메뉴 건너뛰기




Volumn 197, Issue , 2016, Pages 221-231

A deep feature based framework for breast masses classification

Author keywords

Breast mass classification; Computer aided diagnosis; Convolutional neural network; Deep learning; Feature visualization

Indexed keywords

CLASSIFICATION (OF INFORMATION); COMPUTER AIDED INSTRUCTION; CONVOLUTION; IMAGE PROCESSING; MEDICAL IMAGING; NEURAL NETWORKS; VISUALIZATION;

EID: 84965100889     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2016.02.060     Document Type: Article
Times cited : (287)

References (61)
  • 2
    • 34247171748 scopus 로고    scopus 로고
    • Computer-aided diagnosis in medical imaging: historical review, current status and future potential
    • Doi K. Computer-aided diagnosis in medical imaging: historical review, current status and future potential. Comput. Med. Imaging Graph. 2007, 31(4):198-211.
    • (2007) Comput. Med. Imaging Graph. , vol.31 , Issue.4 , pp. 198-211
    • Doi, K.1
  • 4
    • 0032890770 scopus 로고    scopus 로고
    • Improving breast cancer diagnosis with computer-aided diagnosis
    • Jiang Y., Nishikawa R.M., Schmidt R.A., et al. Improving breast cancer diagnosis with computer-aided diagnosis. Acad. Radiol. 1999, 6(1):22-33.
    • (1999) Acad. Radiol. , vol.6 , Issue.1 , pp. 22-33
    • Jiang, Y.1    Nishikawa, R.M.2    Schmidt, R.A.3
  • 5
    • 0025080985 scopus 로고
    • Improvement in radiologists[U+05F3] detection of clustered microcalcifications on mammograms: the potential of computer-aided diagnosis
    • Chan H.-P., Doi K., Vybrony C.J., et al. Improvement in radiologists[U+05F3] detection of clustered microcalcifications on mammograms: the potential of computer-aided diagnosis. Invest. Radiol. 1990, 25(10):1102-1110.
    • (1990) Invest. Radiol. , vol.25 , Issue.10 , pp. 1102-1110
    • Chan, H.-P.1    Doi, K.2    Vybrony, C.J.3
  • 6
    • 0031283414 scopus 로고    scopus 로고
    • Measures of acutance and shape for classification of breast tumors
    • Rangayyan R.M., El-Faramawy N.M., Desautels J.L., et al. Measures of acutance and shape for classification of breast tumors. IEEE Trans. Med. Imaging 1997, 16(6):799-810.
    • (1997) IEEE Trans. Med. Imaging , vol.16 , Issue.6 , pp. 799-810
    • Rangayyan, R.M.1    El-Faramawy, N.M.2    Desautels, J.L.3
  • 7
    • 33744535368 scopus 로고    scopus 로고
    • Mammographic masses characterization based on localized texture and dataset fractal analysis using linear, neural and support vector machine classifiers
    • Mavroforakis M.E., Georgiou H.V., Dimitropoulos N., et al. Mammographic masses characterization based on localized texture and dataset fractal analysis using linear, neural and support vector machine classifiers. Artif. Intell. Med. 2006, 37(2):145-162.
    • (2006) Artif. Intell. Med. , vol.37 , Issue.2 , pp. 145-162
    • Mavroforakis, M.E.1    Georgiou, H.V.2    Dimitropoulos, N.3
  • 8
    • 34547361474 scopus 로고    scopus 로고
    • Temporal change analysis for characterization of mass lesions in mammography
    • Timp S., Varela C., Karssemeijer N. Temporal change analysis for characterization of mass lesions in mammography. IEEE Trans. Med. Imaging 2007, 26(7):945-953.
    • (2007) IEEE Trans. Med. Imaging , vol.26 , Issue.7 , pp. 945-953
    • Timp, S.1    Varela, C.2    Karssemeijer, N.3
  • 9
    • 67649664255 scopus 로고    scopus 로고
    • Development of tolerant features for characterization of masses in mammograms
    • Rojas-Domínguez A., Nandi A.K. Development of tolerant features for characterization of masses in mammograms. Comput. Biol. Med. 2009, 39(8):678-688.
    • (2009) Comput. Biol. Med. , vol.39 , Issue.8 , pp. 678-688
    • Rojas-Domínguez, A.1    Nandi, A.K.2
  • 10
    • 70350134243 scopus 로고    scopus 로고
    • Mutual information-based SVM-RFE for diagnostic classification of digitized mammograms
    • Yoon S., Kim S. Mutual information-based SVM-RFE for diagnostic classification of digitized mammograms. Pattern. Recognit. Lett. 2009, 30(16):1489-1495.
    • (2009) Pattern. Recognit. Lett. , vol.30 , Issue.16 , pp. 1489-1495
    • Yoon, S.1    Kim, S.2
  • 11
    • 80955158411 scopus 로고    scopus 로고
    • Wavelet packet energy, Tsallis entropy and statistical parameterization for support vector-based and neural-based classification of mammographic regions
    • Ramirez-Villegas J.F., Ramirez-Moreno D.F. Wavelet packet energy, Tsallis entropy and statistical parameterization for support vector-based and neural-based classification of mammographic regions. Neurocomputing 2012, 77(1):82-100.
    • (2012) Neurocomputing , vol.77 , Issue.1 , pp. 82-100
    • Ramirez-Villegas, J.F.1    Ramirez-Moreno, D.F.2
  • 12
    • 79952757441 scopus 로고    scopus 로고
    • Automatic detection of breast cancers in mammograms using structured support vector machines
    • Wang D., Shi L., Heng P.A. Automatic detection of breast cancers in mammograms using structured support vector machines. Neurocomputing 2009, 72:3296-3302.
    • (2009) Neurocomputing , vol.72 , pp. 3296-3302
    • Wang, D.1    Shi, L.2    Heng, P.A.3
  • 13
    • 67349156354 scopus 로고    scopus 로고
    • A novel soft cluster neural network for the classification of suspicious areas in digital mammograms
    • Verma B., McLeod P., Klevansky A. A novel soft cluster neural network for the classification of suspicious areas in digital mammograms. Pattern. Recognit. 2009, 42(9):1845-1852.
    • (2009) Pattern. Recognit. , vol.42 , Issue.9 , pp. 1845-1852
    • Verma, B.1    McLeod, P.2    Klevansky, A.3
  • 14
    • 71249094411 scopus 로고    scopus 로고
    • Classification of benign and malignant patterns in digital mammograms for the diagnosis of breast cancer
    • Verma B., McLeod P., Klevansky A. Classification of benign and malignant patterns in digital mammograms for the diagnosis of breast cancer. Expert Syst. Appl. 2010, 37(4):3344-3351.
    • (2010) Expert Syst. Appl. , vol.37 , Issue.4 , pp. 3344-3351
    • Verma, B.1    McLeod, P.2    Klevansky, A.3
  • 15
    • 84906055286 scopus 로고    scopus 로고
    • Latent feature mining of spatial and marginal characteristics for mammographic mass classification
    • Wang Y., Li J., Gao X. Latent feature mining of spatial and marginal characteristics for mammographic mass classification. Neurocomputing 2014, 144:107-118.
    • (2014) Neurocomputing , vol.144 , pp. 107-118
    • Wang, Y.1    Li, J.2    Gao, X.3
  • 16
    • 84925186884 scopus 로고    scopus 로고
    • Mammogram classification using two dimensional discrete wavelet transform and gray-level co-occurrence matrix for detection of breast cancer
    • Beura S., Majhi B., Dash R. Mammogram classification using two dimensional discrete wavelet transform and gray-level co-occurrence matrix for detection of breast cancer. Neurocomputing 2015, 154:1-14.
    • (2015) Neurocomputing , vol.154 , pp. 1-14
    • Beura, S.1    Majhi, B.2    Dash, R.3
  • 17
    • 84965133039 scopus 로고    scopus 로고
    • Breast mass classification in digital mammography based on extreme learning machine
    • Xie W., Li Y., Ma Y. Breast mass classification in digital mammography based on extreme learning machine. Neurocomputing 2015.
    • (2015) Neurocomputing
    • Xie, W.1    Li, Y.2    Ma, Y.3
  • 21
    • 79952162060 scopus 로고    scopus 로고
    • X-ray categorization and retrieval on the organ and pathology level, using patch-based visual words
    • Avni U., Greenspan H., Konen E., et al. X-ray categorization and retrieval on the organ and pathology level, using patch-based visual words. IEEE Trans. Med. Imaging 2011, 30(3):733-746.
    • (2011) IEEE Trans. Med. Imaging , vol.30 , Issue.3 , pp. 733-746
    • Avni, U.1    Greenspan, H.2    Konen, E.3
  • 22
    • 84930630277 scopus 로고    scopus 로고
    • Deep learning
    • LeCun Y., Bengio Y., Hinton G. Deep learning. Nature 2015, 521(7553):436-444.
    • (2015) Nature , vol.521 , Issue.7553 , pp. 436-444
    • LeCun, Y.1    Bengio, Y.2    Hinton, G.3
  • 23
    • 84885584538 scopus 로고    scopus 로고
    • Deep learning of representations, Handbook on Neural Information Processing
    • Y. Bengio, A.C. Courville, Deep learning of representations, Handbook on Neural Information Processing, vol. 49, 2013.
    • (2013) , vol.49
    • Bengio, Y.1    Courville, A.C.2
  • 24
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • Hinton G.E., Salakhutdinov R.R. Reducing the dimensionality of data with neural networks. Science 2006, 313(5786):504-507.
    • (2006) Science , vol.313 , Issue.5786 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.R.2
  • 26
    • 84904687441 scopus 로고    scopus 로고
    • Sparse autoencoder
    • A. Ng, Sparse autoencoder, CS294A Lecture Notes, vol. 72, 2011.
    • (2011) CS294A Lecture Notes , vol.72
    • Ng, A.1
  • 29
    • 0019152630 scopus 로고
    • Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position
    • Fukushima K. Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biol. Cybern. 1980, 36(4):193-202.
    • (1980) Biol. Cybern. , vol.36 , Issue.4 , pp. 193-202
    • Fukushima, K.1
  • 30
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • LeCun Y., Bottou L., Bengio Y., et al. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86(11):2278-2324.
    • (1998) Proc. IEEE , vol.86 , Issue.11 , pp. 2278-2324
    • LeCun, Y.1    Bottou, L.2    Bengio, Y.3
  • 31
    • 0000494467 scopus 로고
    • Handwritten digit recognition with a back-propagation network
    • Le Cun, Boser B., et al. Handwritten digit recognition with a back-propagation network. Adv. Neural Inf. Process. Syst. 1990.
    • (1990) Adv. Neural Inf. Process. Syst.
    • Le, C.1    Boser, B.2
  • 37
    • 78149296699 scopus 로고    scopus 로고
    • Natural image denoising with convolutional networks
    • Jain Viren, Seung Sebastian Natural image denoising with convolutional networks. Adv. Neural Inf. Process. Syst. 2009, 769-776.
    • (2009) Adv. Neural Inf. Process. Syst. , pp. 769-776
    • Jain, V.1    Seung, S.2
  • 38
    • 84881453258 scopus 로고    scopus 로고
    • Connectomic reconstruction of the inner plexiform layer in the mouse retina
    • Helmstaedter M., Briggman K.L., Turaga S.C., et al. Connectomic reconstruction of the inner plexiform layer in the mouse retina. Nature 2013, 500(7461):168-174.
    • (2013) Nature , vol.500 , Issue.7461 , pp. 168-174
    • Helmstaedter, M.1    Briggman, K.L.2    Turaga, S.C.3
  • 39
    • 84877789057 scopus 로고    scopus 로고
    • Deep neural networks segment neuronal membranes in electron microscopy images
    • Ciresan Dan, et al. Deep neural networks segment neuronal membranes in electron microscopy images. Adv. Neural Inf. Process. Syst. 2012, 2843-2851.
    • (2012) Adv. Neural Inf. Process. Syst. , pp. 2843-2851
    • Ciresan, D.1
  • 40
    • 84885899176 scopus 로고    scopus 로고
    • Mitosis detection in breast cancer histology images with deep neural networks
    • Cireşan D.C., Giusti A., Gambardella L.M., et al. Mitosis detection in breast cancer histology images with deep neural networks. MICCAI 2013, 411-418.
    • (2013) MICCAI , pp. 411-418
    • Cireşan, D.C.1    Giusti, A.2    Gambardella, L.M.3
  • 41
    • 84921492033 scopus 로고    scopus 로고
    • Deep convolutional neural networks for multi-modality isointense infant brain image segmentation
    • Zhang W., Li R., Deng H., et al. Deep convolutional neural networks for multi-modality isointense infant brain image segmentation. Neuroimage 2015, 108:214-224.
    • (2015) Neuroimage , vol.108 , pp. 214-224
    • Zhang, W.1    Li, R.2    Deng, H.3
  • 42
    • 84919607718 scopus 로고    scopus 로고
    • Deep neural networks rival the representation of primate IT cortex for core visual object recognition
    • Cadieu C.F., Hong H., Yamins D.L., et al. Deep neural networks rival the representation of primate IT cortex for core visual object recognition. PLoS Comput. Biol. 2014, 10(12):e1003963.
    • (2014) PLoS Comput. Biol. , vol.10 , Issue.12 , pp. e1003963
    • Cadieu, C.F.1    Hong, H.2    Yamins, D.L.3
  • 43
    • 84924051598 scopus 로고    scopus 로고
    • Human-level control through deep reinforcement learning
    • Mnih V., Kavukcuoglu K., Silver D., et al. Human-level control through deep reinforcement learning. Nature 2015, 518(7540):529-533.
    • (2015) Nature , vol.518 , Issue.7540 , pp. 529-533
    • Mnih, V.1    Kavukcuoglu, K.2    Silver, D.3
  • 46
    • 84904482223 scopus 로고    scopus 로고
    • Decaf: a deep convolutional activation feature for generic visual recognition
    • arXiv preprint arXiv:1310.1531, Oct
    • J. Donahue, Y. Jia, O. Vinyals, et al., Decaf: a deep convolutional activation feature for generic visual recognition, arXiv preprint arXiv:1310.1531, Oct. 2013.
    • (2013)
    • Donahue, J.1    Jia, Y.2    Vinyals, O.3
  • 47
    • 33645410496 scopus 로고
    • Receptive fields, binocular interaction and functional architecture in the cat[U+05F3]s visual cortex
    • Hubel D.H., Wiesel T.N. Receptive fields, binocular interaction and functional architecture in the cat[U+05F3]s visual cortex. J. Physiol. 1962, 160(1):106.
    • (1962) J. Physiol. , vol.160 , Issue.1 , pp. 106
    • Hubel, D.H.1    Wiesel, T.N.2
  • 51
  • 54
    • 84965169526 scopus 로고    scopus 로고
    • University of South Florida
    • Digital Database for Screening Mammography (DDSM), University of South Florida, 2004.
    • (2004)
  • 55
    • 79957465857 scopus 로고    scopus 로고
    • Mammographic mass segmentation: embedding multiple features in vector-valued level set in ambiguous regions
    • Wang Y., Tao D., Gao X., et al. Mammographic mass segmentation: embedding multiple features in vector-valued level set in ambiguous regions. Pattern Recognit. 2011, 44(9):1903-1915.
    • (2011) Pattern Recognit. , vol.44 , Issue.9 , pp. 1903-1915
    • Wang, Y.1    Tao, D.2    Gao, X.3
  • 57
    • 84906489074 scopus 로고    scopus 로고
    • Visualizing and understanding convolutional networks
    • Zeiler M.D., Fergus R. Visualizing and understanding convolutional networks. Comput. Vision-ECCV 2014, 818-833.
    • (2014) Comput. Vision-ECCV , pp. 818-833
    • Zeiler, M.D.1    Fergus, R.2
  • 60
    • 84969916782 scopus 로고    scopus 로고
    • Improving Computer-aided detection using convolutional neural networks and random view aggregation
    • Roth H.R., Lu L., Liu J. Improving Computer-aided detection using convolutional neural networks and random view aggregation. IEEE Trans. Med. Imaging 2015, 10.1109/TMI.2015.2482920.
    • (2015) IEEE Trans. Med. Imaging
    • Roth, H.R.1    Lu, L.2    Liu, J.3
  • 61
    • 84937504995 scopus 로고    scopus 로고
    • MatConvNet-convolutional neural networks for MATLAB
    • arXiv preprint arXiv:1412.4564
    • A. Vedaldi, K. Lenc, MatConvNet-convolutional neural networks for MATLAB, arXiv preprint arXiv:1412.4564, 2014.
    • (2014)
    • Vedaldi, A.1    Lenc, K.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.