 67-76
    • Wählby, C.1    Sintorn, I.M.2    Erlandsson, F.3    Borgefors, G.4    Bengtsson, E.5
  • 69
    • 37749002713 scopus 로고    scopus 로고
    • Cellular phenotype recognition for high-content RNA interference genome-wide screening
    • Wang, J., X. Zhou, P.L. Bradley, S.-F. Chang, N. Perrimon, and S.T.C. Wong. 2008. Cellular phenotype recognition for high-content RNA interference genome-wide screening. J. Biomol. Screen. 13:29-39. http://dx.doi.org/10.1177/1087057107311223
    • (2008) J. Biomol. Screen , vol.13 , pp. 29-39
    • Wang, J.1    Zhou, X.2    Bradley, P.L.3    Chang, S.-F.4    Perrimon, N.5    Wong, S.T.C.6
  • 70
    • 84955475516 scopus 로고    scopus 로고
    • Predicting DNA methylation state of CpG dinucleotide using genome topological features and deep networks
    • Wang, Y., T. Liu, D. Xu, H. Shi, C. Zhang, Y.-Y. Mo, and Z. Wang. 2016. Predicting DNA methylation state of CpG dinucleotide using genome topological features and deep networks. Sci. Rep. 6:19598. http://dx.doi.org/10.1038/srep19598
    • (2016) Sci. Rep , vol.6 , pp. 19598
    • Wang, Y.1    Liu, T.2    Xu, D.3    Shi, H.4    Zhang, C.5    Mo, Y.-Y.6    Wang, Z.7
  • 71
    • 84874323459 scopus 로고    scopus 로고
    • Label-free detection of neuronal differentiation in cell populations using high-throughput livecell imaging of PC12 cells
    • Weber, S., M.L. Fernández-Cachón, J.M. Nascimento, S. Knauer, B. Offermann, R.F. Murphy, M. Boerries, and H. Busch. 2013. Label-free detection of neuronal differentiation in cell populations using high-throughput livecell imaging of PC12 cells. PLoS One. 8:e56690. http://dx.doi.org/10.1371/journal.pone.0056690
    • (2013) PLoS One , vol.8 , pp. e56690
    • Weber, S.1    Fernández-Cachón, M.L.2    Nascimento, J.M.3    Knauer, S.4    Offermann, B.5    Murphy, R.F.6    Boerries, M.7    Busch, H.8
  • 74
    • 84958257565 scopus 로고    scopus 로고
    • Predicting effects of noncoding variants with deep learning-based sequence model
    • Zhou, J., and O.G. Troyanskaya. 2015. Predicting effects of noncoding variants with deep learning-based sequence model. Nat. Methods. 12:931-934. http://dx.doi.org/10.1038/nmeth.3547
    • (2015) Nat. Methods , vol.12 , pp. 931-934
    • Zhou, J.1    Troyanskaya, O.G.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.