-
1
-
-
41349099104
-
Cancer statistics, 2008
-
Jemal A, Siegel R, Ward E, Hao Y, Xu J, Murray T, Thun MJ (2008) Cancer statistics, 2008. CA Cancer J Clin 58 (2): 71-96
-
(2008)
CA Cancer J Clin
, vol.58
, Issue.2
, pp. 71-96
-
-
Jemal, A.1
Siegel, R.2
Ward, E.3
Hao, Y.4
Xu, J.5
Murray, T.6
Thun, M.J.7
-
2
-
-
84930799154
-
Breast-cancer screening-viewpoint of the IARC working group
-
Lauby-Secretan B, Scoccianti C, Loomis D, Benbrahim-Tallaa L, Bouvard V, Bianchini F, Straif K (2015) Breast-cancer screening-viewpoint of the IARC working group. New Engl J Med 372 (24): 2353-2358
-
(2015)
New Engl J Med
, vol.372
, Issue.24
, pp. 2353-2358
-
-
Lauby-Secretan, B.1
Scoccianti, C.2
Loomis, D.3
Benbrahim-Tallaa, L.4
Bouvard, V.5
Bianchini, F.6
Straif, K.7
-
4
-
-
75749149659
-
A review of automatic mass detection and segmentation in mammographic images
-
Oliver A, Freixenet J, Marti J, Perez E, Pont J, Denton ER, Zwiggelaar R (2010) A review of automatic mass detection and segmentation in mammographic images. Med Image Anal 14 (2): 87-110
-
(2010)
Med Image Anal
, vol.14
, Issue.2
, pp. 87-110
-
-
Oliver, A.1
Freixenet, J.2
Marti, J.3
Perez, E.4
Pont, J.5
Denton, E.R.6
Zwiggelaar, R.7
-
5
-
-
63349107095
-
Computer-aided detection and diagnosis of breast cancer with mammography: Recent advances
-
Tang J, Rangayyan RM, Xu J, El Naqa I, Yang Y (2009) Computer-aided detection and diagnosis of breast cancer with mammography: recent advances. IEEE Trans Inf Technol Biomed 13 (2): 236-251
-
(2009)
IEEE Trans Inf Technol Biomed
, vol.13
, Issue.2
, pp. 236-251
-
-
Tang, J.1
Rangayyan, R.M.2
Xu, J.3
El Naqa, I.4
Yang, Y.5
-
8
-
-
0033772931
-
An automatic method to discriminate malignant masses from normal tissue in digital mammograms
-
te Brake GM, Karssemeijer N, Hendriks JH (2000) An automatic method to discriminate malignant masses from normal tissue in digital mammograms. Phys Med Biol 45 (10): 2843
-
(2000)
Phys Med Biol
, vol.45
, Issue.10
-
-
Te Brake, G.M.1
Karssemeijer, N.2
Hendriks, J.H.3
-
9
-
-
1642528342
-
A novel featureless approach to mass detection in digital mammograms based on support vector machines
-
Campanini R, Dongiovanni D, Iampieri E, Lanconelli N, Masotti M, Palermo G, Riccardi A, Roffilli M (2004) A novel featureless approach to mass detection in digital mammograms based on support vector machines. Phys Med Biol 49 (6): 961
-
(2004)
Phys Med Biol
, vol.49
, Issue.6
-
-
Campanini, R.1
Dongiovanni, D.2
Iampieri, E.3
Lanconelli, N.4
Masotti, M.5
Palermo, G.6
Riccardi, A.7
Roffilli, M.8
-
10
-
-
34249737053
-
A concentric morphology model for the detection of masses in mammography
-
Eltonsy NH, Tourassi GD, Elmaghraby AS (2007) A concentric morphology model for the detection of masses in mammography. IEEE Trans Med Imaging 26 (6): 880-889
-
(2007)
IEEE Trans Med Imaging
, vol.26
, Issue.6
, pp. 880-889
-
-
Eltonsy, N.H.1
Tourassi, G.D.2
Elmaghraby, A.S.3
-
11
-
-
42949154139
-
A model-based framework for the detection of spiculated masses on mammographya
-
Sampat MP, Bovik AC, Whitman GJ, Markey MK (2008) A model-based framework for the detection of spiculated masses on mammographya. Med Phys 35 (5): 2110-2123
-
(2008)
Med Phys
, vol.35
, Issue.5
, pp. 2110-2123
-
-
Sampat, M.P.1
Bovik, A.C.2
Whitman, G.J.3
Markey, M.K.4
-
12
-
-
33746659809
-
A completely automated cad system for mass detection in a large mammographic database
-
Bellotti R, De Carlo F, Tangaro S, Gargano G, Maggipinto G, Castellano M, Massafra R, Cascio D, Fauci F, Magro R et al (2006) A completely automated cad system for mass detection in a large mammographic database. Med Phys 33 (8): 3066-3075
-
(2006)
Med Phys
, vol.33
, Issue.8
, pp. 3066-3075
-
-
Bellotti, R.1
De Carlo, F.2
Tangaro, S.3
Gargano, G.4
Maggipinto, G.5
Castellano, M.6
Massafra, R.7
Cascio, D.8
Fauci, F.9
Magro, R.10
-
13
-
-
25644432883
-
Computer-aided detection of breast masses on full field digital mammograms
-
Wei J, Sahiner B, Hadjiiski LM, Chan H-P, Petrick N, Helvie MA, Roubidoux MA, Ge J, Zhou C (2005) Computer-aided detection of breast masses on full field digital mammograms. Med Phys 32 (9): 2827-2838
-
(2005)
Med Phys
, vol.32
, Issue.9
, pp. 2827-2838
-
-
Wei, J.1
Sahiner, B.2
Hadjiiski, L.M.3
Chan, H.-P.4
Petrick, N.5
Helvie, M.A.6
Roubidoux, M.A.7
Ge, J.8
Zhou, C.9
-
15
-
-
84866081542
-
Mammography segmentation with maximum likelihood active contours
-
Rahmati P, Adler A, Hamarneh G (2012) Mammography segmentation with maximum likelihood active contours. Med Image Anal 16 (6): 1167-1186
-
(2012)
Med Image Anal
, vol.16
, Issue.6
, pp. 1167-1186
-
-
Rahmati, P.1
Adler, A.2
Hamarneh, G.3
-
17
-
-
32544461460
-
Use of border information in the classification of mammographic masses
-
Varela C, Timp S, Karssemeijer N (2006) Use of border information in the classification of mammographic masses. Phys Med Biol 51 (2): 425
-
(2006)
Phys Med Biol
, vol.51
, Issue.2
-
-
Varela, C.1
Timp, S.2
Karssemeijer, N.3
-
18
-
-
37549049420
-
Characterization of mammographic masses based on level set segmentation with new image features and patient information
-
Shi J, Sahiner B, Chan H-P, Ge J, Hadjiiski L, Helvie MA, Nees A, Wu Y-T, Wei J, Zhou C et al (2008) Characterization of mammographic masses based on level set segmentation with new image features and patient information. Med Phys 35 (1): 280-290
-
(2008)
Med Phys
, vol.35
, Issue.1
, pp. 280-290
-
-
Shi, J.1
Sahiner, B.2
Chan, H.-P.3
Ge, J.4
Hadjiiski, L.5
Helvie, M.A.6
Nees, A.7
Wu, Y.-T.8
Wei, J.9
Zhou, C.10
-
21
-
-
84876231242
-
Imagenet classificationwith deep convolutional neural networks
-
Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classificationwith deep convolutional neural networks. In: NIPS, vol 1, p 4
-
(2012)
NIPS
, vol.1
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
22
-
-
84876258641
-
Learning hierarchical features for scene labeling
-
Farabet C, Couprie C, Najman L, LeCun Y (2013) Learning hierarchical features for scene labeling. IEEE Trans Pattern Anal Machi Intell 35 (8): 1915-1929
-
(2013)
IEEE Trans Pattern Anal Machi Intell
, vol.35
, Issue.8
, pp. 1915-1929
-
-
Farabet, C.1
Couprie, C.2
Najman, L.3
Lecun, Y.4
-
24
-
-
84959196836
-
Improving object detection with deep convolutional networks via bayesian optimization and structured prediction
-
Zhang Y, Sohn K, Villegas R, Pan G, Lee H (2015) Improving object detection with deep convolutional networks via bayesian optimization and structured prediction. In: IEEE conference on computer vision and pattern recognition (CVPR), pp 249-258
-
(2015)
IEEE Conference on Computer Vision and Pattern Recognition (CVPR
, pp. 249-258
-
-
Zhang, Y.1
Sohn, K.2
Villegas, R.3
Pan, G.4
Lee, H.5
-
28
-
-
0002734346
-
The digital database for screening mammography
-
Heath M, Bowyer K, Kopans D, Moore R, Kegelmeyer P (2000) The digital database for screening mammography. In: Proceedings of the 5th international workshop on digital mammography, pp 212-218
-
(2000)
Proceedings of the 5Th International Workshop on Digital Mammography
, pp. 212-218
-
-
Heath, M.1
Bowyer, K.2
Kopans, D.3
Moore, R.4
Kegelmeyer, P.5
-
33
-
-
84988896162
-
Computer-aided classification of mammographic masses using the deep learning technology: A preliminary study
-
Qiu Y, Yan S, Tan M, Cheng S, Liu H, Zheng B (2016) Computer-aided classification of mammographic masses using the deep learning technology: a preliminary study. In: SPIE medical imaging. International Society for Optics and Photonics, p 978520
-
(2016)
SPIE Medical Imaging. International Society for Optics and Photonics
-
-
Qiu, Y.1
Yan, S.2
Tan, M.3
Cheng, S.4
Liu, H.5
Zheng, B.6
-
34
-
-
84965100889
-
A deep feature based framework for breast masses classification
-
Jiao Z, Gao X, Wang Y, Li J (2016) A deep feature based framework for breast masses classification. Neurocomputing 197: 221-231
-
(2016)
Neurocomputing
, vol.197
, pp. 221-231
-
-
Jiao, Z.1
Gao, X.2
Wang, Y.3
Li, J.4
-
36
-
-
85024495276
-
-
Kallenberg M, Petersen K, Nielsen M, Ng A, Diao P, Igel C, Vachon C, Holland K, Karssemeijer N, Lillholm M (2016) Unsupervised deep learning applied to breast density segmentation and mammographic risk scoring
-
(2016)
Unsupervised Deep Learning Applied to Breast Density Segmentation and Mammographic Risk Scoring
-
-
Kallenberg, M.1
Petersen, K.2
Nielsen, M.3
Ng, A.4
Diao, P.5
Igel, C.6
Vachon, C.7
Holland, K.8
Karssemeijer, N.9
Lillholm, M.10
-
37
-
-
84903998168
-
Breast tissue segmentation and mammographic risk scoring using deep learning
-
Springer, Berlin
-
Petersen K, Nielsen M, Diao P, Karssemeijer N, Lillholm M (2014) Breast tissue segmentation and mammographic risk scoring using deep learning. In: Breast imaging. Springer, Berlin, pp 88-94
-
(2014)
Breast Imaging
, pp. 88-94
-
-
Petersen, K.1
Nielsen, M.2
Diao, P.3
Karssemeijer, N.4
Lillholm, M.5
-
38
-
-
84988896932
-
An initial investigation on developing a new method to predict short-term breast cancer risk based on deep learning technology
-
Qiu Y, Wang Y, Yan S, Tan M, Cheng S, Liu H, Zheng B (2016) An initial investigation on developing a new method to predict short-term breast cancer risk based on deep learning technology. In: SPIE medical imaging. International Society for Optics and Photonics, p 978521
-
(2016)
SPIE Medical Imaging. International Society for Optics and Photonics
-
-
Qiu, Y.1
Wang, Y.2
Yan, S.3
Tan, M.4
Cheng, S.5
Liu, H.6
Zheng, B.7
-
39
-
-
60449094498
-
Heart disease and stroke statistics-2009 update
-
Lloyd-Jones D, Adams R, Carnethon M et al (2009) Heart disease and stroke statistics-2009 update. Circulation 119 (3): 21-181
-
(2009)
Circulation
, vol.119
, Issue.3
, pp. 21-181
-
-
Lloyd-Jones, D.1
Adams, R.2
Carnethon, M.3
-
40
-
-
79952444246
-
Forecasting the future of cardiovascular disease in the United States: A policy statement from the American Heart Association
-
Heidenreich PA, Trogdon JG, Khavjou OA et al (2011) Forecasting the future of cardiovascular disease in the United States: a policy statement from the American Heart Association. Circulation 123: 933-944
-
(2011)
Circulation
, vol.123
, pp. 933-944
-
-
Heidenreich, P.A.1
Trogdon, J.G.2
Khavjou, O.A.3
-
42
-
-
54949104993
-
Four-chamber heart modeling and automatic segmentation for 3D cardiac CT volumes using marginal space learning and steerable features
-
Zheng Y, Barbu A, Georgescu B, Scheuering M, Comaniciu D (2008) Four-chamber heart modeling and automatic segmentation for 3D cardiac CT volumes using marginal space learning and steerable features. IEEE Trans Med Imaging 27 (11): 1668-1681
-
(2008)
IEEE Trans Med Imaging
, vol.27
, Issue.11
, pp. 1668-1681
-
-
Zheng, Y.1
Barbu, A.2
Georgescu, B.3
Scheuering, M.4
Comaniciu, D.5
-
44
-
-
84857295176
-
The segmentation of the left ventricle of the heart from ultrasound data using deep learning architectures and derivative-based search methods
-
Carneiro G, Nascimento JC, Freitas A (2012) The segmentation of the left ventricle of the heart from ultrasound data using deep learning architectures and derivative-based search methods. IEEE Trans Image Process 21 (3): 968-982
-
(2012)
IEEE Trans Image Process
, vol.21
, Issue.3
, pp. 968-982
-
-
Carneiro, G.1
Nascimento, J.C.2
Freitas, A.3
-
45
-
-
84884546164
-
Combining multiple dynamic models and deep learning architectures for tracking the left ventricle endocardium in ultrasound data
-
Carneiro G, Nascimento JC (2013) Combining multiple dynamic models and deep learning architectures for tracking the left ventricle endocardium in ultrasound data. IEEE Trans Pattern Anal Mach Intell 35 (11): 2592-2607
-
(2013)
IEEE Trans Pattern Anal Mach Intell
, vol.35
, Issue.11
, pp. 2592-2607
-
-
Carneiro, G.1
Nascimento, J.C.2
-
46
-
-
84978204565
-
Combining deep learning and level set for the automated segmentation of the left ventricle of the heart from cardiac cine magnetic resonance
-
Ngo TA, Lu Z, Carneiro G (2016) Combining deep learning and level set for the automated segmentation of the left ventricle of the heart from cardiac cine magnetic resonance. Med Image Anal 35: 159-171
-
(2016)
Med Image Anal
, vol.35
, pp. 159-171
-
-
Ngo, T.A.1
Lu, Z.2
Carneiro, G.3
-
47
-
-
84911378353
-
Fully automated non-rigid segmentationwith distance regularized level set evolution initialization and constrained by deep-structured inference
-
Ngo TA, Carneiro G (2014) Fully automated non-rigid segmentationwith distance regularized level set evolution initialization and constrained by deep-structured inference. In: Proceedings of IEEE conference computer vision and pattern recognition, pp 1-8
-
(2014)
Proceedings of IEEE Conference Computer Vision and Pattern Recognition
, pp. 1-8
-
-
Ngo, T.A.1
Carneiro, G.2
-
49
-
-
84958981335
-
Multi-scale deep networks and regression forests for direct bi-ventricular volume estimation
-
Zhen X, Wang Z, Islam A, Bhaduri M, Chan I, Li S (2016) Multi-scale deep networks and regression forests for direct bi-ventricular volume estimation. Med Image Anal 30: 120-129
-
(2016)
Med Image Anal
, vol.30
, pp. 120-129
-
-
Zhen, X.1
Wang, Z.2
Islam, A.3
Bhaduri, M.4
Chan, I.5
Li, S.6
-
50
-
-
84958955334
-
A combined deep-learning and deformablemodel approach to fully automatic segmentation of the left ventricle in cardiac MRI
-
Avendi MR, Kheirkhah A, Jafarkhani H (2016) A combined deep-learning and deformablemodel approach to fully automatic segmentation of the left ventricle in cardiac MRI. Med Image Anal 30: 108-119
-
(2016)
Med Image Anal
, vol.30
, pp. 108-119
-
-
Avendi, M.R.1
Kheirkhah, A.2
Jafarkhani, H.3
-
51
-
-
85019805716
-
Fully automatic segmentation of heart chambers in cardiac MRI using deep learning
-
Avendi MR, Kheradvar A, Jafarkhani H (2016) Fully automatic segmentation of heart chambers in cardiac MRI using deep learning. J Cardiovasc Magn Reson 18: 351-353
-
(2016)
J Cardiovasc Magn Reson
, vol.18
, pp. 351-353
-
-
Avendi, M.R.1
Kheradvar, A.2
Jafarkhani, H.3
-
53
-
-
85027929425
-
Hierarchical retinal blood vessel segmentation based on feature and ensemble learning
-
Wang S, Yin Y, Cao G, Wei B, Zheng Y, Yang G (2015) Hierarchical retinal blood vessel segmentation based on feature and ensemble learning. Neruocomputing 149: 708-717
-
(2015)
Neruocomputing
, vol.149
, pp. 708-717
-
-
Wang, S.1
Yin, Y.2
Cao, G.3
Wei, B.4
Zheng, Y.5
Yang, G.6
-
54
-
-
84959325071
-
A cross-modality learning approach for vessel segmentation in retinal images
-
Li Q, Feng B, Xie L, Liang P, Zhang H, Wang T (2016) A cross-modality learning approach for vessel segmentation in retinal images. IEEE Trans Med Imaging 35 (1): 109-118
-
(2016)
IEEE Trans Med Imaging
, vol.35
, Issue.1
, pp. 109-118
-
-
Li, Q.1
Feng, B.2
Xie, L.3
Liang, P.4
Zhang, H.5
Wang, T.6
-
57
-
-
85020180995
-
Classifying diabetic retinopathy using deep learning architecture
-
Chandrakumar T, Kathirvel R (2016) Classifying diabetic retinopathy using deep learning architecture. Int J Eng Res Technol 5 (6): 19-24
-
(2016)
Int J Eng Res Technol
, vol.5
, Issue.6
, pp. 19-24
-
-
Chandrakumar, T.1
Kathirvel, R.2
-
58
-
-
84978370232
-
Deep vessel tracking: A generalized probabilistic approach via deep learning
-
Wu A, Xu Z, Gao M, Buty M, Mollura DJ (2016) Deep vessel tracking: a generalized probabilistic approach via deep learning. In: Proceedings of IEEE international symposium on biomedical, imaging, pp 1363-1367
-
(2016)
Proceedings of IEEE International Symposium on Biomedical, Imaging
, pp. 1363-1367
-
-
Wu, A.1
Xu, Z.2
Gao, M.3
Buty, M.4
Mollura, D.J.5
-
60
-
-
84978419519
-
Retinal vessel segmentation via deep learning network and fully-connected conditional random fields
-
Fu H, Xu Y, Wong DWK, Liu J (2016) Retinal vessel segmentation via deep learning network and fully-connected conditional random fields. In: Proceedings of IEEE international symposium on biomedical, imaging, pp 698-701
-
(2016)
Proceedings of IEEE International Symposium on Biomedical, Imaging
, pp. 698-701
-
-
Fu, H.1
Xu, Y.2
Wong, D.3
Liu, J.4
-
61
-
-
84947419800
-
3D deep learning for efficient and robust landmark detection in volumetric data
-
Zheng Y, Liu D, Georgescu B, Nguyen H, Comaniciu D (2015) 3D deep learning for efficient and robust landmark detection in volumetric data. In: Proceedings of international conference on medical image computing and computer assisted intervention, pp 565-572
-
(2015)
Proceedings of International Conference on Medical Image Computing and Computer Assisted Intervention
, pp. 565-572
-
-
Zheng, Y.1
Liu, D.2
Georgescu, B.3
Nguyen, H.4
Comaniciu, D.5
-
62
-
-
84968572880
-
Marginal space deep learning: Efficient architecture for volumetric image parsing
-
Ghesu FC, Krubasik E, Georgescu B, Singh V, Zheng Y, Hornegger J, Comaniciu D (2016) Marginal space deep learning: efficient architecture for volumetric image parsing. IEEE Trans Med Imaging 35 (5): 1217-1228
-
(2016)
IEEE Trans Med Imaging
, vol.35
, Issue.5
, pp. 1217-1228
-
-
Ghesu, F.C.1
Krubasik, E.2
Georgescu, B.3
Singh, V.4
Zheng, Y.5
Hornegger, J.6
Comaniciu, D.7
-
63
-
-
84975747881
-
Automatic coronary artery calcium scoring in cardiac CT angiography using paired convolutional neural networks
-
Wolterink JM, Leiner T, deVos BD, vanHamersvelt RW, Viergever MA, Isgum I (2016) Automatic coronary artery calcium scoring in cardiac CT angiography using paired convolutional neural networks. Med Image Anal 34: 123-136
-
(2016)
Med Image Anal
, vol.34
, pp. 123-136
-
-
Wolterink, J.M.1
Leiner, T.2
Devos, B.D.3
Vanhamersvelt, R.W.4
Viergever, M.A.5
Isgum, I.6
-
64
-
-
70350345530
-
A review of 3D vessel lumen segmentation techniques: Models, features and extraction schemes
-
Lesage D, Angelini ED, Bloch I, Funka-Lea G (2009) A review of 3D vessel lumen segmentation techniques: models, features and extraction schemes. Med Image Anal 13 (6): 819-845
-
(2009)
Med Image Anal
, vol.13
, Issue.6
, pp. 819-845
-
-
Lesage, D.1
Angelini, E.D.2
Bloch, I.3
Funka-Lea, G.4
-
65
-
-
79957990394
-
Machine learning based vesselness measurement for coronary artery segmentation in cardiac CT volumes
-
Zheng Y, Loziczonek M, Georgescu B, Zhou SK, Vega-Higuera F, Comaniciu D (2011) Machine learning based vesselness measurement for coronary artery segmentation in cardiac CT volumes. In: Proceedings of SPIE medical imaging, vol 7962, pp 1-12
-
(2011)
Proceedings of SPIE Medical Imaging
, vol.7962
, pp. 1-12
-
-
Zheng, Y.1
Loziczonek, M.2
Georgescu, B.3
Zhou, S.K.4
Vega-Higuera, F.5
Comaniciu, D.6
-
67
-
-
84966332536
-
An evaluation of automatic coronary artery calcium scoring with cardiac CT: The or CaScore challenge
-
Wolterink JM, Leiner T, Coatrieux J-L, Kelm BM, Kondo S, Salgado RA, Shahzad R, Shu H, Snoeren M, Takx RA, van Vliet L, de Vos BD, van Walsum T, Willems TP, Yang G, Zheng Y, Viergever MA, Ium I (2016) An evaluation of automatic coronary artery calcium scoring with cardiac CT: the or CaScore challenge. Med Phys 43 (5): 2361-2373
-
(2016)
Med Phys
, vol.43
, Issue.5
, pp. 2361-2373
-
-
Wolterink, J.M.1
Leiner, T.2
Coatrieux, J.-L.3
Kelm, B.M.4
Kondo, S.5
Salgado, R.A.6
Shahzad, R.7
Shu, H.8
Snoeren, M.9
Takx, R.A.10
Van Vliet, L.11
De Vos, B.D.12
Van Walsum, T.13
Willems, T.P.14
Yang, G.15
Zheng, Y.16
Viergever, M.A.17
Ium, I.18
-
68
-
-
84890498817
-
Machine learning in cell biology teaching computers to recognize phenotypes
-
Sommer C, Gerlich DW (2013) Machine learning in cell biology teaching computers to recognize phenotypes. J Cell Sci 126 (24): 5529-5539
-
(2013)
J Cell Sci
, vol.126
, Issue.24
, pp. 5529-5539
-
-
Sommer, C.1
Gerlich, D.W.2
-
69
-
-
85032751398
-
Machine learning in medical imaging
-
Wernick MN, Yang Y, Brankov JG, Yourganov G, Strother SC (2010) Machine learning in medical imaging. IEEE Signal Process Mag 27 (4): 25-38
-
(2010)
IEEE Signal Process Mag
, vol.27
, Issue.4
, pp. 25-38
-
-
Wernick, M.N.1
Yang, Y.2
Brankov, J.G.3
Yourganov, G.4
Strother, S.C.5
-
72
-
-
84989933991
-
Robust nucleus/cell detection and segmentation in digital pathology and microscopy images: A comprehensive review
-
Xing F, Yang L (2016) Robust nucleus/cell detection and segmentation in digital pathology and microscopy images: a comprehensive review. IEEE Rev Biomed Eng 99
-
(2016)
IEEE Rev Biomed Eng
-
-
Xing, F.1
Yang, L.2
-
74
-
-
85032751458
-
Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups
-
Hinton G, Deng L, Yu D, Dahl GE, Mohamed Ar, Jaitly N, Senior A, Vanhoucke V, Nguyen P, Sainath TN, Kingsbury B (2012) Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups. IEEE Signal Process Mag 29 (6): 82-97
-
(2012)
IEEE Signal Process Mag
, vol.29
, Issue.6
, pp. 82-97
-
-
Hinton, G.1
Deng, L.2
Yu, D.3
Dahl, G.E.4
Ar, M.5
Jaitly, N.6
Senior, A.7
Vanhoucke, V.8
Nguyen, P.9
Sainath, T.N.10
Kingsbury, B.11
-
75
-
-
84948763339
-
Crowdsourcing the creation of image segmentation algorithms for connectomics
-
Arganda-Carreras I et al (2015) Crowdsourcing the creation of image segmentation algorithms for connectomics. Front Neuroanat 9 (142)
-
(2015)
Front Neuroanat
, vol.9
, Issue.142
-
-
Arganda-Carreras, I.1
-
76
-
-
84920921065
-
Assessment of algorithms for mitosis detection in breast cancer histopathology images
-
Veta M et al (2015) Assessment of algorithms for mitosis detection in breast cancer histopathology images. Med Image Anal 20 (1): 237-248
-
(2015)
Med Image Anal
, vol.20
, Issue.1
, pp. 237-248
-
-
Veta, M.1
-
77
-
-
84923367417
-
Deep neural nets as a method for quantitative structure-activity relationships
-
Ma J, Sheridan RP, Liaw A, Dahl GE, Svetnik V (2015) Deep neural nets as a method for quantitative structure-activity relationships. J Chem Inf Model 55: 263274
-
(2015)
J Chem Inf Model
, vol.55
, pp. 263274
-
-
Ma, J.1
Sheridan, R.P.2
Liaw, A.3
Dahl, G.E.4
Svetnik, V.5
-
78
-
-
84923276179
-
The human splicing code reveals new insights into the genetic determinants of disease
-
Xiong HY et al (2015) The human splicing code reveals new insights into the genetic determinants of disease. Science 347 (6218)
-
(2015)
Science
, vol.347
, Issue.6218
-
-
Xiong, H.Y.1
-
79
-
-
0032203257
-
Gradient-based learning applied to document recognition
-
LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied to document recognition. Proc IEEE 86: 2278-2324
-
(1998)
Proc IEEE
, vol.86
, pp. 2278-2324
-
-
Lecun, Y.1
Bottou, L.2
Bengio, Y.3
Haffner, P.4
-
83
-
-
84968661778
-
Guest editorial deep learning in medical imaging: Overviewand future promise of an exciting newtechnique
-
Greenspan H, van Ginneken B, Summers RM (2016) Guest editorial deep learning in medical imaging: overviewand future promise of an exciting newtechnique. IEEE Trans Med Imaging 35 (5): 1153-1159
-
(2016)
IEEE Trans Med Imaging
, vol.35
, Issue.5
, pp. 1153-1159
-
-
Greenspan, H.1
Van Ginneken, B.2
Summers, R.M.3
-
86
-
-
80053540444
-
Unsupervised learning of hierarchical representations with convolutional deep belief networks
-
Lee H, Grosse R, Ranganath R, Ng AY (2011) Unsupervised learning of hierarchical representations with convolutional deep belief networks. Commun ACM 54 (10): 95-103
-
(2011)
Commun ACM
, vol.54
, Issue.10
, pp. 95-103
-
-
Lee, H.1
Grosse, R.2
Ranganath, R.3
Ng, A.Y.4
-
87
-
-
84903724014
-
Deep learning: Methods and applications
-
Deng L, Yu D (2014) Deep learning: methods and applications. Found Trends Signal Process 3 (3-4): 197-387
-
(2014)
Found Trends Signal Process
, vol.3
, Issue.3-4
, pp. 197-387
-
-
Deng, L.1
Yu, D.2
-
88
-
-
84910651844
-
Deep learning in neural networks: An overview. Neural Networks 61: 85-117
-
based on TR arXiv: 1404.7828 [cs.NE]
-
Schmidhuber J (2015) Deep learning in neural networks: an overview. Neural Networks 61: 85-117. Published online 2014; based on TR arXiv: 1404.7828 [cs.NE]
-
(2015)
Published Online 2014
-
-
Schmidhuber, J.1
-
90
-
-
77958488310
-
Deep machine learning-a new frontier in artificial intelligence research [research frontier]
-
Arel I, Rose DC, Karnowski TP (2010) Deep machine learning-a new frontier in artificial intelligence research [research frontier]. IEEE Comput Intell Mag 5 (4): 13-18
-
(2010)
IEEE Comput Intell Mag
, vol.5
, Issue.4
, pp. 13-18
-
-
Arel, I.1
Rose, D.C.2
Karnowski, T.P.3
-
91
-
-
69349090197
-
Learning deep architectures for ai
-
Bengio Y (2009) Learning deep architectures for ai. Found Trends Mach Learn 2: 1-127
-
(2009)
Found Trends Mach Learn
, vol.2
, pp. 1-127
-
-
Bengio, Y.1
-
93
-
-
77956941136
-
Histopatological image analysis: A review
-
Gurcan MN, Boucheron LE, Can A, Madabushi A, Rajpoot NM, Yener B (2009) Histopatological image analysis: a review. IEEE Rev Biomed Eng 2: 147-171
-
(2009)
IEEE Rev Biomed Eng
, vol.2
, pp. 147-171
-
-
Gurcan, M.N.1
Boucheron, L.E.2
Can, A.3
Madabushi, A.4
Rajpoot, N.M.5
Yener, B.6
-
94
-
-
85032752055
-
Automated histology analysis: Opportunities for signal processing
-
McCann MT, Ozolek JA, Castro CA, Parvin B, Kovacevic J (2015) Automated histology analysis: opportunities for signal processing. IEEE Signal Process Mag 32: 78-87
-
(2015)
IEEE Signal Process Mag
, vol.32
, pp. 78-87
-
-
McCann, M.T.1
Ozolek, J.A.2
Castro, C.A.3
Parvin, B.4
Kovacevic, J.5
-
96
-
-
84900449424
-
Methods for nuclei detection, segmentation, and classification in digital histopathology: A review-current status and fture potential
-
Irshad H, Veillard A, Roux L, Racoceanu D (2014) Methods for nuclei detection, segmentation, and classification in digital histopathology: a review-current status and fture potential. IEEE Rev Biomed Eng 7: 97-114
-
(2014)
IEEE Rev Biomed Eng
, vol.7
, pp. 97-114
-
-
Irshad, H.1
Veillard, A.2
Roux, L.3
Racoceanu, D.4
-
97
-
-
84885899176
-
Mitosis detection in breast cancer histology images with deep neural networks
-
Ciresan DC, Giusti A, Gambardella LM, Schmidhuber J (2013) Mitosis detection in breast cancer histology images with deep neural networks. In: International conference medical image computing and computer-assisted intervention (MICCAI), vol 8150, pp 411-418
-
(2013)
International Conference Medical Image Computing and Computer-Assisted Intervention (MICCAI)
, vol.8150
, pp. 411-418
-
-
Ciresan, D.C.1
Giusti, A.2
Gambardella, L.M.3
Schmidhuber, J.4
-
98
-
-
84959431409
-
An automatic learning-based framework for robust nucleus segmentation
-
Xing F, Xie Y, Yang L (2015) An automatic learning-based framework for robust nucleus segmentation. IEEE Trans Med Imaging PP (99): 1
-
(2015)
IEEE Trans Med Imaging
-
-
Xing, F.1
Xie, Y.2
Yang, L.3
-
100
-
-
84951788063
-
Neutrophils identification by deep learning and voronoi diagram of clusters
-
Munich, Germany, 5-9 October 2015, Proceedings, Part III
-
Wang J, MacKenzie JD, Ramachandran R, Chen DZ (2015) Neutrophils identification by deep learning and voronoi diagram of clusters. In: medical image computing and computerassisted intervention-MICCAI 2015: 18th international conference, Munich, Germany, 5-9 October 2015, Proceedings, Part III, pp 226-233
-
(2015)
Medical Image Computing and Computerassisted Intervention-Miccai 2015: 18Th International Conference
, pp. 226-233
-
-
Wang, J.1
Mackenzie, J.D.2
Ramachandran, R.3
Chen, D.Z.4
-
101
-
-
84944321865
-
-
In: IEEE international symposium on biomedical imaging
-
Dong B, Shao L, Costa MD, Bandmann O, Frangi AF (2015) Deep learning for automatic cell detection in wide-field microscopy zebrafish images. In: IEEE international symposium on biomedical imaging, pp 772-776
-
(2015)
Deep Learning for Automatic Cell Detection in Wide-Field Microscopy Zebrafish Images
, pp. 772-776
-
-
Dong, B.1
Shao, L.2
Costa, M.D.3
Bandmann, O.4
Frangi, A.F.5
-
104
-
-
84951858138
-
Beyond classification: Structured regression for robust cell detection using convolutional neural network
-
Xie Y, Xing F, Kong X, Yang L (2015) Beyond classification: structured regression for robust cell detection using convolutional neural network. In: International conference medical image computing and computer-assisted intervention (MICCAI), vol 9351, pp 358-365
-
(2015)
International Conference Medical Image Computing and Computer-Assisted Intervention (MICCAI)
, vol.9351
, pp. 358-365
-
-
Xie, Y.1
Xing, F.2
Kong, X.3
Yang, L.4
-
105
-
-
84968542311
-
Locality sensitive deep learning for detection and classification of nuclei in routine colon cancer histology images
-
Sirinukunwattana K, Raza SEA, Tsang YW, Snead DRJ, Cree IA, Rajpoot NM (2016) Locality sensitive deep learning for detection and classification of nuclei in routine colon cancer histology images. IEEE Trans Med Imaging 35 (5): 1196-1206
-
(2016)
IEEE Trans Med Imaging
, vol.35
, Issue.5
, pp. 1196-1206
-
-
Sirinukunwattana, K.1
Raza, S.2
Tsang, Y.W.3
Snead, D.4
Cree, I.A.5
Rajpoot, N.M.6
-
107
-
-
84951843710
-
Deep voting: A robust approach toward nucleus localization in microscopy images
-
Xie Y, Kong X, Xing F, Liu F, Su H, Yang L (2015) Deep voting: a robust approach toward nucleus localization in microscopy images. In: International conference on medical image computing and computer-assisted intervention (MICCAI), vol 9351, pp 374-382
-
(2015)
International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI)
, vol.9351
, pp. 374-382
-
-
Xie, Y.1
Kong, X.2
Xing, F.3
Liu, F.4
Su, H.5
Yang, L.6
-
108
-
-
84969939903
-
Aggnet: Deep learning from crowds for mitosis detection in breast cancer histology images
-
Albarqouni S, Baur C, Achilles F, Belagiannis V, Demirci S, Navab N (2016) Aggnet: deep learning from crowds for mitosis detection in breast cancer histology images. IEEE Trans Med Imaging 35 (5): 1313-1321
-
(2016)
IEEE Trans Med Imaging
, vol.35
, Issue.5
, pp. 1313-1321
-
-
Albarqouni, S.1
Baur, C.2
Achilles, F.3
Belagiannis, V.4
Demirci, S.5
Navab, N.6
-
109
-
-
84968665432
-
Fast convolutional neural network training using selective data sampling: Application to hemorrhage detection in color fundus images
-
van Grinsven MJJP, van Ginneken B, Hoyng CB, Theelen T, Snchez CI (2016) Fast convolutional neural network training using selective data sampling: application to hemorrhage detection in color fundus images. IEEE Trans Med Imaging 35 (5): 1273-1284
-
(2016)
IEEE Trans Med Imaging
, vol.35
, Issue.5
, pp. 1273-1284
-
-
Van Grinsven, M.1
Van Ginneken, B.2
Hoyng, C.B.3
Theelen, T.4
Snchez, C.I.5
-
110
-
-
84978404235
-
-
Xu J, Xiang L, Liu Q, Gilmore H, Wu J, Tang J, Madabhushi A (2015) Stacked sparse autoencoder (ssae) for nuclei detection on breast cancer histopathology images
-
(2015)
Stacked Sparse Autoencoder (Ssae) for Nuclei Detection on Breast Cancer Histopathology Images
-
-
Xu, J.1
Xiang, L.2
Liu, Q.3
Gilmore, H.4
Wu, J.5
Tang, J.6
Madabhushi, A.7
-
111
-
-
84908537903
-
CNN features off-the-shelf: An astounding baseline for recognition
-
Razavian AS, Azizpour H, Sullivan J, Carlsson S (2014) CNN features off-the-shelf: an astounding baseline for recognition. In: Proceedings of the 2014 IEEE conference on computer vision and pattern recognition workshops, CVPRW’14, pp 512-519
-
(2014)
Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition Workshops, CVPRW’14
, pp. 512-519
-
-
Razavian, A.S.1
Azizpour, H.2
Sullivan, J.3
Carlsson, S.4
-
112
-
-
84968649810
-
Convolutional neural networks for medical image analysis: Full training or fine tuning?
-
Tajbakhsh N, Shin JY, Gurudu SR, Hurst RT, Kendall CB, Gotway MB, Liang J (2016) Convolutional neural networks for medical image analysis: full training or fine tuning? IEEE Trans Med Imaging 35 (5): 1299-1312
-
(2016)
IEEE Trans Med Imaging
, vol.35
, Issue.5
, pp. 1299-1312
-
-
Tajbakhsh, N.1
Shin, J.Y.2
Gurudu, S.R.3
Hurst, R.T.4
Kendall, C.B.5
Gotway, M.B.6
Liang, J.7
-
114
-
-
84991439219
-
Deep models for brain EM image segmentation novel insights and improved performance
-
Fakhry A, Peng H, Ji S (2016) Deep models for brain EM image segmentation novel insights and improved performance. Bioinformatics 32: 2352-2358
-
(2016)
Bioinformatics
, vol.32
, pp. 2352-2358
-
-
Fakhry, A.1
Peng, H.2
Ji, S.3
-
115
-
-
26444512083
-
Toward automatic phenotyping of developing embryos from videos
-
Ning F, Delhomme D, LeCun Y, Piano F, Bottou L, Barbano PE (2005) Toward automatic phenotyping of developing embryos from videos. IEEE Trans Image Process 14 (9): 1360-1371
-
(2005)
IEEE Trans Image Process
, vol.14
, Issue.9
, pp. 1360-1371
-
-
Ning, F.1
Delhomme, D.2
Lecun, Y.3
Piano, F.4
Bottou, L.5
Barbano, P.E.6
-
116
-
-
84950238277
-
Accurate segmentation of cervical cytoplasm and nuclei based on multi-scale convolutional network and graph partitioning
-
Song Y, Zhang L, Chen S, Ni D, Lei B, Wang T (2015) Accurate segmentation of cervical cytoplasm and nuclei based on multi-scale convolutional network and graph partitioning. IEEE Trans Biomed Eng 62: 2421-2433
-
(2015)
IEEE Trans Biomed Eng
, vol.62
, pp. 2421-2433
-
-
Song, Y.1
Zhang, L.2
Chen, S.3
Ni, D.4
Lei, B.5
Wang, T.6
-
117
-
-
84951834022
-
U-Net: Convolutional networks for biomedical image segmentation
-
Ronneberger O, Fischer P, Brox T (2015) U-Net: convolutional networks for biomedical image segmentation. In: Medical image computing and computer-assisted intervention-MICCAI 2015: 18th international conference, Munich, Germany, 5-9 October 2015, Proceedings, Part III, pp 234-241
-
(2015)
Medical Image Computing and Computer-Assisted Intervention-Miccai 2015: 18Th International Conference, Munich, Germany, 5-9 October 2015, Proceedings, Part III
, pp. 234-241
-
-
Ronneberger, O.1
Fischer, P.2
Brox, T.3
-
118
-
-
85007271408
-
Deep contextual networks for neuronal structure segmentation
-
Chen H, Qi X, Cheng J, Heng PA (2016) Deep contextual networks for neuronal structure segmentation. In: AAAI, pp1167-1173
-
(2016)
AAAI
, pp. 1167-1173
-
-
Chen, H.1
Qi, X.2
Cheng, J.3
Heng, P.A.4
-
119
-
-
84965136278
-
Parallel multi-dimensional lstm, with application to fast biomedical volumetric image segmentation
-
Stollenga MF, Byeon W, Liwicki M, Schmidhuber J (2015) Parallel multi-dimensional lstm, with application to fast biomedical volumetric image segmentation. In: Advances in neural information processing systems, vol 28, pp 2980-2988
-
(2015)
Advances in Neural Information Processing Systems
, vol.28
, pp. 2980-2988
-
-
Stollenga, M.F.1
Byeon, W.2
Liwicki, M.3
Schmidhuber, J.4
-
120
-
-
84951749617
-
Robust cell detection and segmentation in histopathological images using sparse reconstruction and stacked denoising autoencoders
-
Su H, Xing F, Kong X, Xie Y, Zhang S, Yang L (2015) Robust cell detection and segmentation in histopathological images using sparse reconstruction and stacked denoising autoencoders. In: International conference on medical image computing and computer assisted intervention (MICCAI), vol 9351, pp 383-390
-
(2015)
International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI)
, vol.9351
, pp. 383-390
-
-
Su, H.1
Xing, F.2
Kong, X.3
Xie, Y.4
Zhang, S.5
Yang, L.6
-
121
-
-
85024481352
-
Hep-2 cell image classification with deep convolutional neural networks
-
Gao Z, Wang L, Zhou L, Zhang J (2016) Hep-2 cell image classification with deep convolutional neural networks. IEEE J Biomed Health Inf PP (99): 1
-
(2016)
IEEE J Biomed Health Inf
-
-
Gao, Z.1
Wang, L.2
Zhou, L.3
Zhang, J.4
-
122
-
-
84960984309
-
Deep learning in label-free cell classification
-
Chen CL, Mahjoubfar A, Tai L, Blaby IK, Huang A, Niazi KR, Jalali B (2016) Deep learning in label-free cell classification. Sci Rep 6 (21471)
-
(2016)
Sci Rep
, vol.6
, Issue.21471
-
-
Chen, C.L.1
Mahjoubfar, A.2
Tai, L.3
Blaby, I.K.4
Huang, A.5
Niazi, K.R.6
Jalali, B.7
-
123
-
-
84946045951
-
Deep convolutional activation features for large scale brain tumor histopathology image classification and segmentation
-
Xu Y, Jia Z, Ai Y, Zhang F, Lai M, Chang EIC (2015) Deep convolutional activation features for large scale brain tumor histopathology image classification and segmentation. In: 2015 IEEE international conference on acoustics, speech and signal processing (ICASSP), pp 947-951
-
(2015)
2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
, pp. 947-951
-
-
Xu, Y.1
Jia, Z.2
Ai, Y.3
Zhang, F.4
Lai, M.5
Chang, E.6
-
124
-
-
84905230329
-
Deep learning of feature representation with multiple instance learning for medical image analysis
-
Xu Y, Mo T, Feng Q, Zhong P, Lai M, Chang EIC (2014) Deep learning of feature representation with multiple instance learning for medical image analysis. In: 2014 IEEE international conference on acoustics, speech and signal processing (ICASSP), pp 1626-1630
-
(2014)
2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
, pp. 1626-1630
-
-
Xu, Y.1
Mo, T.2
Feng, Q.3
Zhong, P.4
Lai, M.5
Chang, E.6
-
125
-
-
84885929616
-
A deep learning architecture for image representation, visual interpretability and automated basal-cell carcinoma cancer detection
-
Cruz-Roa AA, Ovalle JEA, Madabhushi A, Osorio FAG (2013) A deep learning architecture for image representation, visual interpretability and automated basal-cell carcinoma cancer detection. In: Medical image computing and computer-assisted intervention-MICCAI 2013, pp 403-410
-
(2013)
Medical Image Computing and Computer-Assisted Intervention-Miccai 2013
, pp. 403-410
-
-
Cruz-Roa, A.A.1
Ovalle, J.2
Madabhushi, A.3
Osorio, F.4
-
126
-
-
84898773212
-
Ictive sparse coding for classification of distinct regions in tumor histopathology
-
Chang H, Zhou Y, Spellman P, Parvin B (2013) Stacked predictive sparse coding for classification of distinct regions in tumor histopathology. In: Proceedings of the IEEE international conference on computer vision, pp 169-176
-
(2013)
Stacked Pred
, pp. 169-176
-
-
Chang, H.1
Zhou, Y.2
Spellman, P.3
Parvin, B.4
-
127
-
-
84913555165
-
-
arXiv: 1408.5093
-
Jia Y, Shelhamer E, Donahue J, Karayev S, Long J, Girshick R, Guadarrama S, Darrell T (2014) Caffe: convolutional architecture for fast feature embedding. arXiv: 1408.5093
-
(2014)
Caffe: Convolutional Architecture for Fast Feature Embedding
-
-
Jia, Y.1
Shelhamer, E.2
Donahue, J.3
Karayev, S.4
Long, J.5
Girshick, R.6
Guadarrama, S.7
Darrell, T.8
-
129
-
-
85010814719
-
Tensor Flow: Large-scale machine learning on heterogeneous systems
-
Abadi M et al (2015) Tensor Flow: large-scale machine learning on heterogeneous systems. Software available from tensorflow.org
-
(2015)
Software Available from Tensorflow.Org
-
-
Abadi, M.1
-
132
-
-
84968861400
-
Applications of deep learning in biomedicine
-
Mamoshina P, Vieira A, Putin E, Zhavoronkov A (2016) Applications of deep learning in biomedicine. Mol Pharmaceutics 13 (5): 1445-1454
-
(2016)
Mol Pharmaceutics
, vol.13
, Issue.5
, pp. 1445-1454
-
-
Mamoshina, P.1
Vieira, A.2
Putin, E.3
Zhavoronkov, A.4
-
133
-
-
85024476621
-
-
Wang W, Zhang M, Chen G, Jagadish HV, Ooi BC, Tan KL (2016) Database meets deep learning: challenges and opportunities
-
(2016)
Database Meets Deep Learning: Challenges and Opportunities
-
-
Wang, W.1
Zhang, M.2
Chen, G.3
Jagadish, H.V.4
Ooi, B.C.5
Tan, K.L.6
-
134
-
-
84886247903
-
Pathology imaging informatics for quantitative analysis of whole-slide images
-
Kothari S, Phan JH, Stokes TH, Wang MD (2013) Pathology imaging informatics for quantitative analysis of whole-slide images. J Am Med Inform Assoc 20 (6): 1099-1108
-
(2013)
J am Med Inform Assoc
, vol.20
, Issue.6
, pp. 1099-1108
-
-
Kothari, S.1
Phan, J.H.2
Stokes, T.H.3
Wang, M.D.4
|