메뉴 건너뛰기




Volumn 30, Issue , 2016, Pages 120-129

Multi-scale deep networks and regression forests for direct bi-ventricular volume estimation

Author keywords

Direct volume estimation; Multi scale deep networks; Random forests; Regression

Indexed keywords

DECISION TREES; RANDOM FORESTS;

EID: 84958981335     PISSN: 13618415     EISSN: 13618423     Source Type: Journal    
DOI: 10.1016/j.media.2015.07.003     Document Type: Article
Times cited : (113)

References (62)
  • 4
    • 72249120387 scopus 로고    scopus 로고
    • Embedding overlap priors in variational left ventricle tracking
    • Ayed B.I., Li S., Ross I. Embedding overlap priors in variational left ventricle tracking. IEEE Trans. Med. Imag. 2009, 28(12):1902-1913.
    • (2009) IEEE Trans. Med. Imag. , vol.28 , Issue.12 , pp. 1902-1913
    • Ayed, B.I.1    Li, S.2    Ross, I.3
  • 8
    • 84860701629 scopus 로고    scopus 로고
    • Analysis of a random forests model
    • Biau G. Analysis of a random forests model. J. Mach. Learn. Res. 2012, 13(1):1063-1095.
    • (2012) J. Mach. Learn. Res. , vol.13 , Issue.1 , pp. 1063-1095
    • Biau, G.1
  • 10
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman L. Random forests. Mach. Learn. 2001, 45(1):5-32.
    • (2001) Mach. Learn. , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 11
    • 0020737631 scopus 로고
    • The Laplacian pyramid as a compact image code
    • Burt P.J., Adelson E.H. The Laplacian pyramid as a compact image code. IEEE Trans. Commun. 1983, 31(4):532-540.
    • (1983) IEEE Trans. Commun. , vol.31 , Issue.4 , pp. 532-540
    • Burt, P.J.1    Adelson, E.H.2
  • 12
    • 84884546164 scopus 로고    scopus 로고
    • Combining multiple dynamic models and deep learning architectures for tracking the left ventricle endocardium in ultrasound data
    • Carneiro G., Nascimento J. Combining multiple dynamic models and deep learning architectures for tracking the left ventricle endocardium in ultrasound data. IEEE Trans. Patt. Anal. Mach. Intell 2013, 35(11):2592-2607.
    • (2013) IEEE Trans. Patt. Anal. Mach. Intell , vol.35 , Issue.11 , pp. 2592-2607
    • Carneiro, G.1    Nascimento, J.2
  • 13
    • 0037192118 scopus 로고    scopus 로고
    • Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart a statement for healthcare professionals from the cardiac imaging committee of the council on clinical cardiology of the american heart association
    • Cerqueira M.D., Weissman N.J., Dilsizian V., Jacobs A.K., Kaul S., Laskey W.K., Pennell D.J., Rumberger J.A., Ryan T., Verani M.S., et al. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart a statement for healthcare professionals from the cardiac imaging committee of the council on clinical cardiology of the american heart association. Circulation 2002, 105(4):539-542.
    • (2002) Circulation , vol.105 , Issue.4 , pp. 539-542
    • Cerqueira, M.D.1    Weissman, N.J.2    Dilsizian, V.3    Jacobs, A.K.4    Kaul, S.5    Laskey, W.K.6    Pennell, D.J.7    Rumberger, J.A.8    Ryan, T.9    Verani, M.S.10
  • 14
    • 73849136012 scopus 로고    scopus 로고
    • Automated 3d motion tracking using gabor filter bank, robust point matching, and deformable models
    • Chen T., Wang X., Chung S., Metaxas D., Axel L. Automated 3d motion tracking using gabor filter bank, robust point matching, and deformable models. IEEE Trans. Med. Imag. 2010, 29(1):1-11.
    • (2010) IEEE Trans. Med. Imag. , vol.29 , Issue.1 , pp. 1-11
    • Chen, T.1    Wang, X.2    Chung, S.3    Metaxas, D.4    Axel, L.5
  • 20
    • 33745424694 scopus 로고    scopus 로고
    • Segmentation of the left and right cardiac ventricle using a combined bi-temporal statistical model
    • International Society for Optics and Photonics
    • Fritz D., Rinck D., Dillmann R., Scheuering M. Segmentation of the left and right cardiac ventricle using a combined bi-temporal statistical model. Medical Imaging 2006, 614121. International Society for Optics and Photonics.
    • (2006) Medical Imaging , pp. 614121
    • Fritz, D.1    Rinck, D.2    Dillmann, R.3    Scheuering, M.4
  • 24
    • 84861125212 scopus 로고    scopus 로고
    • A practical guide to training restricted boltzmann machines
    • Hinton G. A practical guide to training restricted boltzmann machines. Momentum 2010, 9(1):926.
    • (2010) Momentum , vol.9 , Issue.1 , pp. 926
    • Hinton, G.1
  • 25
    • 0013344078 scopus 로고    scopus 로고
    • Training products of experts by minimizing contrastive divergence
    • Hinton G.E. Training products of experts by minimizing contrastive divergence. Neural Comput. 2002, 14(8):1771-1800.
    • (2002) Neural Comput. , vol.14 , Issue.8 , pp. 1771-1800
    • Hinton, G.E.1
  • 26
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • Hinton G.E., Osindero S., Teh Y.-W. A fast learning algorithm for deep belief nets. Neural Comput. 2006, 18(7):1527-1554.
    • (2006) Neural Comput. , vol.18 , Issue.7 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.-W.3
  • 27
    • 84976250242 scopus 로고    scopus 로고
    • Computational modeling and simulation of heart ventricular mechanics from tagged MRI
    • Hu Z., Metaxas D., Axel L. Computational modeling and simulation of heart ventricular mechanics from tagged MRI. Func. Imag. Model. Heart 2005, 881-883.
    • (2005) Func. Imag. Model. Heart , pp. 881-883
    • Hu, Z.1    Metaxas, D.2    Axel, L.3
  • 30
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • LeCun Y., Bottou L., Bengio Y., Haffner P. Gradient-based learning applied to document recognition. Proceedings of the IEEE 1998, 86(11):2278-2324.
    • (1998) Proceedings of the IEEE , vol.86 , Issue.11 , pp. 2278-2324
    • LeCun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 33
    • 4444300723 scopus 로고    scopus 로고
    • Statistical shape model of atria, ventricles and epicardium from short-and long-axis mr images
    • Lötjönen J., Kivistö S., Koikkalainen J., Smutek D., Lauerma K. Statistical shape model of atria, ventricles and epicardium from short-and long-axis mr images. Med. Imag. Anal. 2004, 8(3):371-386.
    • (2004) Med. Imag. Anal. , vol.8 , Issue.3 , pp. 371-386
    • Lötjönen, J.1    Kivistö, S.2    Koikkalainen, J.3    Smutek, D.4    Lauerma, K.5
  • 34
    • 79957636525 scopus 로고    scopus 로고
    • Automatic delineation of left and right ventricles in cardiac mri sequences using a joint ventricular model
    • Springer
    • Lu X., Wang Y., Georgescu B., Littman A., Comaniciu D. Automatic delineation of left and right ventricles in cardiac mri sequences using a joint ventricular model. Functional Imaging and Modeling of the Heart 2011, 250-258. Springer.
    • (2011) Functional Imaging and Modeling of the Heart , pp. 250-258
    • Lu, X.1    Wang, Y.2    Georgescu, B.3    Littman, A.4    Comaniciu, D.5
  • 36
    • 3042597716 scopus 로고    scopus 로고
    • Extracting tissue deformation using gabor filter banks
    • International Society for Optics and Photonics
    • Montillo A., Metaxas D., Axel L. Extracting tissue deformation using gabor filter banks. Medical Imaging 2004 2004, 1-9. International Society for Optics and Photonics.
    • (2004) Medical Imaging 2004 , pp. 1-9
    • Montillo, A.1    Metaxas, D.2    Axel, L.3
  • 37
    • 84903998168 scopus 로고    scopus 로고
    • Breast tissue segmentation and mammographic risk scoring using deep learning
    • Springer
    • Petersen K., Nielsen M., Diao P., Karssemeijer N., Lillholm M. Breast tissue segmentation and mammographic risk scoring using deep learning. Breast Imaging 2014, 88-94. Springer.
    • (2014) Breast Imaging , pp. 88-94
    • Petersen, K.1    Nielsen, M.2    Diao, P.3    Karssemeijer, N.4    Lillholm, M.5
  • 38
    • 79851510761 scopus 로고    scopus 로고
    • A review of segmentation methods in short axis cardiac mr images
    • Petitjean C., Dacher J.-N. A review of segmentation methods in short axis cardiac mr images. Med. Imag. Anal. 2011, 15(2):169-184.
    • (2011) Med. Imag. Anal. , vol.15 , Issue.2 , pp. 169-184
    • Petitjean, C.1    Dacher, J.-N.2
  • 43
    • 84901263896 scopus 로고    scopus 로고
    • Spatio-temporal laplacian pyramid coding for action recognition
    • Shao L., Zhen X., Tao D., Li X. Spatio-temporal laplacian pyramid coding for action recognition. IEEE Trans. Cybernetics 2014, 44(6):817-827.
    • (2014) IEEE Trans. Cybernetics , vol.44 , Issue.6 , pp. 817-827
    • Shao, L.1    Zhen, X.2    Tao, D.3    Li, X.4
  • 44
    • 84879853539 scopus 로고    scopus 로고
    • Stacked autoencoders for unsupervised feature learning and multiple organ detection in a pilot study using 4d patient data
    • Shin H.-C., Orton M.R., Collins D.J., Doran S.J., Leach M.O. Stacked autoencoders for unsupervised feature learning and multiple organ detection in a pilot study using 4d patient data. IEEE Trans. Patt. Anal. Mach. Intell. 2013, 35(8):1930-1943.
    • (2013) IEEE Trans. Patt. Anal. Mach. Intell. , vol.35 , Issue.8 , pp. 1930-1943
    • Shin, H.-C.1    Orton, M.R.2    Collins, D.J.3    Doran, S.J.4    Leach, M.O.5
  • 46
    • 84888377796 scopus 로고    scopus 로고
    • Robust point pattern matching based on spectral context
    • Tang J., Shao L., Zhen X. Robust point pattern matching based on spectral context. Patt. Recognit. 2014, 47(3):1469-1484.
    • (2014) Patt. Recognit. , vol.47 , Issue.3 , pp. 1469-1484
    • Tang, J.1    Shao, L.2    Zhen, X.3
  • 48
    • 84856706303 scopus 로고    scopus 로고
    • Cardiac motion and deformation recovery from mri: a review
    • Wang H., Amini A.A. Cardiac motion and deformation recovery from mri: a review. IEEE Trans. Med. Imag. 2012, 31(2):487-503.
    • (2012) IEEE Trans. Med. Imag. , vol.31 , Issue.2 , pp. 487-503
    • Wang, H.1    Amini, A.A.2
  • 49
    • 84861986826 scopus 로고    scopus 로고
    • Machine learning and radiology
    • Wang S., Summers R.M. Machine learning and radiology. Med. Imag. Anal. 2012, 16(5):933-951.
    • (2012) Med. Imag. Anal. , vol.16 , Issue.5 , pp. 933-951
    • Wang, S.1    Summers, R.M.2
  • 50
    • 68949099437 scopus 로고    scopus 로고
    • Modelling passive diastolic mechanics with quantitative mri of cardiac structure and function
    • Wang V.Y., Lam H., Ennis D.B., Cowan B.R., Young A.A., Nash M.P. Modelling passive diastolic mechanics with quantitative mri of cardiac structure and function. Med. Imag. Anal. 2009, 13(5):773-784.
    • (2009) Med. Imag. Anal. , vol.13 , Issue.5 , pp. 773-784
    • Wang, V.Y.1    Lam, H.2    Ennis, D.B.3    Cowan, B.R.4    Young, A.A.5    Nash, M.P.6
  • 51
    • 84897464862 scopus 로고    scopus 로고
    • Direct estimation of cardiac bi-ventricular volumes with an adapted bayesian formulation
    • Wang Z., Ben Salah M., Gu B., Islam A., Goela A., Li S. Direct estimation of cardiac bi-ventricular volumes with an adapted bayesian formulation. IEEE Trans. Biomed. Eng. 2014, 61(4):1251-1260.
    • (2014) IEEE Trans. Biomed. Eng. , vol.61 , Issue.4 , pp. 1251-1260
    • Wang, Z.1    Ben Salah, M.2    Gu, B.3    Islam, A.4    Goela, A.5    Li, S.6
  • 54
    • 84885030478 scopus 로고    scopus 로고
    • A local descriptor based on laplacian pyramid coding for action recognition
    • Zhen X., Shao L. A local descriptor based on laplacian pyramid coding for action recognition. Patt. Recognit. Lett. 2013, 34(15):1899-1905.
    • (2013) Patt. Recognit. Lett. , vol.34 , Issue.15 , pp. 1899-1905
    • Zhen, X.1    Shao, L.2
  • 55
    • 84904651934 scopus 로고    scopus 로고
    • Action recognition by spatio-temporal oriented energies
    • Zhen X., Shao L., Li X. Action recognition by spatio-temporal oriented energies. Inf. Sci. 2014, 281:295-309.
    • (2014) Inf. Sci. , vol.281 , pp. 295-309
    • Zhen, X.1    Shao, L.2    Li, X.3
  • 56
  • 58
    • 84943376148 scopus 로고    scopus 로고
    • Direct volume estimation without segmentation
    • International Society for Optics and Photonics
    • Zhen X., Wang Z., Islam A., Bhaduri M., Chan I., Li S. Direct volume estimation without segmentation. SPIE Medical Imaging 2015, 94132G. International Society for Optics and Photonics.
    • (2015) SPIE Medical Imaging , pp. 94132G
    • Zhen, X.1    Wang, Z.2    Islam, A.3    Bhaduri, M.4    Chan, I.5    Li, S.6
  • 62
    • 54949104993 scopus 로고    scopus 로고
    • Four-chamber heart modeling and automatic segmentation for 3-d cardiac ct volumes using marginal space learning and steerable features
    • Zheng Y., Barbu A., Georgescu B., Scheuering M., Comaniciu D. Four-chamber heart modeling and automatic segmentation for 3-d cardiac ct volumes using marginal space learning and steerable features. IEEE Trans. Med. Imag. 2008, 27(11):1668-1681.
    • (2008) IEEE Trans. Med. Imag. , vol.27 , Issue.11 , pp. 1668-1681
    • Zheng, Y.1    Barbu, A.2    Georgescu, B.3    Scheuering, M.4    Comaniciu, D.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.