메뉴 건너뛰기




Volumn , Issue 9783319429984, 2017, Pages 11-32

Review of deep learning methods in mammography, cardiovascular, and microscopy image analysis

Author keywords

[No Author keywords available]

Indexed keywords


EID: 85024491907     PISSN: 21916586     EISSN: 21916594     Source Type: Book Series    
DOI: 10.1007/978-3-319-42999-1_2     Document Type: Chapter
Times cited : (46)

References (134)
  • 5
    • 63349107095 scopus 로고    scopus 로고
    • Computer-aided detection and diagnosis of breast cancer with mammography: Recent advances
    • Tang J, Rangayyan RM, Xu J, El Naqa I, Yang Y (2009) Computer-aided detection and diagnosis of breast cancer with mammography: recent advances. IEEE Trans Inf Technol Biomed 13 (2): 236-251
    • (2009) IEEE Trans Inf Technol Biomed , vol.13 , Issue.2 , pp. 236-251
    • Tang, J.1    Rangayyan, R.M.2    Xu, J.3    El Naqa, I.4    Yang, Y.5
  • 6
  • 8
    • 0033772931 scopus 로고    scopus 로고
    • An automatic method to discriminate malignant masses from normal tissue in digital mammograms
    • te Brake GM, Karssemeijer N, Hendriks JH (2000) An automatic method to discriminate malignant masses from normal tissue in digital mammograms. Phys Med Biol 45 (10): 2843
    • (2000) Phys Med Biol , vol.45 , Issue.10
    • Te Brake, G.M.1    Karssemeijer, N.2    Hendriks, J.H.3
  • 10
    • 34249737053 scopus 로고    scopus 로고
    • A concentric morphology model for the detection of masses in mammography
    • Eltonsy NH, Tourassi GD, Elmaghraby AS (2007) A concentric morphology model for the detection of masses in mammography. IEEE Trans Med Imaging 26 (6): 880-889
    • (2007) IEEE Trans Med Imaging , vol.26 , Issue.6 , pp. 880-889
    • Eltonsy, N.H.1    Tourassi, G.D.2    Elmaghraby, A.S.3
  • 11
    • 42949154139 scopus 로고    scopus 로고
    • A model-based framework for the detection of spiculated masses on mammographya
    • Sampat MP, Bovik AC, Whitman GJ, Markey MK (2008) A model-based framework for the detection of spiculated masses on mammographya. Med Phys 35 (5): 2110-2123
    • (2008) Med Phys , vol.35 , Issue.5 , pp. 2110-2123
    • Sampat, M.P.1    Bovik, A.C.2    Whitman, G.J.3    Markey, M.K.4
  • 15
    • 84866081542 scopus 로고    scopus 로고
    • Mammography segmentation with maximum likelihood active contours
    • Rahmati P, Adler A, Hamarneh G (2012) Mammography segmentation with maximum likelihood active contours. Med Image Anal 16 (6): 1167-1186
    • (2012) Med Image Anal , vol.16 , Issue.6 , pp. 1167-1186
    • Rahmati, P.1    Adler, A.2    Hamarneh, G.3
  • 16
    • 84929359112 scopus 로고    scopus 로고
    • Closed shortest path in the original coordinates with an application to breast cancer
    • Cardoso JS, Domingues I, Oliveira HP (2014) Closed shortest path in the original coordinates with an application to breast cancer. Int J Pattern Recognit Artif Intell 29: 1555002
    • (2014) Int J Pattern Recognit Artif Intell , vol.29 , pp. 1555002
    • Cardoso, J.S.1    Domingues, I.2    Oliveira, H.P.3
  • 17
    • 32544461460 scopus 로고    scopus 로고
    • Use of border information in the classification of mammographic masses
    • Varela C, Timp S, Karssemeijer N (2006) Use of border information in the classification of mammographic masses. Phys Med Biol 51 (2): 425
    • (2006) Phys Med Biol , vol.51 , Issue.2
    • Varela, C.1    Timp, S.2    Karssemeijer, N.3
  • 18
    • 37549049420 scopus 로고    scopus 로고
    • Characterization of mammographic masses based on level set segmentation with new image features and patient information
    • Shi J, Sahiner B, Chan H-P, Ge J, Hadjiiski L, Helvie MA, Nees A, Wu Y-T, Wei J, Zhou C et al (2008) Characterization of mammographic masses based on level set segmentation with new image features and patient information. Med Phys 35 (1): 280-290
    • (2008) Med Phys , vol.35 , Issue.1 , pp. 280-290
    • Shi, J.1    Sahiner, B.2    Chan, H.-P.3    Ge, J.4    Hadjiiski, L.5    Helvie, M.A.6    Nees, A.7    Wu, Y.-T.8    Wei, J.9    Zhou, C.10
  • 21
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classificationwith deep convolutional neural networks
    • Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classificationwith deep convolutional neural networks. In: NIPS, vol 1, p 4
    • (2012) NIPS , vol.1
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 34
    • 84965100889 scopus 로고    scopus 로고
    • A deep feature based framework for breast masses classification
    • Jiao Z, Gao X, Wang Y, Li J (2016) A deep feature based framework for breast masses classification. Neurocomputing 197: 221-231
    • (2016) Neurocomputing , vol.197 , pp. 221-231
    • Jiao, Z.1    Gao, X.2    Wang, Y.3    Li, J.4
  • 37
    • 84903998168 scopus 로고    scopus 로고
    • Breast tissue segmentation and mammographic risk scoring using deep learning
    • Springer, Berlin
    • Petersen K, Nielsen M, Diao P, Karssemeijer N, Lillholm M (2014) Breast tissue segmentation and mammographic risk scoring using deep learning. In: Breast imaging. Springer, Berlin, pp 88-94
    • (2014) Breast Imaging , pp. 88-94
    • Petersen, K.1    Nielsen, M.2    Diao, P.3    Karssemeijer, N.4    Lillholm, M.5
  • 39
    • 60449094498 scopus 로고    scopus 로고
    • Heart disease and stroke statistics-2009 update
    • Lloyd-Jones D, Adams R, Carnethon M et al (2009) Heart disease and stroke statistics-2009 update. Circulation 119 (3): 21-181
    • (2009) Circulation , vol.119 , Issue.3 , pp. 21-181
    • Lloyd-Jones, D.1    Adams, R.2    Carnethon, M.3
  • 40
    • 79952444246 scopus 로고    scopus 로고
    • Forecasting the future of cardiovascular disease in the United States: A policy statement from the American Heart Association
    • Heidenreich PA, Trogdon JG, Khavjou OA et al (2011) Forecasting the future of cardiovascular disease in the United States: a policy statement from the American Heart Association. Circulation 123: 933-944
    • (2011) Circulation , vol.123 , pp. 933-944
    • Heidenreich, P.A.1    Trogdon, J.G.2    Khavjou, O.A.3
  • 42
    • 54949104993 scopus 로고    scopus 로고
    • Four-chamber heart modeling and automatic segmentation for 3D cardiac CT volumes using marginal space learning and steerable features
    • Zheng Y, Barbu A, Georgescu B, Scheuering M, Comaniciu D (2008) Four-chamber heart modeling and automatic segmentation for 3D cardiac CT volumes using marginal space learning and steerable features. IEEE Trans Med Imaging 27 (11): 1668-1681
    • (2008) IEEE Trans Med Imaging , vol.27 , Issue.11 , pp. 1668-1681
    • Zheng, Y.1    Barbu, A.2    Georgescu, B.3    Scheuering, M.4    Comaniciu, D.5
  • 44
    • 84857295176 scopus 로고    scopus 로고
    • The segmentation of the left ventricle of the heart from ultrasound data using deep learning architectures and derivative-based search methods
    • Carneiro G, Nascimento JC, Freitas A (2012) The segmentation of the left ventricle of the heart from ultrasound data using deep learning architectures and derivative-based search methods. IEEE Trans Image Process 21 (3): 968-982
    • (2012) IEEE Trans Image Process , vol.21 , Issue.3 , pp. 968-982
    • Carneiro, G.1    Nascimento, J.C.2    Freitas, A.3
  • 45
    • 84884546164 scopus 로고    scopus 로고
    • Combining multiple dynamic models and deep learning architectures for tracking the left ventricle endocardium in ultrasound data
    • Carneiro G, Nascimento JC (2013) Combining multiple dynamic models and deep learning architectures for tracking the left ventricle endocardium in ultrasound data. IEEE Trans Pattern Anal Mach Intell 35 (11): 2592-2607
    • (2013) IEEE Trans Pattern Anal Mach Intell , vol.35 , Issue.11 , pp. 2592-2607
    • Carneiro, G.1    Nascimento, J.C.2
  • 46
    • 84978204565 scopus 로고    scopus 로고
    • Combining deep learning and level set for the automated segmentation of the left ventricle of the heart from cardiac cine magnetic resonance
    • Ngo TA, Lu Z, Carneiro G (2016) Combining deep learning and level set for the automated segmentation of the left ventricle of the heart from cardiac cine magnetic resonance. Med Image Anal 35: 159-171
    • (2016) Med Image Anal , vol.35 , pp. 159-171
    • Ngo, T.A.1    Lu, Z.2    Carneiro, G.3
  • 47
    • 84911378353 scopus 로고    scopus 로고
    • Fully automated non-rigid segmentationwith distance regularized level set evolution initialization and constrained by deep-structured inference
    • Ngo TA, Carneiro G (2014) Fully automated non-rigid segmentationwith distance regularized level set evolution initialization and constrained by deep-structured inference. In: Proceedings of IEEE conference computer vision and pattern recognition, pp 1-8
    • (2014) Proceedings of IEEE Conference Computer Vision and Pattern Recognition , pp. 1-8
    • Ngo, T.A.1    Carneiro, G.2
  • 49
    • 84958981335 scopus 로고    scopus 로고
    • Multi-scale deep networks and regression forests for direct bi-ventricular volume estimation
    • Zhen X, Wang Z, Islam A, Bhaduri M, Chan I, Li S (2016) Multi-scale deep networks and regression forests for direct bi-ventricular volume estimation. Med Image Anal 30: 120-129
    • (2016) Med Image Anal , vol.30 , pp. 120-129
    • Zhen, X.1    Wang, Z.2    Islam, A.3    Bhaduri, M.4    Chan, I.5    Li, S.6
  • 50
    • 84958955334 scopus 로고    scopus 로고
    • A combined deep-learning and deformablemodel approach to fully automatic segmentation of the left ventricle in cardiac MRI
    • Avendi MR, Kheirkhah A, Jafarkhani H (2016) A combined deep-learning and deformablemodel approach to fully automatic segmentation of the left ventricle in cardiac MRI. Med Image Anal 30: 108-119
    • (2016) Med Image Anal , vol.30 , pp. 108-119
    • Avendi, M.R.1    Kheirkhah, A.2    Jafarkhani, H.3
  • 51
    • 85019805716 scopus 로고    scopus 로고
    • Fully automatic segmentation of heart chambers in cardiac MRI using deep learning
    • Avendi MR, Kheradvar A, Jafarkhani H (2016) Fully automatic segmentation of heart chambers in cardiac MRI using deep learning. J Cardiovasc Magn Reson 18: 351-353
    • (2016) J Cardiovasc Magn Reson , vol.18 , pp. 351-353
    • Avendi, M.R.1    Kheradvar, A.2    Jafarkhani, H.3
  • 53
    • 85027929425 scopus 로고    scopus 로고
    • Hierarchical retinal blood vessel segmentation based on feature and ensemble learning
    • Wang S, Yin Y, Cao G, Wei B, Zheng Y, Yang G (2015) Hierarchical retinal blood vessel segmentation based on feature and ensemble learning. Neruocomputing 149: 708-717
    • (2015) Neruocomputing , vol.149 , pp. 708-717
    • Wang, S.1    Yin, Y.2    Cao, G.3    Wei, B.4    Zheng, Y.5    Yang, G.6
  • 54
    • 84959325071 scopus 로고    scopus 로고
    • A cross-modality learning approach for vessel segmentation in retinal images
    • Li Q, Feng B, Xie L, Liang P, Zhang H, Wang T (2016) A cross-modality learning approach for vessel segmentation in retinal images. IEEE Trans Med Imaging 35 (1): 109-118
    • (2016) IEEE Trans Med Imaging , vol.35 , Issue.1 , pp. 109-118
    • Li, Q.1    Feng, B.2    Xie, L.3    Liang, P.4    Zhang, H.5    Wang, T.6
  • 57
    • 85020180995 scopus 로고    scopus 로고
    • Classifying diabetic retinopathy using deep learning architecture
    • Chandrakumar T, Kathirvel R (2016) Classifying diabetic retinopathy using deep learning architecture. Int J Eng Res Technol 5 (6): 19-24
    • (2016) Int J Eng Res Technol , vol.5 , Issue.6 , pp. 19-24
    • Chandrakumar, T.1    Kathirvel, R.2
  • 63
    • 84975747881 scopus 로고    scopus 로고
    • Automatic coronary artery calcium scoring in cardiac CT angiography using paired convolutional neural networks
    • Wolterink JM, Leiner T, deVos BD, vanHamersvelt RW, Viergever MA, Isgum I (2016) Automatic coronary artery calcium scoring in cardiac CT angiography using paired convolutional neural networks. Med Image Anal 34: 123-136
    • (2016) Med Image Anal , vol.34 , pp. 123-136
    • Wolterink, J.M.1    Leiner, T.2    Devos, B.D.3    Vanhamersvelt, R.W.4    Viergever, M.A.5    Isgum, I.6
  • 64
    • 70350345530 scopus 로고    scopus 로고
    • A review of 3D vessel lumen segmentation techniques: Models, features and extraction schemes
    • Lesage D, Angelini ED, Bloch I, Funka-Lea G (2009) A review of 3D vessel lumen segmentation techniques: models, features and extraction schemes. Med Image Anal 13 (6): 819-845
    • (2009) Med Image Anal , vol.13 , Issue.6 , pp. 819-845
    • Lesage, D.1    Angelini, E.D.2    Bloch, I.3    Funka-Lea, G.4
  • 68
    • 84890498817 scopus 로고    scopus 로고
    • Machine learning in cell biology teaching computers to recognize phenotypes
    • Sommer C, Gerlich DW (2013) Machine learning in cell biology teaching computers to recognize phenotypes. J Cell Sci 126 (24): 5529-5539
    • (2013) J Cell Sci , vol.126 , Issue.24 , pp. 5529-5539
    • Sommer, C.1    Gerlich, D.W.2
  • 72
    • 84989933991 scopus 로고    scopus 로고
    • Robust nucleus/cell detection and segmentation in digital pathology and microscopy images: A comprehensive review
    • Xing F, Yang L (2016) Robust nucleus/cell detection and segmentation in digital pathology and microscopy images: a comprehensive review. IEEE Rev Biomed Eng 99
    • (2016) IEEE Rev Biomed Eng
    • Xing, F.1    Yang, L.2
  • 75
    • 84948763339 scopus 로고    scopus 로고
    • Crowdsourcing the creation of image segmentation algorithms for connectomics
    • Arganda-Carreras I et al (2015) Crowdsourcing the creation of image segmentation algorithms for connectomics. Front Neuroanat 9 (142)
    • (2015) Front Neuroanat , vol.9 , Issue.142
    • Arganda-Carreras, I.1
  • 76
    • 84920921065 scopus 로고    scopus 로고
    • Assessment of algorithms for mitosis detection in breast cancer histopathology images
    • Veta M et al (2015) Assessment of algorithms for mitosis detection in breast cancer histopathology images. Med Image Anal 20 (1): 237-248
    • (2015) Med Image Anal , vol.20 , Issue.1 , pp. 237-248
    • Veta, M.1
  • 77
    • 84923367417 scopus 로고    scopus 로고
    • Deep neural nets as a method for quantitative structure-activity relationships
    • Ma J, Sheridan RP, Liaw A, Dahl GE, Svetnik V (2015) Deep neural nets as a method for quantitative structure-activity relationships. J Chem Inf Model 55: 263274
    • (2015) J Chem Inf Model , vol.55 , pp. 263274
    • Ma, J.1    Sheridan, R.P.2    Liaw, A.3    Dahl, G.E.4    Svetnik, V.5
  • 78
    • 84923276179 scopus 로고    scopus 로고
    • The human splicing code reveals new insights into the genetic determinants of disease
    • Xiong HY et al (2015) The human splicing code reveals new insights into the genetic determinants of disease. Science 347 (6218)
    • (2015) Science , vol.347 , Issue.6218
    • Xiong, H.Y.1
  • 79
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied to document recognition. Proc IEEE 86: 2278-2324
    • (1998) Proc IEEE , vol.86 , pp. 2278-2324
    • Lecun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 83
    • 84968661778 scopus 로고    scopus 로고
    • Guest editorial deep learning in medical imaging: Overviewand future promise of an exciting newtechnique
    • Greenspan H, van Ginneken B, Summers RM (2016) Guest editorial deep learning in medical imaging: overviewand future promise of an exciting newtechnique. IEEE Trans Med Imaging 35 (5): 1153-1159
    • (2016) IEEE Trans Med Imaging , vol.35 , Issue.5 , pp. 1153-1159
    • Greenspan, H.1    Van Ginneken, B.2    Summers, R.M.3
  • 86
    • 80053540444 scopus 로고    scopus 로고
    • Unsupervised learning of hierarchical representations with convolutional deep belief networks
    • Lee H, Grosse R, Ranganath R, Ng AY (2011) Unsupervised learning of hierarchical representations with convolutional deep belief networks. Commun ACM 54 (10): 95-103
    • (2011) Commun ACM , vol.54 , Issue.10 , pp. 95-103
    • Lee, H.1    Grosse, R.2    Ranganath, R.3    Ng, A.Y.4
  • 87
    • 84903724014 scopus 로고    scopus 로고
    • Deep learning: Methods and applications
    • Deng L, Yu D (2014) Deep learning: methods and applications. Found Trends Signal Process 3 (3-4): 197-387
    • (2014) Found Trends Signal Process , vol.3 , Issue.3-4 , pp. 197-387
    • Deng, L.1    Yu, D.2
  • 88
    • 84910651844 scopus 로고    scopus 로고
    • Deep learning in neural networks: An overview. Neural Networks 61: 85-117
    • based on TR arXiv: 1404.7828 [cs.NE]
    • Schmidhuber J (2015) Deep learning in neural networks: an overview. Neural Networks 61: 85-117. Published online 2014; based on TR arXiv: 1404.7828 [cs.NE]
    • (2015) Published Online 2014
    • Schmidhuber, J.1
  • 90
    • 77958488310 scopus 로고    scopus 로고
    • Deep machine learning-a new frontier in artificial intelligence research [research frontier]
    • Arel I, Rose DC, Karnowski TP (2010) Deep machine learning-a new frontier in artificial intelligence research [research frontier]. IEEE Comput Intell Mag 5 (4): 13-18
    • (2010) IEEE Comput Intell Mag , vol.5 , Issue.4 , pp. 13-18
    • Arel, I.1    Rose, D.C.2    Karnowski, T.P.3
  • 91
    • 69349090197 scopus 로고    scopus 로고
    • Learning deep architectures for ai
    • Bengio Y (2009) Learning deep architectures for ai. Found Trends Mach Learn 2: 1-127
    • (2009) Found Trends Mach Learn , vol.2 , pp. 1-127
    • Bengio, Y.1
  • 96
    • 84900449424 scopus 로고    scopus 로고
    • Methods for nuclei detection, segmentation, and classification in digital histopathology: A review-current status and fture potential
    • Irshad H, Veillard A, Roux L, Racoceanu D (2014) Methods for nuclei detection, segmentation, and classification in digital histopathology: a review-current status and fture potential. IEEE Rev Biomed Eng 7: 97-114
    • (2014) IEEE Rev Biomed Eng , vol.7 , pp. 97-114
    • Irshad, H.1    Veillard, A.2    Roux, L.3    Racoceanu, D.4
  • 98
    • 84959431409 scopus 로고    scopus 로고
    • An automatic learning-based framework for robust nucleus segmentation
    • Xing F, Xie Y, Yang L (2015) An automatic learning-based framework for robust nucleus segmentation. IEEE Trans Med Imaging PP (99): 1
    • (2015) IEEE Trans Med Imaging
    • Xing, F.1    Xie, Y.2    Yang, L.3
  • 105
    • 84968542311 scopus 로고    scopus 로고
    • Locality sensitive deep learning for detection and classification of nuclei in routine colon cancer histology images
    • Sirinukunwattana K, Raza SEA, Tsang YW, Snead DRJ, Cree IA, Rajpoot NM (2016) Locality sensitive deep learning for detection and classification of nuclei in routine colon cancer histology images. IEEE Trans Med Imaging 35 (5): 1196-1206
    • (2016) IEEE Trans Med Imaging , vol.35 , Issue.5 , pp. 1196-1206
    • Sirinukunwattana, K.1    Raza, S.2    Tsang, Y.W.3    Snead, D.4    Cree, I.A.5    Rajpoot, N.M.6
  • 109
    • 84968665432 scopus 로고    scopus 로고
    • Fast convolutional neural network training using selective data sampling: Application to hemorrhage detection in color fundus images
    • van Grinsven MJJP, van Ginneken B, Hoyng CB, Theelen T, Snchez CI (2016) Fast convolutional neural network training using selective data sampling: application to hemorrhage detection in color fundus images. IEEE Trans Med Imaging 35 (5): 1273-1284
    • (2016) IEEE Trans Med Imaging , vol.35 , Issue.5 , pp. 1273-1284
    • Van Grinsven, M.1    Van Ginneken, B.2    Hoyng, C.B.3    Theelen, T.4    Snchez, C.I.5
  • 114
    • 84991439219 scopus 로고    scopus 로고
    • Deep models for brain EM image segmentation novel insights and improved performance
    • Fakhry A, Peng H, Ji S (2016) Deep models for brain EM image segmentation novel insights and improved performance. Bioinformatics 32: 2352-2358
    • (2016) Bioinformatics , vol.32 , pp. 2352-2358
    • Fakhry, A.1    Peng, H.2    Ji, S.3
  • 116
    • 84950238277 scopus 로고    scopus 로고
    • Accurate segmentation of cervical cytoplasm and nuclei based on multi-scale convolutional network and graph partitioning
    • Song Y, Zhang L, Chen S, Ni D, Lei B, Wang T (2015) Accurate segmentation of cervical cytoplasm and nuclei based on multi-scale convolutional network and graph partitioning. IEEE Trans Biomed Eng 62: 2421-2433
    • (2015) IEEE Trans Biomed Eng , vol.62 , pp. 2421-2433
    • Song, Y.1    Zhang, L.2    Chen, S.3    Ni, D.4    Lei, B.5    Wang, T.6
  • 118
    • 85007271408 scopus 로고    scopus 로고
    • Deep contextual networks for neuronal structure segmentation
    • Chen H, Qi X, Cheng J, Heng PA (2016) Deep contextual networks for neuronal structure segmentation. In: AAAI, pp1167-1173
    • (2016) AAAI , pp. 1167-1173
    • Chen, H.1    Qi, X.2    Cheng, J.3    Heng, P.A.4
  • 121
    • 85024481352 scopus 로고    scopus 로고
    • Hep-2 cell image classification with deep convolutional neural networks
    • Gao Z, Wang L, Zhou L, Zhang J (2016) Hep-2 cell image classification with deep convolutional neural networks. IEEE J Biomed Health Inf PP (99): 1
    • (2016) IEEE J Biomed Health Inf
    • Gao, Z.1    Wang, L.2    Zhou, L.3    Zhang, J.4
  • 126
    • 84898773212 scopus 로고    scopus 로고
    • Ictive sparse coding for classification of distinct regions in tumor histopathology
    • Chang H, Zhou Y, Spellman P, Parvin B (2013) Stacked predictive sparse coding for classification of distinct regions in tumor histopathology. In: Proceedings of the IEEE international conference on computer vision, pp 169-176
    • (2013) Stacked Pred , pp. 169-176
    • Chang, H.1    Zhou, Y.2    Spellman, P.3    Parvin, B.4
  • 129
    • 85010814719 scopus 로고    scopus 로고
    • Tensor Flow: Large-scale machine learning on heterogeneous systems
    • Abadi M et al (2015) Tensor Flow: large-scale machine learning on heterogeneous systems. Software available from tensorflow.org
    • (2015) Software Available from Tensorflow.Org
    • Abadi, M.1
  • 134
    • 84886247903 scopus 로고    scopus 로고
    • Pathology imaging informatics for quantitative analysis of whole-slide images
    • Kothari S, Phan JH, Stokes TH, Wang MD (2013) Pathology imaging informatics for quantitative analysis of whole-slide images. J Am Med Inform Assoc 20 (6): 1099-1108
    • (2013) J am Med Inform Assoc , vol.20 , Issue.6 , pp. 1099-1108
    • Kothari, S.1    Phan, J.H.2    Stokes, T.H.3    Wang, M.D.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.