-
1
-
-
41349099104
-
Cancer statistics, 2008
-
Jemal A., Siegel R., Ward E., et al. Cancer statistics, 2008. CA Cancer J. Clin. 2008, 58(2):71-96.
-
(2008)
CA Cancer J. Clin.
, vol.58
, Issue.2
, pp. 71-96
-
-
Jemal, A.1
Siegel, R.2
Ward, E.3
-
2
-
-
34247171748
-
Computer-aided diagnosis in medical imaging: historical review, current status and future potential
-
Doi K. Computer-aided diagnosis in medical imaging: historical review, current status and future potential. Comput. Med. Imaging Graph. 2007, 31(4):198-211.
-
(2007)
Comput. Med. Imaging Graph.
, vol.31
, Issue.4
, pp. 198-211
-
-
Doi, K.1
-
4
-
-
0032890770
-
Improving breast cancer diagnosis with computer-aided diagnosis
-
Jiang Y., Nishikawa R.M., Schmidt R.A., et al. Improving breast cancer diagnosis with computer-aided diagnosis. Acad. Radiol. 1999, 6(1):22-33.
-
(1999)
Acad. Radiol.
, vol.6
, Issue.1
, pp. 22-33
-
-
Jiang, Y.1
Nishikawa, R.M.2
Schmidt, R.A.3
-
5
-
-
0025080985
-
Improvement in radiologists[U+05F3] detection of clustered microcalcifications on mammograms: the potential of computer-aided diagnosis
-
Chan H.-P., Doi K., Vybrony C.J., et al. Improvement in radiologists[U+05F3] detection of clustered microcalcifications on mammograms: the potential of computer-aided diagnosis. Invest. Radiol. 1990, 25(10):1102-1110.
-
(1990)
Invest. Radiol.
, vol.25
, Issue.10
, pp. 1102-1110
-
-
Chan, H.-P.1
Doi, K.2
Vybrony, C.J.3
-
6
-
-
0031283414
-
Measures of acutance and shape for classification of breast tumors
-
Rangayyan R.M., El-Faramawy N.M., Desautels J.L., et al. Measures of acutance and shape for classification of breast tumors. IEEE Trans. Med. Imaging 1997, 16(6):799-810.
-
(1997)
IEEE Trans. Med. Imaging
, vol.16
, Issue.6
, pp. 799-810
-
-
Rangayyan, R.M.1
El-Faramawy, N.M.2
Desautels, J.L.3
-
7
-
-
33744535368
-
Mammographic masses characterization based on localized texture and dataset fractal analysis using linear, neural and support vector machine classifiers
-
Mavroforakis M.E., Georgiou H.V., Dimitropoulos N., et al. Mammographic masses characterization based on localized texture and dataset fractal analysis using linear, neural and support vector machine classifiers. Artif. Intell. Med. 2006, 37(2):145-162.
-
(2006)
Artif. Intell. Med.
, vol.37
, Issue.2
, pp. 145-162
-
-
Mavroforakis, M.E.1
Georgiou, H.V.2
Dimitropoulos, N.3
-
8
-
-
34547361474
-
Temporal change analysis for characterization of mass lesions in mammography
-
Timp S., Varela C., Karssemeijer N. Temporal change analysis for characterization of mass lesions in mammography. IEEE Trans. Med. Imaging 2007, 26(7):945-953.
-
(2007)
IEEE Trans. Med. Imaging
, vol.26
, Issue.7
, pp. 945-953
-
-
Timp, S.1
Varela, C.2
Karssemeijer, N.3
-
9
-
-
67649664255
-
Development of tolerant features for characterization of masses in mammograms
-
Rojas-Domínguez A., Nandi A.K. Development of tolerant features for characterization of masses in mammograms. Comput. Biol. Med. 2009, 39(8):678-688.
-
(2009)
Comput. Biol. Med.
, vol.39
, Issue.8
, pp. 678-688
-
-
Rojas-Domínguez, A.1
Nandi, A.K.2
-
10
-
-
70350134243
-
Mutual information-based SVM-RFE for diagnostic classification of digitized mammograms
-
Yoon S., Kim S. Mutual information-based SVM-RFE for diagnostic classification of digitized mammograms. Pattern. Recognit. Lett. 2009, 30(16):1489-1495.
-
(2009)
Pattern. Recognit. Lett.
, vol.30
, Issue.16
, pp. 1489-1495
-
-
Yoon, S.1
Kim, S.2
-
11
-
-
80955158411
-
Wavelet packet energy, Tsallis entropy and statistical parameterization for support vector-based and neural-based classification of mammographic regions
-
Ramirez-Villegas J.F., Ramirez-Moreno D.F. Wavelet packet energy, Tsallis entropy and statistical parameterization for support vector-based and neural-based classification of mammographic regions. Neurocomputing 2012, 77(1):82-100.
-
(2012)
Neurocomputing
, vol.77
, Issue.1
, pp. 82-100
-
-
Ramirez-Villegas, J.F.1
Ramirez-Moreno, D.F.2
-
12
-
-
79952757441
-
Automatic detection of breast cancers in mammograms using structured support vector machines
-
Wang D., Shi L., Heng P.A. Automatic detection of breast cancers in mammograms using structured support vector machines. Neurocomputing 2009, 72:3296-3302.
-
(2009)
Neurocomputing
, vol.72
, pp. 3296-3302
-
-
Wang, D.1
Shi, L.2
Heng, P.A.3
-
13
-
-
67349156354
-
A novel soft cluster neural network for the classification of suspicious areas in digital mammograms
-
Verma B., McLeod P., Klevansky A. A novel soft cluster neural network for the classification of suspicious areas in digital mammograms. Pattern. Recognit. 2009, 42(9):1845-1852.
-
(2009)
Pattern. Recognit.
, vol.42
, Issue.9
, pp. 1845-1852
-
-
Verma, B.1
McLeod, P.2
Klevansky, A.3
-
14
-
-
71249094411
-
Classification of benign and malignant patterns in digital mammograms for the diagnosis of breast cancer
-
Verma B., McLeod P., Klevansky A. Classification of benign and malignant patterns in digital mammograms for the diagnosis of breast cancer. Expert Syst. Appl. 2010, 37(4):3344-3351.
-
(2010)
Expert Syst. Appl.
, vol.37
, Issue.4
, pp. 3344-3351
-
-
Verma, B.1
McLeod, P.2
Klevansky, A.3
-
15
-
-
84906055286
-
Latent feature mining of spatial and marginal characteristics for mammographic mass classification
-
Wang Y., Li J., Gao X. Latent feature mining of spatial and marginal characteristics for mammographic mass classification. Neurocomputing 2014, 144:107-118.
-
(2014)
Neurocomputing
, vol.144
, pp. 107-118
-
-
Wang, Y.1
Li, J.2
Gao, X.3
-
16
-
-
84925186884
-
Mammogram classification using two dimensional discrete wavelet transform and gray-level co-occurrence matrix for detection of breast cancer
-
Beura S., Majhi B., Dash R. Mammogram classification using two dimensional discrete wavelet transform and gray-level co-occurrence matrix for detection of breast cancer. Neurocomputing 2015, 154:1-14.
-
(2015)
Neurocomputing
, vol.154
, pp. 1-14
-
-
Beura, S.1
Majhi, B.2
Dash, R.3
-
17
-
-
84965133039
-
Breast mass classification in digital mammography based on extreme learning machine
-
Xie W., Li Y., Ma Y. Breast mass classification in digital mammography based on extreme learning machine. Neurocomputing 2015.
-
(2015)
Neurocomputing
-
-
Xie, W.1
Li, Y.2
Ma, Y.3
-
19
-
-
34247558361
-
Visual categorization with bags of keypoints
-
Gabriella Csurka, L. Fan, et al.
-
Gabriella Csurka, L. Fan, et al., Visual categorization with bags of keypoints, In: Proceedings of the Workshop on Statistical Learning in Computer Vision, ECCV, vol. 1, no. 1-22, 2004.
-
(2004)
Proceedings of the Workshop on Statistical Learning in Computer Vision, ECCV
, vol.1
, pp. 1-22
-
-
-
20
-
-
33745839880
-
Learning object categories from Google[U+05F3]s image search
-
Robert Fergus, et al., Learning object categories from Google[U+05F3]s image search, in: Proceedings of the Tenth IEEE International Conference on Computer Vision, ICCV, Vol. 2, 2005, pp.1816-1823.
-
(2005)
Proceedings of the Tenth IEEE International Conference on Computer Vision, ICCV
, vol.2
, pp. 1816-1823
-
-
Robert, F.1
-
21
-
-
79952162060
-
X-ray categorization and retrieval on the organ and pathology level, using patch-based visual words
-
Avni U., Greenspan H., Konen E., et al. X-ray categorization and retrieval on the organ and pathology level, using patch-based visual words. IEEE Trans. Med. Imaging 2011, 30(3):733-746.
-
(2011)
IEEE Trans. Med. Imaging
, vol.30
, Issue.3
, pp. 733-746
-
-
Avni, U.1
Greenspan, H.2
Konen, E.3
-
23
-
-
84885584538
-
Deep learning of representations, Handbook on Neural Information Processing
-
Y. Bengio, A.C. Courville, Deep learning of representations, Handbook on Neural Information Processing, vol. 49, 2013.
-
(2013)
, vol.49
-
-
Bengio, Y.1
Courville, A.C.2
-
24
-
-
33746600649
-
Reducing the dimensionality of data with neural networks
-
Hinton G.E., Salakhutdinov R.R. Reducing the dimensionality of data with neural networks. Science 2006, 313(5786):504-507.
-
(2006)
Science
, vol.313
, Issue.5786
, pp. 504-507
-
-
Hinton, G.E.1
Salakhutdinov, R.R.2
-
25
-
-
77955998889
-
Convolutional networks and applications in vision
-
Yann LeCun, Koray Kavukcuoglu, Clément Farabet, Convolutional networks and applications in vision, in: Proceedings of IEEE International Symposium on Circuits and Systems (ISCAS), 2010, pp. 253-256.
-
(2010)
Proceedings of IEEE International Symposium on Circuits and Systems (ISCAS)
, pp. 253-256
-
-
Yann, L.1
Koray, K.2
Clément, F.3
-
26
-
-
84904687441
-
Sparse autoencoder
-
A. Ng, Sparse autoencoder, CS294A Lecture Notes, vol. 72, 2011.
-
(2011)
CS294A Lecture Notes
, vol.72
-
-
Ng, A.1
-
29
-
-
0019152630
-
Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position
-
Fukushima K. Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biol. Cybern. 1980, 36(4):193-202.
-
(1980)
Biol. Cybern.
, vol.36
, Issue.4
, pp. 193-202
-
-
Fukushima, K.1
-
30
-
-
0032203257
-
Gradient-based learning applied to document recognition
-
LeCun Y., Bottou L., Bengio Y., et al. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86(11):2278-2324.
-
(1998)
Proc. IEEE
, vol.86
, Issue.11
, pp. 2278-2324
-
-
LeCun, Y.1
Bottou, L.2
Bengio, Y.3
-
31
-
-
0000494467
-
Handwritten digit recognition with a back-propagation network
-
Le Cun, Boser B., et al. Handwritten digit recognition with a back-propagation network. Adv. Neural Inf. Process. Syst. 1990.
-
(1990)
Adv. Neural Inf. Process. Syst.
-
-
Le, C.1
Boser, B.2
-
34
-
-
84876258641
-
Learning hierarchical features for scene labeling
-
Farabet C., Couprie C., Najman L., et al. Learning hierarchical features for scene labeling. IEEE Trans. Pattern. Anal. Mach. Intell. 2013, 35(8):1915-1929.
-
(2013)
IEEE Trans. Pattern. Anal. Mach. Intell.
, vol.35
, Issue.8
, pp. 1915-1929
-
-
Farabet, C.1
Couprie, C.2
Najman, L.3
-
37
-
-
78149296699
-
Natural image denoising with convolutional networks
-
Jain Viren, Seung Sebastian Natural image denoising with convolutional networks. Adv. Neural Inf. Process. Syst. 2009, 769-776.
-
(2009)
Adv. Neural Inf. Process. Syst.
, pp. 769-776
-
-
Jain, V.1
Seung, S.2
-
38
-
-
84881453258
-
Connectomic reconstruction of the inner plexiform layer in the mouse retina
-
Helmstaedter M., Briggman K.L., Turaga S.C., et al. Connectomic reconstruction of the inner plexiform layer in the mouse retina. Nature 2013, 500(7461):168-174.
-
(2013)
Nature
, vol.500
, Issue.7461
, pp. 168-174
-
-
Helmstaedter, M.1
Briggman, K.L.2
Turaga, S.C.3
-
39
-
-
84877789057
-
Deep neural networks segment neuronal membranes in electron microscopy images
-
Ciresan Dan, et al. Deep neural networks segment neuronal membranes in electron microscopy images. Adv. Neural Inf. Process. Syst. 2012, 2843-2851.
-
(2012)
Adv. Neural Inf. Process. Syst.
, pp. 2843-2851
-
-
Ciresan, D.1
-
40
-
-
84885899176
-
Mitosis detection in breast cancer histology images with deep neural networks
-
Cireşan D.C., Giusti A., Gambardella L.M., et al. Mitosis detection in breast cancer histology images with deep neural networks. MICCAI 2013, 411-418.
-
(2013)
MICCAI
, pp. 411-418
-
-
Cireşan, D.C.1
Giusti, A.2
Gambardella, L.M.3
-
41
-
-
84921492033
-
Deep convolutional neural networks for multi-modality isointense infant brain image segmentation
-
Zhang W., Li R., Deng H., et al. Deep convolutional neural networks for multi-modality isointense infant brain image segmentation. Neuroimage 2015, 108:214-224.
-
(2015)
Neuroimage
, vol.108
, pp. 214-224
-
-
Zhang, W.1
Li, R.2
Deng, H.3
-
42
-
-
84919607718
-
Deep neural networks rival the representation of primate IT cortex for core visual object recognition
-
Cadieu C.F., Hong H., Yamins D.L., et al. Deep neural networks rival the representation of primate IT cortex for core visual object recognition. PLoS Comput. Biol. 2014, 10(12):e1003963.
-
(2014)
PLoS Comput. Biol.
, vol.10
, Issue.12
, pp. e1003963
-
-
Cadieu, C.F.1
Hong, H.2
Yamins, D.L.3
-
43
-
-
84924051598
-
Human-level control through deep reinforcement learning
-
Mnih V., Kavukcuoglu K., Silver D., et al. Human-level control through deep reinforcement learning. Nature 2015, 518(7540):529-533.
-
(2015)
Nature
, vol.518
, Issue.7540
, pp. 529-533
-
-
Mnih, V.1
Kavukcuoglu, K.2
Silver, D.3
-
44
-
-
84862294866
-
Deep sparse rectifier neural networks
-
Xavier Glorot, Antoine Bordes, Yoshua Bengio, Deep sparse rectifier neural networks, in: Proceedings of the International Conference on Artificial Intelligence and Statistics, 2011, pp. 315-323.
-
(2011)
Proceedings of the International Conference on Artificial Intelligence and Statistics
, pp. 315-323
-
-
Xavier, G.1
Antoine, B.2
Yoshua, B.3
-
45
-
-
84890527827
-
Improving deep neural networks for LVCSR using rectified linear units and dropout
-
George E. Dahl, Tara N. Sainath, Geoffrey E. Hinton, Improving deep neural networks for LVCSR using rectified linear units and dropout, In: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2013, pp. 8609-8613.
-
(2013)
Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
, pp. 8609-8613
-
-
George, E.D.1
Tara, N.S.2
Geoffrey, E.H.3
-
46
-
-
84904482223
-
Decaf: a deep convolutional activation feature for generic visual recognition
-
arXiv preprint arXiv:1310.1531, Oct
-
J. Donahue, Y. Jia, O. Vinyals, et al., Decaf: a deep convolutional activation feature for generic visual recognition, arXiv preprint arXiv:1310.1531, Oct. 2013.
-
(2013)
-
-
Donahue, J.1
Jia, Y.2
Vinyals, O.3
-
47
-
-
33645410496
-
Receptive fields, binocular interaction and functional architecture in the cat[U+05F3]s visual cortex
-
Hubel D.H., Wiesel T.N. Receptive fields, binocular interaction and functional architecture in the cat[U+05F3]s visual cortex. J. Physiol. 1962, 160(1):106.
-
(1962)
J. Physiol.
, vol.160
, Issue.1
, pp. 106
-
-
Hubel, D.H.1
Wiesel, T.N.2
-
53
-
-
79958043675
-
-
National Cancer Institute, Bethesda, MD
-
Howlader N., Noone A., Krapcho M., et al. SEER cancer statistics review, 1975-2008 2011, 19. National Cancer Institute, Bethesda, MD.
-
(2011)
SEER cancer statistics review, 1975-2008
, vol.19
-
-
Howlader, N.1
Noone, A.2
Krapcho, M.3
-
54
-
-
84965169526
-
-
University of South Florida
-
Digital Database for Screening Mammography (DDSM), University of South Florida, 2004.
-
(2004)
-
-
-
55
-
-
79957465857
-
Mammographic mass segmentation: embedding multiple features in vector-valued level set in ambiguous regions
-
Wang Y., Tao D., Gao X., et al. Mammographic mass segmentation: embedding multiple features in vector-valued level set in ambiguous regions. Pattern Recognit. 2011, 44(9):1903-1915.
-
(2011)
Pattern Recognit.
, vol.44
, Issue.9
, pp. 1903-1915
-
-
Wang, Y.1
Tao, D.2
Gao, X.3
-
56
-
-
84862283411
-
An analysis of single-layer networks in unsupervised feature learning
-
Adam Coates, Andrew Y. Ng, Honglak Lee, An analysis of single-layer networks in unsupervised feature learning, In: Proceedings of International Conference on Artificial Intelligence and Statistics, 2011, pp. 215-223.
-
(2011)
Proceedings of International Conference on Artificial Intelligence and Statistics
, pp. 215-223
-
-
Adam, C.1
Andrew, Y.N.2
Honglak, L.3
-
57
-
-
84906489074
-
Visualizing and understanding convolutional networks
-
Zeiler M.D., Fergus R. Visualizing and understanding convolutional networks. Comput. Vision-ECCV 2014, 818-833.
-
(2014)
Comput. Vision-ECCV
, pp. 818-833
-
-
Zeiler, M.D.1
Fergus, R.2
-
60
-
-
84969916782
-
Improving Computer-aided detection using convolutional neural networks and random view aggregation
-
Roth H.R., Lu L., Liu J. Improving Computer-aided detection using convolutional neural networks and random view aggregation. IEEE Trans. Med. Imaging 2015, 10.1109/TMI.2015.2482920.
-
(2015)
IEEE Trans. Med. Imaging
-
-
Roth, H.R.1
Lu, L.2
Liu, J.3
-
61
-
-
84937504995
-
MatConvNet-convolutional neural networks for MATLAB
-
arXiv preprint arXiv:1412.4564
-
A. Vedaldi, K. Lenc, MatConvNet-convolutional neural networks for MATLAB, arXiv preprint arXiv:1412.4564, 2014.
-
(2014)
-
-
Vedaldi, A.1
Lenc, K.2
|