메뉴 건너뛰기




Volumn 32, Issue 15, 2016, Pages 2352-2358

Deep models for brain em image segmentation: Novel insights and improved performance

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHM; ARTIFICIAL NEURAL NETWORK; BRAIN; ELECTRON MICROSCOPY; THEORETICAL MODEL;

EID: 84991439219     PISSN: 13674803     EISSN: 14602059     Source Type: Journal    
DOI: 10.1093/bioinformatics/btw165     Document Type: Article
Times cited : (55)

References (32)
  • 1
    • 84948763339 scopus 로고    scopus 로고
    • Crowdsourcing the creation of image segmentation algorithms for connectomics
    • Arganda-Carreras, I. et al. (2015) Crowdsourcing the creation of image segmentation algorithms for connectomics. Front. Neuroanat., 9, 142.
    • (2015) Front. Neuroanat. , vol.9 , pp. 142
    • Arganda-Carreras, I.1
  • 2
    • 84904475076 scopus 로고    scopus 로고
    • Brain Research through Advancing Innovative Neurotechnologies (BRAIN) Working Group Report to the Advisory Committee to the Director, N. (2014). BRAIN 2025, a SCIENTIFIC VISION.
    • (2014) BRAIN 2025, A Scientific Vision
  • 3
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman, L. (2001) Random forests. Mach. Learn., 45, 5-32.
    • (2001) Mach. Learn. , vol.45 , pp. 5-32
    • Breiman, L.1
  • 4
    • 80053541110 scopus 로고    scopus 로고
    • Maximin affinity learning of image segmentation
    • Briggman, K. et al. (2009). Maximin affinity learning of image segmentation. In NIPS, pp.1865-1873.
    • (2009) NIPS , pp. 1865-1873
    • Briggman, K.1
  • 5
    • 79952380642 scopus 로고    scopus 로고
    • Wiring specificity in the direction-selectivity circuit of the retina
    • Briggman, K.L. et al. (2011) Wiring specificity in the direction-selectivity circuit of the retina. Nature, 471, 183-188.
    • (2011) Nature , vol.471 , pp. 183-188
    • Briggman, K.L.1
  • 6
    • 78149370793 scopus 로고    scopus 로고
    • An integrated micro-and macroarchitectural analysis of the drosophila brain by computer-assisted serial section electron microscopy
    • Cardona, A. et al. (2010) An integrated micro-and macroarchitectural analysis of the drosophila brain by computer-assisted serial section electron microscopy. PLoS Biol., 8, e1000502.
    • (2010) PLoS Biol. , vol.8 , pp. e1000502
    • Cardona, A.1
  • 7
    • 84877789057 scopus 로고    scopus 로고
    • Deep neural networks segment neuronal membranes in electron microscopy images
    • Ciresan, D. et al. (2012a). Deep neural networks segment neuronal membranes in electron microscopy images. In NIPS, pp. 2843-2851.
    • (2012) NIPS , pp. 2843-2851
    • Ciresan, D.1
  • 8
    • 84866714584 scopus 로고    scopus 로고
    • Multi-column deep neural networks for image classification
    • IEEE
    • Ciresan, D. et al. (2012b). Multi-column deep neural networks for image classification. In: CVPR, pp. 3642-3649. IEEE.
    • (2012) CVPR , pp. 3642-3649
    • Ciresan, D.1
  • 9
    • 84885899176 scopus 로고    scopus 로고
    • Mitosis detection in breast cancer histology images with deep neural networks
    • Springer
    • Cireşan, D.C. et al. (2013). Mitosis detection in breast cancer histology images with deep neural networks. In: MICCAI, pp. 411-418. Springer.
    • (2013) MICCAI , pp. 411-418
    • Cireşan, D.C.1
  • 10
    • 85198028989 scopus 로고    scopus 로고
    • Imagenet: A large-scale hierarchical image database
    • IEEE
    • Deng, J. et al. (2009). Imagenet: a large-scale hierarchical image database. In: CVPR, pages 248-255. IEEE.
    • (2009) CVPR , pp. 248-255
    • Deng, J.1
  • 12
    • 84881453258 scopus 로고    scopus 로고
    • Connectomic reconstruction of the inner plexi-form layer in the mouse retina
    • Helmstaedter, M. et al. (2013) Connectomic reconstruction of the inner plexi-form layer in the mouse retina. Nature, 500, 168-174.
    • (2013) Nature , vol.500 , pp. 168-174
    • Helmstaedter, M.1
  • 14
    • 78149296699 scopus 로고    scopus 로고
    • Natural image denoising with convolutional networks
    • Jain, V. and Seung, S. (2009). Natural image denoising with convolutional networks. In: NIPS, pp. 769-776.
    • (2009) NIPS , pp. 769-776
    • Jain, V.1    Seung, S.2
  • 15
    • 50649114600 scopus 로고    scopus 로고
    • Supervised learning of image restoration with convolu-tional networks
    • IEEE
    • Jain, V. et al. (2007). Supervised learning of image restoration with convolu-tional networks. In: ICCV, pp. 1-8. IEEE.
    • (2007) ICCV , pp. 1-8
    • Jain, V.1
  • 16
    • 84870183903 scopus 로고    scopus 로고
    • 3d convolutional neural networks for human action recognition
    • Ji, S. et al. (2013) 3d convolutional neural networks for human action recognition. PAMI, 35, 221-231.
    • (2013) PAMI , vol.35 , pp. 221-231
    • Ji, S.1
  • 18
    • 84900523778 scopus 로고    scopus 로고
    • Space-time wiring specificity supports direction selectivity in the retina
    • Kim, J.S. et al. (2014) Space-time wiring specificity supports direction selectivity in the retina. Nature, 509, 331-336.
    • (2014) Nature , vol.509 , pp. 331-336
    • Kim, J.S.1
  • 19
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • Krizhevsky, A. et al. (2012). Imagenet classification with deep convolutional neural networks. In:7 NIPS, pp. 1097-1105.
    • (2012) 7 NIPS , pp. 1097-1105
    • Krizhevsky, A.1
  • 20
    • 0000359337 scopus 로고
    • Backpropagation applied to handwritten zip code recognition
    • LeCun, Y. et al. (1989) Backpropagation applied to handwritten zip code recognition. Neural Comput., 1, 541-551.
    • (1989) Neural Comput. , vol.1 , pp. 541-551
    • LeCun, Y.1
  • 21
    • 5044231640 scopus 로고    scopus 로고
    • Learning methods for generic object recognition with invariance to pose and lighting
    • IEEE
    • LeCun, Y. et al. (2004). Learning methods for generic object recognition with invariance to pose and lighting. In: CVPR, vol. 2, pp. II-97. IEEE.
    • (2004) CVPR , vol.2 , pp. II-97
    • LeCun, Y.1
  • 22
    • 84872543023 scopus 로고    scopus 로고
    • Efficient backprop
    • Montavon, G., Orr, G.B., Müller, K.-R. (eds.) 2nd edn. Springer Heidelberg
    • LeCun, Y.A. et al. (2012). Efficient backprop. In: Montavon, G., Orr, G.B., Müller, K.-R. (eds.) Neural Networks: Tricks of the Trade, LNCS, vol. 7700. 2nd edn. Springer, Heidelberg, pp. 9-48.
    • (2012) Neural Networks: Tricks of the Trade, LNCS , vol.7700 , pp. 9-48
    • LeCun, Y.A.1
  • 23
    • 84874557333 scopus 로고    scopus 로고
    • Watershed merge tree classification for electron microscopy image segmentation
    • IEEE
    • Liu, T. et al. (2012). Watershed merge tree classification for electron microscopy image segmentation. In: ICPR, pp. 133-137. IEEE.
    • (2012) ICPR , pp. 133-137
    • Liu, T.1
  • 24
    • 84897766366 scopus 로고    scopus 로고
    • Watershed merge forest classification for electron microscopy image stack segmentation
    • NIH Public Access
    • Liu, T. et al. (2013). Watershed merge forest classification for electron microscopy image stack segmentation. In: ICCV, vol. 2013, pp. 4069. NIH Public Access.
    • (2013) ICCV , vol.2013 , pp. 4069
    • Liu, T.1
  • 25
    • 77950679704 scopus 로고    scopus 로고
    • V3d enables real-time 3d visualization and quantitative analysis of large-scale biological image data sets
    • Peng, H. et al. (2010) V3d enables real-time 3d visualization and quantitative analysis of large-scale biological image data sets. Nat. Biotechnol., 28, 348-353.
    • (2010) Nat. Biotechnol. , vol.28 , pp. 348-353
    • Peng, H.1
  • 26
    • 84937422559 scopus 로고    scopus 로고
    • Bigneuron: Large-scale 3d neuron reconstruction from optical microscopy images
    • Peng, H. et al. (2015) Bigneuron: large-scale 3d neuron reconstruction from optical microscopy images. Neuron 87, 252-256.
    • (2015) Neuron , vol.87 , pp. 252-256
    • Peng, H.1
  • 30
    • 77649302828 scopus 로고    scopus 로고
    • Convolutional networks can learn to generate affinity graphs for image segmentation
    • Turaga, S.C. et al. (2010) Convolutional networks can learn to generate affinity graphs for image segmentation. Neural Comput., 22, 511-538.
    • (2010) Neural Comput. , vol.22 , pp. 511-538
    • Turaga, S.C.1
  • 31
    • 84906489074 scopus 로고    scopus 로고
    • Visualizing and understanding convolu-tional networks
    • Springer
    • Zeiler, M.D. and Fergus, R. (2014). Visualizing and understanding convolu-tional networks. In: ECCV, pp. 818-833. Springer.
    • (2014) ECCV , pp. 818-833
    • Zeiler, M.D.1    Fergus, R.2
  • 32
    • 84921492033 scopus 로고    scopus 로고
    • Deep convolutional neural networks for multi-modality isointense infant brain image segmentation
    • Zhang, W. et al. (2015) Deep convolutional neural networks for multi-modality isointense infant brain image segmentation. NeuroImage, 108, 214-224.
    • (2015) NeuroImage , vol.108 , pp. 214-224
    • Zhang, W.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.