메뉴 건너뛰기




Volumn 18, Issue 8, 2017, Pages 861-869

Limiting inflammation - The negative regulation of NF-B and the NLRP3 inflammasome

Author keywords

[No Author keywords available]

Indexed keywords

CRYOPYRIN; IMMUNOGLOBULIN ENHANCER BINDING PROTEIN; INFLAMMASOME;

EID: 85025814086     PISSN: 15292908     EISSN: 15292916     Source Type: Journal    
DOI: 10.1038/ni.3772     Document Type: Review
Times cited : (593)

References (115)
  • 2
    • 47949099098 scopus 로고    scopus 로고
    • Origin and physiological roles of inflammation
    • Medzhitov, R. Origin and physiological roles of inflammation. Nature 454, 428-435 (2008).
    • (2008) Nature , vol.454 , pp. 428-435
    • Medzhitov, R.1
  • 3
    • 84864545087 scopus 로고    scopus 로고
    • Treating inflammation by blocking interleukin-1 in a broad spectrum of diseases
    • Dinarello, C.A., Simon, A. &van der Meer, J.W. Treating inflammation by blocking interleukin-1 in a broad spectrum of diseases. Nat. Rev. Drug Discov. 11, 633-652 (2012).
    • (2012) Nat. Rev. Drug Discov. , vol.11 , pp. 633-652
    • Dinarello, C.A.1    Simon, A.2    Van Der Meer, J.W.3
  • 4
    • 84937516592 scopus 로고    scopus 로고
    • The resolution of inflammation: Principles and challenges
    • Headland, S.E. &Norling, L.V. The resolution of inflammation: principles and challenges. Semin. Immunol. 27, 149-160 (2015).
    • (2015) Semin. Immunol. , vol.27 , pp. 149-160
    • Headland, S.E.1    Norling, L.V.2
  • 5
    • 84865299726 scopus 로고    scopus 로고
    • PAMPs and DAMPs: Signal 0s that spur autophagy and immunity
    • Tang, D., Kang, R., Coyne, C.B., Zeh, H.J. &Lotze, M.T. PAMPs and DAMPs: signal 0s that spur autophagy and immunity. Immunol. Rev. 249, 158-175 (2012).
    • (2012) Immunol. Rev. , vol.249 , pp. 158-175
    • Tang, D.1    Kang, R.2    Coyne, C.B.3    Zeh, H.J.4    Lotze, M.T.5
  • 6
    • 84883199752 scopus 로고    scopus 로고
    • Mitogen-activated protein kinases in innate immunity
    • Arthur, J.S. &Ley, S.C. Mitogen-activated protein kinases in innate immunity. Nat. Rev. Immunol. 13, 679-692 (2013).
    • (2013) Nat. Rev. Immunol. , vol.13 , pp. 679-692
    • Arthur, J.S.1    Ley, S.C.2
  • 7
    • 84921325808 scopus 로고    scopus 로고
    • The JAK-STAT pathway: Impact on human disease and therapeutic intervention
    • O'Shea, J.J. et al. The JAK-STAT pathway: impact on human disease and therapeutic intervention. Annu. Rev. Med. 66, 311-328 (2015).
    • (2015) Annu. Rev. Med. , vol.66 , pp. 311-328
    • O'Shea, J.J.1
  • 8
    • 85009187552 scopus 로고    scopus 로고
    • 30 years of NF-κB: A blossoming of relevance to human pathobiology
    • Zhang, Q., Lenardo, M.J. &Baltimore, D. 30 years of NF-κB: a blossoming of relevance to human pathobiology. Cell 168, 37-57 (2017).
    • (2017) Cell , vol.168 , pp. 37-57
    • Zhang, Q.1    Lenardo, M.J.2    Baltimore, D.3
  • 9
    • 80052014052 scopus 로고    scopus 로고
    • Inflammation meets cancer, with NF-κB as the matchmaker
    • Ben-Neriah, Y. &Karin, M. Inflammation meets cancer, with NF-κB as the matchmaker. Nat. Immunol. 12, 715-723 (2011).
    • (2011) Nat. Immunol. , vol.12 , pp. 715-723
    • Ben-Neriah, Y.1    Karin, M.2
  • 10
    • 77956996600 scopus 로고    scopus 로고
    • Defective feedback regulation of NF-κB underlies Sjogren's syndrome in mice with mutated κb enhancers of the IκBα promoter
    • Peng, B. et al. Defective feedback regulation of NF-κB underlies Sjogren's syndrome in mice with mutated κB enhancers of the IκBα promoter. Proc. Natl. Acad. Sci. USA 107, 15193-15198 (2010).
    • (2010) Proc. Natl. Acad. Sci. USA , vol.107 , pp. 15193-15198
    • Peng, B.1
  • 11
    • 84897493559 scopus 로고    scopus 로고
    • IκBϵ is a key regulator of B cell expansion by providing negative feedback on cRel and RelA in a stimulus-specific manner
    • Alves, B.N. et al. IκBϵ is a key regulator of B cell expansion by providing negative feedback on cRel and RelA in a stimulus-specific manner. J. Immunol. 192, 3121-3132 (2014).
    • (2014) J. Immunol. , vol.192 , pp. 3121-3132
    • Alves, B.N.1
  • 12
    • 0037178785 scopus 로고    scopus 로고
    • IRAK-M is a negative regulator of Toll-like receptor signaling
    • Kobayashi, K. et al. IRAK-M is a negative regulator of Toll-like receptor signaling. Cell 110, 191-202 (2002).
    • (2002) Cell , vol.110 , pp. 191-202
    • Kobayashi, K.1
  • 13
    • 84875219876 scopus 로고    scopus 로고
    • IRAK-M mediates Toll-like receptor/IL-1R-induced NFκB activation and cytokine production
    • Zhou, H. et al. IRAK-M mediates Toll-like receptor/IL-1R-induced NFκB activation and cytokine production. EMBO J. 32, 583-596 (2013).
    • (2013) EMBO J. , vol.32 , pp. 583-596
    • Zhou, H.1
  • 14
    • 84923104586 scopus 로고    scopus 로고
    • Glucocorticoids suppress inflammation via the upregulation of negative regulator IRAK-M
    • Miyata, M. et al. Glucocorticoids suppress inflammation via the upregulation of negative regulator IRAK-M. Nat. Commun. 6, 6062 (2015).
    • (2015) Nat. Commun. , vol.6 , pp. 6062
    • Miyata, M.1
  • 15
    • 0037454946 scopus 로고    scopus 로고
    • Inhibition of interleukin 1 receptor/Toll-like receptor signaling through the alternatively spliced, short form of MyD88 is due to its failure to recruit IRAK-4
    • Burns, K. et al. Inhibition of interleukin 1 receptor/Toll-like receptor signaling through the alternatively spliced, short form of MyD88 is due to its failure to recruit IRAK-4. J. Exp. Med. 197, 263-268 (2003).
    • (2003) J. Exp. Med. , vol.197 , pp. 263-268
    • Burns, K.1
  • 16
    • 3042686382 scopus 로고    scopus 로고
    • The murine IRAK2 gene encodes four alternatively spliced isoforms, two of which are inhibitory
    • Hardy, M.P. &O'Neill, L.A. The murine IRAK2 gene encodes four alternatively spliced isoforms, two of which are inhibitory. J. Biol. Chem. 279, 27699-27708 (2004).
    • (2004) J. Biol. Chem. , vol.279 , pp. 27699-27708
    • Hardy, M.P.1    O'Neill, L.A.2
  • 17
    • 78650328691 scopus 로고    scopus 로고
    • Novel splice variants of human IKKϵ negatively regulate IKKϵ-induced IRF3 and NF-kB activation
    • Koop, A. et al. Novel splice variants of human IKKϵ negatively regulate IKKϵ-induced IRF3 and NF-kB activation. Eur. J. Immunol. 41, 224-234 (2011).
    • (2011) Eur. J. Immunol. , vol.41 , pp. 224-234
    • Koop, A.1
  • 18
    • 33747608638 scopus 로고    scopus 로고
    • NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses
    • Taganov, K.D., Boldin, M.P., Chang, K.J. &Baltimore, D. NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc. Natl. Acad. Sci. USA 103, 12481-12486 (2006).
    • (2006) Proc. Natl. Acad. Sci. USA , vol.103 , pp. 12481-12486
    • Taganov, K.D.1    Boldin, M.P.2    Chang, K.J.3    Baltimore, D.4
  • 19
    • 79958257077 scopus 로고    scopus 로고
    • MiR-146a is a significant brake on autoimmunity, myeloproliferation, and cancer in mice
    • Boldin, M.P. et al. miR-146a is a significant brake on autoimmunity, myeloproliferation, and cancer in mice. J. Exp. Med. 208, 1189-1201 (2011).
    • (2011) J. Exp. Med. , vol.208 , pp. 1189-1201
    • Boldin, M.P.1
  • 20
    • 79959362128 scopus 로고    scopus 로고
    • NF-kappaB dysregulation in microRNA-146a-deficient mice drives the development of myeloid malignancies
    • Zhao, J.L. et al. NF-kappaB dysregulation in microRNA-146a-deficient mice drives the development of myeloid malignancies. Proc. Natl. Acad. Sci. USA 108, 9184-9189 (2011).
    • (2011) Proc. Natl. Acad. Sci. USA , vol.108 , pp. 9184-9189
    • Zhao, J.L.1
  • 21
    • 84904053158 scopus 로고    scopus 로고
    • MicroRNA-302b augments host defense to bacteria by regulating inflammatory responses via feedback to TLR/IRAK4 circuits
    • Zhou, X. et al. MicroRNA-302b augments host defense to bacteria by regulating inflammatory responses via feedback to TLR/IRAK4 circuits. Nat. Commun. 5, 3619 (2014).
    • (2014) Nat. Commun. , vol.5 , pp. 3619
    • Zhou, X.1
  • 23
    • 84964754401 scopus 로고    scopus 로고
    • MicroRNAs as regulatory elements in immune system logic
    • Mehta, A. &Baltimore, D. MicroRNAs as regulatory elements in immune system logic. Nat. Rev. Immunol. 16, 279-294 (2016).
    • (2016) Nat. Rev. Immunol. , vol.16 , pp. 279-294
    • Mehta, A.1    Baltimore, D.2
  • 24
    • 0032516626 scopus 로고    scopus 로고
    • Feedback inhibition of macrophage tumor necrosis factor-alpha production by tristetraprolin
    • Carballo, E., Lai, W.S. &Blackshear, P.J. Feedback inhibition of macrophage tumor necrosis factor-alpha production by tristetraprolin. Science 281, 1001-1005 (1998).
    • (1998) Science , vol.281 , pp. 1001-1005
    • Carballo, E.1    Lai, W.S.2    Blackshear, P.J.3
  • 25
    • 84884250248 scopus 로고    scopus 로고
    • Tristetraprolin regulation of interleukin 23 mRNA stability prevents a spontaneous inflammatory disease
    • Molle, C. et al. Tristetraprolin regulation of interleukin 23 mRNA stability prevents a spontaneous inflammatory disease. J. Exp. Med. 210, 1675-1684 (2013).
    • (2013) J. Exp. Med. , vol.210 , pp. 1675-1684
    • Molle, C.1
  • 26
    • 16044369031 scopus 로고    scopus 로고
    • A pathogenetic role for TNF alpha in the syndrome of cachexia, arthritis, and autoimmunity resulting from tristetraprolin (TTP) deficiency
    • Taylor, G.A. et al. A pathogenetic role for TNF alpha in the syndrome of cachexia, arthritis, and autoimmunity resulting from tristetraprolin (TTP) deficiency. Immunity 4, 445-454 (1996).
    • (1996) Immunity , vol.4 , pp. 445-454
    • Taylor, G.A.1
  • 27
    • 84930221877 scopus 로고    scopus 로고
    • Regnase-1 and Roquin regulate a common element in inflammatory mRNAs by spatiotemporally distinct mechanisms
    • Mino, T. et al. Regnase-1 and Roquin regulate a common element in inflammatory mRNAs by spatiotemporally distinct mechanisms. Cell 161, 1058-1073 (2015).
    • (2015) Cell , vol.161 , pp. 1058-1073
    • Mino, T.1
  • 28
    • 84876775237 scopus 로고    scopus 로고
    • Roquin-2 shares functions with its paralog Roquin-1 in the repression of mRNAs controlling T follicular helper cells and systemic inflammation
    • Pratama, A. et al. Roquin-2 shares functions with its paralog Roquin-1 in the repression of mRNAs controlling T follicular helper cells and systemic inflammation. Immunity 38, 669-680 (2013).
    • (2013) Immunity , vol.38 , pp. 669-680
    • Pratama, A.1
  • 29
    • 67349167059 scopus 로고    scopus 로고
    • Zc3h12a is an RNase essential for controlling immune responses by regulating mRNA decay
    • Matsushita, K. et al. Zc3h12a is an RNase essential for controlling immune responses by regulating mRNA decay. Nature 458, 1185-1190 (2009).
    • (2009) Nature , vol.458 , pp. 1185-1190
    • Matsushita, K.1
  • 30
    • 84878557056 scopus 로고    scopus 로고
    • Targeted disruption of MCPIP1/Zc3h12a results in fatal inflammatory disease
    • Miao, R. et al. Targeted disruption of MCPIP1/Zc3h12a results in fatal inflammatory disease. Immunol. Cell Biol. 91, 368-376 (2013).
    • (2013) Immunol. Cell Biol. , vol.91 , pp. 368-376
    • Miao, R.1
  • 31
    • 84941732348 scopus 로고    scopus 로고
    • MCPIP1 endoribonuclease activity negatively regulates interleukin-17-mediated signaling and inflammation
    • Garg, A.V. et al. MCPIP1 endoribonuclease activity negatively regulates interleukin-17-mediated signaling and inflammation. Immunity 43, 475-487 (2015).
    • (2015) Immunity , vol.43 , pp. 475-487
    • Garg, A.V.1
  • 32
    • 84908209291 scopus 로고    scopus 로고
    • Cleavage of roquin and regnase-1 by the paracaspase MALT1 releases their cooperatively repressed targets to promote TH17 differentiation
    • Jeltsch, K.M. et al. Cleavage of roquin and regnase-1 by the paracaspase MALT1 releases their cooperatively repressed targets to promote TH17 differentiation. Nat. Immunol. 15, 1079-1089 (2014).
    • (2014) Nat. Immunol. , vol.15 , pp. 1079-1089
    • Jeltsch, K.M.1
  • 33
    • 84878315256 scopus 로고    scopus 로고
    • Malt1-induced cleavage of regnase-1 in CD4+ helper T cells regulates immune activation
    • Uehata, T. et al. Malt1-induced cleavage of regnase-1 in CD4+ helper T cells regulates immune activation. Cell 153, 1036-1049 (2013).
    • (2013) Cell , vol.153 , pp. 1036-1049
    • Uehata, T.1
  • 34
    • 84940724626 scopus 로고    scopus 로고
    • MALT1: A universal soldier: Multiple strategies to ensure NF-κB activation and target gene expression
    • Afonina, I.S., Elton, L., Carpentier, I. &Beyaert, R. MALT1: a universal soldier: multiple strategies to ensure NF-κB activation and target gene expression. FEBS J. 282, 3286-3297 (2015).
    • (2015) FEBS J. , vol.282 , pp. 3286-3297
    • Afonina, I.S.1    Elton, L.2    Carpentier, I.3    Beyaert, R.4
  • 35
    • 84867749151 scopus 로고    scopus 로고
    • A PP4 holoenzyme balances physiological and oncogenic nuclear factor-kappa B signaling in T lymphocytes
    • Brechmann, M. et al. A PP4 holoenzyme balances physiological and oncogenic nuclear factor-kappa B signaling in T lymphocytes. Immunity 37, 697-708 (2012).
    • (2012) Immunity , vol.37 , pp. 697-708
    • Brechmann, M.1
  • 37
    • 84897381377 scopus 로고    scopus 로고
    • Pivotal role of protein tyrosine phosphatase 1B (PTP1B) in the macrophage response to pro-inflammatory and anti-inflammatory challenge
    • Través, P.G. et al. Pivotal role of protein tyrosine phosphatase 1B (PTP1B) in the macrophage response to pro-inflammatory and anti-inflammatory challenge. Cell Death Dis. 5, e1125 (2014).
    • (2014) Cell Death Dis. , vol.5 , pp. e1125
    • Través, P.G.1
  • 38
    • 17844386319 scopus 로고    scopus 로고
    • IKKα limits macrophage NF-κB activation and contributes to the resolution of inflammation
    • Lawrence, T., Bebien, M., Liu, G.Y., Nizet, V. &Karin, M. IKKα limits macrophage NF-κB activation and contributes to the resolution of inflammation. Nature 434, 1138-1143 (2005).
    • (2005) Nature , vol.434 , pp. 1138-1143
    • Lawrence, T.1    Bebien, M.2    Liu, G.Y.3    Nizet, V.4    Karin, M.5
  • 39
    • 80051986818 scopus 로고    scopus 로고
    • The kinase IKKα inhibits activation of the transcription factor NF-κB by phosphorylating the regulatory molecule TAX1BP1
    • Shembade, N., Pujari, R., Harhaj, N.S., Abbott, D.W. &Harhaj, E.W. The kinase IKKα inhibits activation of the transcription factor NF-κB by phosphorylating the regulatory molecule TAX1BP1. Nat. Immunol. 12, 834-843 (2011).
    • (2011) Nat. Immunol. , vol.12 , pp. 834-843
    • Shembade, N.1    Pujari, R.2    Harhaj, N.S.3    Abbott, D.W.4    Harhaj, E.W.5
  • 40
    • 84961683180 scopus 로고    scopus 로고
    • Ubiquitin signaling in immune responses
    • Hu, H. &Sun, S.C. Ubiquitin signaling in immune responses. Cell Res. 26, 457-483 (2016).
    • (2016) Cell Res. , vol.26 , pp. 457-483
    • Hu, H.1    Sun, S.C.2
  • 42
    • 84997766110 scopus 로고    scopus 로고
    • The signaling adaptor TRAF1 negatively regulates Toll-like receptor signaling and this underlies its role in rheumatic disease
    • Abdul-Sater, A.A. et al. The signaling adaptor TRAF1 negatively regulates Toll-like receptor signaling and this underlies its role in rheumatic disease. Nat. Immunol. 18, 26-35 (2017).
    • (2017) Nat. Immunol. , vol.18 , pp. 26-35
    • Abdul-Sater, A.A.1
  • 43
    • 34547422758 scopus 로고    scopus 로고
    • Spontaneous mutations in the mouse Sharpin gene result in multiorgan inflammation, immune system dysregulation and dermatitis
    • Seymour, R.E. et al. Spontaneous mutations in the mouse Sharpin gene result in multiorgan inflammation, immune system dysregulation and dermatitis. Genes Immun. 8, 416-421 (2007).
    • (2007) Genes Immun. , vol.8 , pp. 416-421
    • Seymour, R.E.1
  • 44
    • 79953240109 scopus 로고    scopus 로고
    • Linear ubiquitination prevents inflammation and regulates immune signalling
    • Gerlach, B. et al. Linear ubiquitination prevents inflammation and regulates immune signalling. Nature 471, 591-596 (2011).
    • (2011) Nature , vol.471 , pp. 591-596
    • Gerlach, B.1
  • 45
    • 84996553629 scopus 로고    scopus 로고
    • Linear ubiquitin chain assembly complex coordinates late thymic T-cell differentiation and regulatory T-cell homeostasis
    • Teh, C.E. et al. Linear ubiquitin chain assembly complex coordinates late thymic T-cell differentiation and regulatory T-cell homeostasis. Nat. Commun. 7, 13353 (2016).
    • (2016) Nat. Commun. , vol.7 , pp. 13353
    • Teh, C.E.1
  • 46
    • 84880851215 scopus 로고    scopus 로고
    • OTULIN restricts Met1-linked ubiquitination to control innate immune signaling
    • Fiil, B.K. et al. OTULIN restricts Met1-linked ubiquitination to control innate immune signaling. Mol. Cell 50, 818-830 (2013).
    • (2013) Mol. Cell , vol.50 , pp. 818-830
    • Fiil, B.K.1
  • 47
    • 84878862687 scopus 로고    scopus 로고
    • OTULIN antagonizes LUBAC signaling by specifically hydrolyzing Met1-linked polyubiquitin
    • Keusekotten, K. et al. OTULIN antagonizes LUBAC signaling by specifically hydrolyzing Met1-linked polyubiquitin. Cell 153, 1312-1326 (2013).
    • (2013) Cell , vol.153 , pp. 1312-1326
    • Keusekotten, K.1
  • 48
    • 84879390723 scopus 로고    scopus 로고
    • The linear ubiquitin-specific deubiquitinase gumby regulates angiogenesis
    • Rivkin, E. et al. The linear ubiquitin-specific deubiquitinase gumby regulates angiogenesis. Nature 498, 318-324 (2013).
    • (2013) Nature , vol.498 , pp. 318-324
    • Rivkin, E.1
  • 49
    • 84899911195 scopus 로고    scopus 로고
    • Molecular basis and regulation of OTULIN-LUBAC interaction
    • Elliott, P.R. et al. Molecular basis and regulation of OTULIN-LUBAC interaction. Mol. Cell 54, 335-348 (2014).
    • (2014) Mol. Cell , vol.54 , pp. 335-348
    • Elliott, P.R.1
  • 50
    • 84981719187 scopus 로고    scopus 로고
    • The deubiquitinase OTULIN is an essential negative regulator of inflammation and autoimmunity
    • e1220
    • Damgaard, R.B. et al. The deubiquitinase OTULIN is an essential negative regulator of inflammation and autoimmunity. Cell 166, 1215-1230.e1220 (2016).
    • (2016) Cell , vol.166 , pp. 1215-1230
    • Damgaard, R.B.1
  • 51
    • 84985992152 scopus 로고    scopus 로고
    • Biallelic hypomorphic mutations in a linear deubiquitinase define otulipenia, an early-onset autoinflammatory disease
    • Zhou, Q. et al. Biallelic hypomorphic mutations in a linear deubiquitinase define otulipenia, an early-onset autoinflammatory disease. Proc. Natl. Acad. Sci. USA 113, 10127-10132 (2016).
    • (2016) Proc. Natl. Acad. Sci. USA , vol.113 , pp. 10127-10132
    • Zhou, Q.1
  • 52
    • 0042467554 scopus 로고    scopus 로고
    • Loss of the cylindromatosis tumour suppressor inhibits apoptosis by activating NF-κB
    • Brummelkamp, T.R., Nijman, S.M., Dirac, A.M. &Bernards, R. Loss of the cylindromatosis tumour suppressor inhibits apoptosis by activating NF-κB. Nature 424, 797-801 (2003).
    • (2003) Nature , vol.424 , pp. 797-801
    • Brummelkamp, T.R.1    Nijman, S.M.2    Dirac, A.M.3    Bernards, R.4
  • 53
    • 0041967054 scopus 로고    scopus 로고
    • The tumour suppressor CYLD negatively regulates NF-κB signalling by deubiquitination
    • Kovalenko, A. et al. The tumour suppressor CYLD negatively regulates NF-κB signalling by deubiquitination. Nature 424, 801-805 (2003).
    • (2003) Nature , vol.424 , pp. 801-805
    • Kovalenko, A.1
  • 54
    • 0042467558 scopus 로고    scopus 로고
    • CYLD is a deubiquitinating enzyme that negatively regulates NF-κB activation by TNFR family members
    • Trompouki, E. et al. CYLD is a deubiquitinating enzyme that negatively regulates NF-κB activation by TNFR family members. Nature 424, 793-796 (2003).
    • (2003) Nature , vol.424 , pp. 793-796
    • Trompouki, E.1
  • 55
    • 84991672335 scopus 로고    scopus 로고
    • SPATA2 links CYLD to LUBAC, activates CYLD, and controls LUBAC signaling
    • Elliott, P.R. et al. SPATA2 links CYLD to LUBAC, activates CYLD, and controls LUBAC signaling. Mol. Cell 63, 990-1005 (2016).
    • (2016) Mol. Cell , vol.63 , pp. 990-1005
    • Elliott, P.R.1
  • 56
    • 84990210741 scopus 로고    scopus 로고
    • SPATA2-mediated binding of CYLD to HOIP enables CYLD recruitment to signaling complexes
    • Kupka, S. et al. SPATA2-mediated binding of CYLD to HOIP enables CYLD recruitment to signaling complexes. Cell Rep. 16, 2271-2280 (2016).
    • (2016) Cell Rep. , vol.16 , pp. 2271-2280
    • Kupka, S.1
  • 57
    • 84984904321 scopus 로고    scopus 로고
    • SPATA2 links CYLD to the TNF-α receptor signaling complex and modulates the receptor signaling outcomes
    • Wagner, S.A., Satpathy, S., Beli, P. &Choudhary, C. SPATA2 links CYLD to the TNF-α receptor signaling complex and modulates the receptor signaling outcomes. EMBO J. 35, 1868-1884 (2016).
    • (2016) EMBO J. , vol.35 , pp. 1868-1884
    • Wagner, S.A.1    Satpathy, S.2    Beli, P.3    Choudhary, C.4
  • 58
    • 84989961753 scopus 로고    scopus 로고
    • SPATA2 promotes CYLD activity and regulates TNF-induced NF-κB signaling and cell death
    • Schlicher, L. et al. SPATA2 promotes CYLD activity and regulates TNF-induced NF-κB signaling and cell death. EMBO Rep. 17, 1485-1497 (2016).
    • (2016) EMBO Rep. , vol.17 , pp. 1485-1497
    • Schlicher, L.1
  • 59
    • 85016601014 scopus 로고    scopus 로고
    • CYLD, A20 and OTULIN deubiquitinases in NF-κB signaling and cell death: So similar, yet so different
    • Lork, M., Verhelst, K. &Beyaert, R. CYLD, A20 and OTULIN deubiquitinases in NF-κB signaling and cell death: so similar, yet so different. Cell Death Differ. http://dx.doi.org/10.1038/cdd.2017.46 (2017).
    • (2017) Cell Death Differ
    • Lork, M.1    Verhelst, K.2    Beyaert, R.3
  • 60
    • 0025271844 scopus 로고
    • Tumor necrosis factor-α induction of novel gene products in human endothelial cells including a macrophage-specific chemotaxin
    • Dixit, V.M. et al. Tumor necrosis factor-α induction of novel gene products in human endothelial cells including a macrophage-specific chemotaxin. J. Biol. Chem. 265, 2973-2978 (1990).
    • (1990) J. Biol. Chem. , vol.265 , pp. 2973-2978
    • Dixit, V.M.1
  • 61
    • 84951176357 scopus 로고    scopus 로고
    • Phosphorylation and linear ubiquitin direct A20 inhibition of inflammation
    • Wertz, I.E. et al. Phosphorylation and linear ubiquitin direct A20 inhibition of inflammation. Nature 528, 370-375 (2015).
    • (2015) Nature , vol.528 , pp. 370-375
    • Wertz, I.E.1
  • 62
    • 84867898782 scopus 로고    scopus 로고
    • A20: Linking a complex regulator of ubiquitylation to immunity and human disease
    • Ma, A. &Malynn, B.A. A20: linking a complex regulator of ubiquitylation to immunity and human disease. Nat. Rev. Immunol. 12, 774-785 (2012).
    • (2012) Nat. Rev. Immunol. , vol.12 , pp. 774-785
    • Ma, A.1    Malynn, B.A.2
  • 63
    • 84949599562 scopus 로고    scopus 로고
    • Loss-of-function mutations in TNFAIP3 leading to A20 haploinsufficiency cause an early-onset autoinflammatory disease
    • Zhou, Q. et al. Loss-of-function mutations in TNFAIP3 leading to A20 haploinsufficiency cause an early-onset autoinflammatory disease. Nat. Genet. 48, 67-73 (2016).
    • (2016) Nat. Genet. , vol.48 , pp. 67-73
    • Zhou, Q.1
  • 64
    • 0034730713 scopus 로고    scopus 로고
    • Failure to regulate TNF-induced NF-κB and cell death responses in A20-deficient mice
    • Lee, E.G. et al. Failure to regulate TNF-induced NF-κB and cell death responses in A20-deficient mice. Science 289, 2350-2354 (2000).
    • (2000) Science , vol.289 , pp. 2350-2354
    • Lee, E.G.1
  • 66
    • 84941102754 scopus 로고    scopus 로고
    • Farm dust and endotoxin protect against allergy through A20 induction in lung epithelial cells
    • Schuijs, M.J. et al. Farm dust and endotoxin protect against allergy through A20 induction in lung epithelial cells. Science 349, 1106-1110 (2015).
    • (2015) Science , vol.349 , pp. 1106-1110
    • Schuijs, M.J.1
  • 67
    • 84968538437 scopus 로고    scopus 로고
    • RIPK3 deficiency or catalytically inactive RIPK1 provides greater benefit than MLKL deficiency in mouse models of inflammation and tissue injury
    • Newton, K. et al. RIPK3 deficiency or catalytically inactive RIPK1 provides greater benefit than MLKL deficiency in mouse models of inflammation and tissue injury. Cell Death Differ. 23, 1565-1576 (2016).
    • (2016) Cell Death Differ. , vol.23 , pp. 1565-1576
    • Newton, K.1
  • 68
    • 84929899399 scopus 로고    scopus 로고
    • The ubiquitin-modifying enzyme A20 restricts ubiquitination of the kinase RIPK3 and protects cells from necroptosis
    • Onizawa, M. et al. The ubiquitin-modifying enzyme A20 restricts ubiquitination of the kinase RIPK3 and protects cells from necroptosis. Nat. Immunol. 16, 618-627 (2015).
    • (2015) Nat. Immunol. , vol.16 , pp. 618-627
    • Onizawa, M.1
  • 69
    • 84956774793 scopus 로고    scopus 로고
    • A20 deficiency in lung epithelial cells protects against influenza A virus infection
    • Maelfait, J. et al. A20 deficiency in lung epithelial cells protects against influenza A virus infection. PLoS Pathog. 12, e1005410 (2016).
    • (2016) PLoS Pathog. , vol.12 , pp. e1005410
    • Maelfait, J.1
  • 70
    • 80052195163 scopus 로고    scopus 로고
    • A20 (TNFAIP3) deficiency in myeloid cells triggers erosive polyarthritis resembling rheumatoid arthritis
    • Matmati, M. et al. A20 (TNFAIP3) deficiency in myeloid cells triggers erosive polyarthritis resembling rheumatoid arthritis. Nat. Genet. 43, 908-912 (2011).
    • (2011) Nat. Genet. , vol.43 , pp. 908-912
    • Matmati, M.1
  • 71
    • 84905562455 scopus 로고    scopus 로고
    • Negative regulation of the NLRP3 inflammasome by A20 protects against arthritis
    • Vande Walle, L. et al. Negative regulation of the NLRP3 inflammasome by A20 protects against arthritis. Nature 512, 69-73 (2014).
    • (2014) Nature , vol.512 , pp. 69-73
    • Van De Walle, L.1
  • 72
    • 84920421471 scopus 로고    scopus 로고
    • A20 controls intestinal homeostasis through cell-specific activities
    • Vereecke, L. et al. A20 controls intestinal homeostasis through cell-specific activities. Nat. Commun. 5, 5103 (2014).
    • (2014) Nat. Commun. , vol.5 , pp. 5103
    • Vereecke, L.1
  • 73
    • 0037376895 scopus 로고    scopus 로고
    • NF-kκB in cancer: A marked target
    • Lin, A. &Karin, M. NF-kκB in cancer: a marked target. Semin. Cancer Biol. 13, 107-114 (2003).
    • (2003) Semin. Cancer Biol. , vol.13 , pp. 107-114
    • Lin, A.1    Karin, M.2
  • 74
    • 84908377619 scopus 로고    scopus 로고
    • Intestinal epithelial expression of TNFAIP3 results in microbial invasion of the inner mucus layer and induces colitis in IL-10-deficient mice
    • Murphy, S.F. et al. Intestinal epithelial expression of TNFAIP3 results in microbial invasion of the inner mucus layer and induces colitis in IL-10-deficient mice. Am. J. Physiol. Gastrointest. Liver Physiol. 307, G871-G882 (2014).
    • (2014) Am. J. Physiol. Gastrointest. Liver Physiol. , vol.307 , pp. G871-G882
    • Murphy, S.F.1
  • 75
    • 3943054838 scopus 로고    scopus 로고
    • De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-kappaB signalling
    • Wertz, I.E. et al. De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-kappaB signalling. Nature 430, 694-699 (2004).
    • (2004) Nature , vol.430 , pp. 694-699
    • Wertz, I.E.1
  • 76
    • 84878187442 scopus 로고    scopus 로고
    • Dimerization and ubiquitin mediated recruitment of A20, a complex deubiquitinating enzyme
    • Lu, T.T. et al. Dimerization and ubiquitin mediated recruitment of A20, a complex deubiquitinating enzyme. Immunity 38, 896-905 (2013).
    • (2013) Immunity , vol.38 , pp. 896-905
    • Lu, T.T.1
  • 77
    • 84903726513 scopus 로고    scopus 로고
    • The deubiquitinase activity of A20 is dispensable for NF-κB signaling
    • De, A., Dainichi, T., Rathinam, C.V. &Ghosh, S. The deubiquitinase activity of A20 is dispensable for NF-κB signaling. EMBO Rep. 15, 775-783 (2014).
    • (2014) EMBO Rep. , vol.15 , pp. 775-783
    • De, A.1    Dainichi, T.2    Rathinam, C.V.3    Ghosh, S.4
  • 78
    • 84867062977 scopus 로고    scopus 로고
    • A20 inhibits LUBAC-mediated NF-κB activation by binding linear polyubiquitin chains via its zinc finger 7
    • Verhelst, K. et al. A20 inhibits LUBAC-mediated NF-κB activation by binding linear polyubiquitin chains via its zinc finger 7. EMBO J. 31, 3845-3855 (2012).
    • (2012) EMBO J. , vol.31 , pp. 3845-3855
    • Verhelst, K.1
  • 79
    • 84957818338 scopus 로고    scopus 로고
    • Recruitment of A20 by the C-terminal domain of NEMO suppresses NF-κB activation and autoinflammatory disease
    • Zilberman-Rudenko, J. et al. Recruitment of A20 by the C-terminal domain of NEMO suppresses NF-κB activation and autoinflammatory disease. Proc. Natl. Acad. Sci. USA 113, 1612-1617 (2016).
    • (2016) Proc. Natl. Acad. Sci. USA , vol.113 , pp. 1612-1617
    • Zilberman-Rudenko, J.1
  • 80
    • 84873729426 scopus 로고    scopus 로고
    • MiR-486 sustains NF-κB activity by disrupting multiple NF-κB-negative feedback loops
    • Song, L. et al. miR-486 sustains NF-κB activity by disrupting multiple NF-κB-negative feedback loops. Cell Res. 23, 274-289 (2013).
    • (2013) Cell Res. , vol.23 , pp. 274-289
    • Song, L.1
  • 81
    • 84867898027 scopus 로고    scopus 로고
    • A miR-19 regulon that controls NF-κB signaling
    • Gantier, M.P. et al. A miR-19 regulon that controls NF-κB signaling. Nucleic Acids Res. 40, 8048-8058 (2012).
    • (2012) Nucleic Acids Res. , vol.40 , pp. 8048-8058
    • Gantier, M.P.1
  • 82
    • 39449131430 scopus 로고    scopus 로고
    • T cell antigen receptor stimulation induces MALT1 paracaspase-mediated cleavage of the NF-κB inhibitor A20
    • Coornaert, B. et al. T cell antigen receptor stimulation induces MALT1 paracaspase-mediated cleavage of the NF-κB inhibitor A20. Nat. Immunol. 9, 263-271 (2008).
    • (2008) Nat. Immunol. , vol.9 , pp. 263-271
    • Coornaert, B.1
  • 83
    • 79955592698 scopus 로고    scopus 로고
    • T-cell receptor-induced JNK activation requires proteolytic inactivation of CYLD by MALT1
    • Staal, J. et al. T-cell receptor-induced JNK activation requires proteolytic inactivation of CYLD by MALT1. EMBO J. 30, 1742-1752 (2011).
    • (2011) EMBO J. , vol.30 , pp. 1742-1752
    • Staal, J.1
  • 84
    • 84964226747 scopus 로고    scopus 로고
    • The paracaspase MALT1 mediates CARD14-induced signaling in keratinocytes
    • Afonina, I.S. et al. The paracaspase MALT1 mediates CARD14-induced signaling in keratinocytes. EMBO Rep. 17, 914-927 (2016).
    • (2016) EMBO Rep. , vol.17 , pp. 914-927
    • Afonina, I.S.1
  • 85
    • 84989917883 scopus 로고    scopus 로고
    • MALT1 protease activation triggers acute disruption of endothelial barrier integrity via CYLD cleavage
    • Klei, L.R. et al. MALT1 protease activation triggers acute disruption of endothelial barrier integrity via CYLD cleavage. Cell Rep. 17, 221-232 (2016).
    • (2016) Cell Rep. , vol.17 , pp. 221-232
    • Klei, L.R.1
  • 86
    • 84960425384 scopus 로고    scopus 로고
    • Targeting MALT1 proteolytic activity in immunity, inflammation and disease: Good or bad
    • Demeyer, A., Staal, J. &Beyaert, R. Targeting MALT1 proteolytic activity in immunity, inflammation and disease: good or bad? Trends Mol. Med. 22, 135-150 (2016).
    • (2016) Trends Mol. Med. , vol.22 , pp. 135-150
    • Demeyer, A.1    Staal, J.2    Beyaert, R.3
  • 87
    • 84975302321 scopus 로고    scopus 로고
    • Itch inhibits IL-17-mediated colon inflammation and tumorigenesis by ROR-γt ubiquitination
    • Kathania, M. et al. Itch inhibits IL-17-mediated colon inflammation and tumorigenesis by ROR-γt ubiquitination. Nat. Immunol. 17, 997-1004 (2016).
    • (2016) Nat. Immunol. , vol.17 , pp. 997-1004
    • Kathania, M.1
  • 88
    • 84955614434 scopus 로고    scopus 로고
    • Epigenetic regulation of the expression of Il12 and Il23 and autoimmune inflammation by the deubiquitinase Trabid
    • Jin, J. et al. Epigenetic regulation of the expression of Il12 and Il23 and autoimmune inflammation by the deubiquitinase Trabid. Nat. Immunol. 17, 259-268 (2016).
    • (2016) Nat. Immunol. , vol.17 , pp. 259-268
    • Jin, J.1
  • 90
    • 84984799135 scopus 로고    scopus 로고
    • Autophagy, NLRP3 inflammasome and auto-inflammatory/immune diseases
    • Zhong, Z., Sanchez-Lopez, E. &Karin, M. Autophagy, NLRP3 inflammasome and auto-inflammatory/immune diseases. Clin. Exp. Rheumatol. 34 (Suppl. 98), 12-16 (2016).
    • (2016) Clin. Exp. Rheumatol. , vol.34 , pp. 12-16
    • Zhong, Z.1    Sanchez-Lopez, E.2    Karin, M.3
  • 91
  • 92
    • 84955513503 scopus 로고    scopus 로고
    • Reparative inflammation takes charge of tissue regeneration
    • Karin, M. &Clevers, H. Reparative inflammation takes charge of tissue regeneration. Nature 529, 307-315 (2016).
    • (2016) Nature , vol.529 , pp. 307-315
    • Karin, M.1    Clevers, H.2
  • 93
    • 84978197362 scopus 로고    scopus 로고
    • Autophagy, inflammation, and immunity: A troika governing cancer and its treatment
    • Zhong, Z., Sanchez-Lopez, E. &Karin, M. Autophagy, inflammation, and immunity: a troika governing cancer and its treatment. Cell 166, 288-298 (2016).
    • (2016) Cell , vol.166 , pp. 288-298
    • Zhong, Z.1    Sanchez-Lopez, E.2    Karin, M.3
  • 94
    • 84887430028 scopus 로고    scopus 로고
    • Divergence of IL-1, IL-18, and cell death in NLRP3 inflammasomopathies
    • Brydges, S.D. et al. Divergence of IL-1, IL-18, and cell death in NLRP3 inflammasomopathies. J. Clin. Invest. 123, 4695-4705 (2013).
    • (2013) J. Clin. Invest. , vol.123 , pp. 4695-4705
    • Brydges, S.D.1
  • 95
    • 84936891896 scopus 로고    scopus 로고
    • Inflammasomes: Mechanism of action, role in disease, and therapeutics
    • Guo, H., Callaway, J.B. &Ting, J.P. Inflammasomes: mechanism of action, role in disease, and therapeutics. Nat. Med. 21, 677-687 (2015).
    • (2015) Nat. Med. , vol.21 , pp. 677-687
    • Guo, H.1    Callaway, J.B.2    Ting, J.P.3
  • 96
    • 84927724336 scopus 로고    scopus 로고
    • Initiation and perpetuation of NLRP3 inflammasome activation and assembly
    • Elliott, E.I. &Sutterwala, F.S. Initiation and perpetuation of NLRP3 inflammasome activation and assembly. Immunol. Rev. 265, 35-52 (2015).
    • (2015) Immunol. Rev. , vol.265 , pp. 35-52
    • Elliott, E.I.1    Sutterwala, F.S.2
  • 97
    • 78651393239 scopus 로고    scopus 로고
    • A role for mitochondria in NLRP3 inflammasome activation
    • Zhou, R., Yazdi, A.S., Menu, P. &Tschopp, J. A role for mitochondria in NLRP3 inflammasome activation. Nature 469, 221-225 (2011).
    • (2011) Nature , vol.469 , pp. 221-225
    • Zhou, R.1    Yazdi, A.S.2    Menu, P.3    Tschopp, J.4
  • 98
    • 84875908991 scopus 로고    scopus 로고
    • TRPM2 links oxidative stress to NLRP3 inflammasome activation
    • Zhong, Z. et al. TRPM2 links oxidative stress to NLRP3 inflammasome activation. Nat. Commun. 4, 1611 (2013).
    • (2013) Nat. Commun. , vol.4 , pp. 1611
    • Zhong, Z.1
  • 99
    • 84862777872 scopus 로고    scopus 로고
    • Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis
    • Shimada, K. et al. Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis. Immunity 36, 401-414 (2012).
    • (2012) Immunity , vol.36 , pp. 401-414
    • Shimada, K.1
  • 100
    • 79951642032 scopus 로고    scopus 로고
    • Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome
    • Nakahira, K. et al. Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat. Immunol. 12, 222-230 (2011).
    • (2011) Nat. Immunol. , vol.12 , pp. 222-230
    • Nakahira, K.1
  • 101
    • 84882614243 scopus 로고    scopus 로고
    • Mitochondrial cardiolipin is required for Nlrp3 inflammasome activation
    • Iyer, S.S. et al. Mitochondrial cardiolipin is required for Nlrp3 inflammasome activation. Immunity 39, 311-323 (2013).
    • (2013) Immunity , vol.39 , pp. 311-323
    • Iyer, S.S.1
  • 102
    • 84908356704 scopus 로고    scopus 로고
    • Single-cell imaging of caspase-1 dynamics reveals an all-or-none inflammasome signaling response
    • Liu, T. et al. Single-cell imaging of caspase-1 dynamics reveals an all-or-none inflammasome signaling response. Cell Rep. 8, 974-982 (2014).
    • (2014) Cell Rep. , vol.8 , pp. 974-982
    • Liu, T.1
  • 103
    • 56249090667 scopus 로고    scopus 로고
    • Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1β production
    • Saitoh, T. et al. Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1β production. Nature 456, 264-268 (2008).
    • (2008) Nature , vol.456 , pp. 264-268
    • Saitoh, T.1
  • 104
    • 84959420149 scopus 로고    scopus 로고
    • NF-κB restricts inflammasome activation via elimination of damaged mitochondria
    • Zhong, Z. et al. NF-κB restricts inflammasome activation via elimination of damaged mitochondria. Cell 164, 896-910 (2016).
    • (2016) Cell , vol.164 , pp. 896-910
    • Zhong, Z.1
  • 105
    • 34548225362 scopus 로고    scopus 로고
    • NF-k(B is a negative regulator of IL-1( secretion as revealed by genetic and pharmacological inhibition of IKKβ
    • Greten, F.R. et al. NF-k(B is a negative regulator of IL-1( secretion as revealed by genetic and pharmacological inhibition of IKKβ. Cell 130, 918-931 (2007).
    • (2007) Cell , vol.130 , pp. 918-931
    • Greten, F.R.1
  • 106
    • 84975468197 scopus 로고    scopus 로고
    • P62, upregulated during preneoplasia, induces hepatocellular carcinogenesis by maintaining survival of stressed HCC-initiating cells
    • Umemura, A. et al. p62, upregulated during preneoplasia, induces hepatocellular carcinogenesis by maintaining survival of stressed HCC-initiating cells. Cancer Cell 29, 935-948 (2016).
    • (2016) Cancer Cell , vol.29 , pp. 935-948
    • Umemura, A.1
  • 107
    • 84992363256 scopus 로고    scopus 로고
    • P62 in cancer: Signaling adaptor beyond autophagy
    • Moscat, J., Karin, M. &Diaz-Meco, M.T. p62 in cancer: signaling adaptor beyond autophagy. Cell 167, 606-609 (2016).
    • (2016) Cell , vol.167 , pp. 606-609
    • Moscat, J.1    Karin, M.2    Diaz-Meco, M.T.3
  • 108
    • 67650421494 scopus 로고    scopus 로고
    • T cells dampen innate immune responses through inhibition of NLRP1 and NLRP3 inflammasomes
    • Guarda, G. et al. T cells dampen innate immune responses through inhibition of NLRP1 and NLRP3 inflammasomes. Nature 460, 269-273 (2009).
    • (2009) Nature , vol.460 , pp. 269-273
    • Guarda, G.1
  • 109
    • 79951740151 scopus 로고    scopus 로고
    • Type i interferon inhibits interleukin-1 production and inflammasome activation
    • Guarda, G. et al. Type I interferon inhibits interleukin-1 production and inflammasome activation. Immunity 34, 213-223 (2011).
    • (2011) Immunity , vol.34 , pp. 213-223
    • Guarda, G.1
  • 110
    • 84905923112 scopus 로고    scopus 로고
    • 25-Hydroxycholesterol suppresses interleukin-1-driven inflammation downstream of type i interferon
    • Reboldi, A. et al. 25-Hydroxycholesterol suppresses interleukin-1-driven inflammation downstream of type I interferon. Science 345, 679-684 (2014).
    • (2014) Science , vol.345 , pp. 679-684
    • Reboldi, A.1
  • 111
    • 84871188736 scopus 로고    scopus 로고
    • Nitric oxide controls the immunopathology of tuberculosis by inhibiting NLRP3 inflammasome-dependent processing of IL-1β
    • Mishra, B.B. et al. Nitric oxide controls the immunopathology of tuberculosis by inhibiting NLRP3 inflammasome-dependent processing of IL-1β. Nat. Immunol. 14, 52-60 (2013).
    • (2013) Nat. Immunol. , vol.14 , pp. 52-60
    • Mishra, B.B.1
  • 112
    • 84867304098 scopus 로고    scopus 로고
    • NLRP3 inflammasome activity is negatively controlled by miR-223
    • Bauernfeind, F. et al. NLRP3 inflammasome activity is negatively controlled by miR-223. J. Immunol. 189, 4175-4181 (2012).
    • (2012) J. Immunol. , vol.189 , pp. 4175-4181
    • Bauernfeind, F.1
  • 114
    • 84920990887 scopus 로고    scopus 로고
    • Dopamine controls systemic inflammation through inhibition of NLRP3 inflammasome
    • Yan, Y. et al. Dopamine controls systemic inflammation through inhibition of NLRP3 inflammasome. Cell 160, 62-73 (2015).
    • (2015) Cell , vol.160 , pp. 62-73
    • Yan, Y.1
  • 115
    • 84976878682 scopus 로고    scopus 로고
    • Connectivity mapping (ssCMap) to predict A20-inducing drugs and their antiinflammatory action in cystic fibrosis
    • Malcomson, B. et al. Connectivity mapping (ssCMap) to predict A20-inducing drugs and their antiinflammatory action in cystic fibrosis. Proc. Natl. Acad. Sci. USA 113, E3725-E3734 (2016).
    • (2016) Proc. Natl. Acad. Sci. USA , vol.113 , pp. E3725-E3734
    • Malcomson, B.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.