-
1
-
-
26444564954
-
Face recognition with local binary patterns
-
T. Ahonen, A. Hadid, and M. Pietikinen. Face recognition with local binary patterns. In ECCV, 2004
-
(2004)
ECCV
-
-
Ahonen, T.1
Hadid, A.2
Pietikinen, M.3
-
2
-
-
84866688216
-
Measuring the objectness of image windows
-
Nov
-
B. Alexe, T. Deselaers, and V. Ferrari. Measuring the objectness of image windows. IEEE Transactions on Pattern Analysis and Machine Intelligence, 34(11):2189-2202, Nov 2012
-
(2012)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.34
, Issue.11
, pp. 2189-2202
-
-
Alexe, B.1
Deselaers, T.2
Ferrari, V.3
-
4
-
-
84879854889
-
Representation learning: A review and new perspectives
-
Aug
-
Y. Bengio, A. Courville, and P. Vincent. Representation learning: A review and new perspectives. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(8): 1798-1828, Aug 2013
-
(2013)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.35
, Issue.8
, pp. 1798-1828
-
-
Bengio, Y.1
Courville, A.2
Vincent, P.3
-
5
-
-
70350619001
-
Learning to localize objects with structured output regression
-
M. B. Blaschko and C. H. Lampert. Learning to localize objects with structured output regression. In ECCV, 2008
-
(2008)
ECCV
-
-
Blaschko, M.B.1
Lampert, C.H.2
-
6
-
-
85161966246
-
Sparse feature learning for deep belief networks
-
Y.-l. Boureau, Y. L. Cun, et al. Sparse feature learning for deep belief networks. In NIPS, pages 1185-1192, 2008
-
(2008)
NIPS
, pp. 1185-1192
-
-
Boureau, Y.-L.1
Cun, Y.L.2
-
7
-
-
84866636076
-
Learning to localize detected objects
-
Q. Dai and D. Hoiem. Learning to localize detected objects. In CVPR, 2012
-
(2012)
CVPR
-
-
Dai, Q.1
Hoiem, D.2
-
8
-
-
33645146449
-
Histograms of oriented gradients for human detection
-
N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In CVPR, 2005
-
(2005)
CVPR
-
-
Dalal, N.1
Triggs, B.2
-
9
-
-
85198028989
-
ImageNet: A large-scale hierarchical image database
-
J. Deng, W. Dong, R. Socher, L. J. Li, K. Li, and L. Fei-Fei. ImageNet: A large-scale hierarchical image database. In CVPR, 2009
-
(2009)
CVPR
-
-
Deng, J.1
Dong, W.2
Socher, R.3
Li, L.J.4
Li, K.5
Fei-Fei, L.6
-
10
-
-
84906504048
-
DeCAF: A deep convolutional activation feature for generic visual recognition
-
abs/1310. 1531
-
J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, and T. Darrell. DeCAF: A deep convolutional activation feature for generic visual recognition. CoRR, abs/1310. 1531, 2013
-
(2013)
CoRR
-
-
Donahue, J.1
Jia, Y.2
Vinyals, O.3
Hoffman, J.4
Zhang, N.5
Tzeng, E.6
Darrell, T.7
-
12
-
-
84921069139
-
-
M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman. The PASCAL Visual Object Classes Challenge 2007 (VOC2007) Results, 2007
-
(2007)
The PASCAL Visual Object Classes Challenge 2007 (VOC2007) Results
-
-
Everingham, M.1
Van Gool, L.2
Williams, C.K.I.3
Winn, J.4
Zisserman, A.5
-
13
-
-
51849167307
-
-
M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman. The PASCAL Visual Object Classes Challenge 2010 (VOC2010) Results, 2010
-
(2010)
The PASCAL Visual Object Classes Challenge 2010 (VOC2010) Results
-
-
Everingham, M.1
Van Gool, L.2
Williams, C.K.I.3
Winn, J.4
Zisserman, A.5
-
14
-
-
84880644383
-
-
M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman. The PASCAL Visual Object Classes Challenge 2012 (VOC2012) Results, 2012
-
(2012)
The PASCAL Visual Object Classes Challenge 2012 (VOC2012) Results
-
-
Everingham, M.1
Van Gool, L.2
Williams, C.K.I.3
Winn, J.4
Zisserman, A.5
-
15
-
-
77955422240
-
Object detection with discriminatively trained partbased models
-
P. Felzenszwalb, R. Girshick, D. McAllester, and D. Ramanan. Object detection with discriminatively trained partbased models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(9):1627-1645, 2010
-
(2010)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.32
, Issue.9
, pp. 1627-1645
-
-
Felzenszwalb, P.1
Girshick, R.2
McAllester, D.3
Ramanan, D.4
-
17
-
-
84866704163
-
Are we ready for autonomous driving? the KITTI vision benchmark suite
-
A. Geiger, P. Lenz, and R. Urtasun. Are we ready for autonomous driving? the KITTI vision benchmark suite. In CVPR, 2012
-
(2012)
CVPR
-
-
Geiger, A.1
Lenz, P.2
Urtasun, R.3
-
18
-
-
84911400494
-
Rich feature hierarchies for accurate object detection and semantic segmentation
-
R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. In CVPR, 2014
-
(2014)
CVPR
-
-
Girshick, R.1
Donahue, J.2
Darrell, T.3
Malik, J.4
-
21
-
-
33746600649
-
Reducing the dimensionality of data with neural networks
-
G. E. Hinton and R. R. Salakhutdinov. Reducing the dimensionality of data with neural networks. Science, 313(5786): 504-507, 2006
-
(2006)
Science
, vol.313
, Issue.5786
, pp. 504-507
-
-
Hinton, G.E.1
Salakhutdinov, R.R.2
-
23
-
-
84937225746
-
Caffe: Convolutional architecture for fast feature embedding
-
abs/1408. 5093
-
Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. B. Girshick, S. Guadarrama, and T. Darrell. Caffe: Convolutional architecture for fast feature embedding. CoRR, abs/1408. 5093, 2014
-
(2014)
CoRR
-
-
Jia, Y.1
Shelhamer, E.2
Donahue, J.3
Karayev, S.4
Long, J.5
Girshick, R.B.6
Guadarrama, S.7
Darrell, T.8
-
24
-
-
0035577808
-
A taxonomy of global optimization methods based on response surfaces
-
D. R. Jones. A taxonomy of global optimization methods based on response surfaces. Journal of Global Optimization, 21(4):345-383, 2001
-
(2001)
Journal of Global Optimization
, vol.21
, Issue.4
, pp. 345-383
-
-
Jones, D.R.1
-
25
-
-
84876231242
-
Imagenet classification with deep convolutional neural networks
-
A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS, 2012
-
(2012)
NIPS
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
26
-
-
0000359337
-
Backpropagation applied to handwritten zip code recognition
-
Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D. Jackel. Backpropagation applied to handwritten zip code recognition. Neural Computation, 1(4):541-551, 1989
-
(1989)
Neural Computation
, vol.1
, Issue.4
, pp. 541-551
-
-
LeCun, Y.1
Boser, B.2
Denker, J.S.3
Henderson, D.4
Howard, R.E.5
Hubbard, W.6
Jackel, L.D.7
-
27
-
-
80053540444
-
Unsupervised learning of hierarchical representations with convolutional deep belief networks
-
H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng. Unsupervised learning of hierarchical representations with convolutional deep belief networks. Communications of the ACM, 54(10):95-103, 2011
-
(2011)
Communications of the ACM
, vol.54
, Issue.10
, pp. 95-103
-
-
Lee, H.1
Grosse, R.2
Ranganath, R.3
Ng, A.Y.4
-
29
-
-
84908678178
-
Network in network
-
abs/1312. 4400
-
M. Lin, Q. Chen, and S. Yan. Network in network. CoRR, abs/1312. 4400, 2013
-
(2013)
CoRR
-
-
Lin, M.1
Chen, Q.2
Yan, S.3
-
30
-
-
3042535216
-
Distinctive image features from scale-invariant keypoints
-
D. G. Lowe. Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 60(2): 91-110, 2004
-
(2004)
International Journal of Computer Vision
, vol.60
, Issue.2
, pp. 91-110
-
-
Lowe, D.G.1
-
31
-
-
0342813049
-
The application of Bayesian methods for seeking the extremum
-
J. Mockus, V. Tiesis, and A. Zilinskas. The application of Bayesian methods for seeking the extremum. Towards Global Optimization, 2(117-129):2, 1978
-
(1978)
Towards Global Optimization
, vol.2
, Issue.117-129
, pp. 2
-
-
Mockus, J.1
Tiesis, V.2
Zilinskas, A.3
-
34
-
-
84909978410
-
-
O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei. ImageNet Large Scale Visual Recognition Challenge, 2014
-
(2014)
ImageNet Large Scale Visual Recognition Challenge
-
-
Russakovsky, O.1
Deng, J.2
Su, H.3
Krause, J.4
Satheesh, S.5
Ma, S.6
Huang, Z.7
Karpathy, A.8
Khosla, A.9
Bernstein, M.10
Berg, A.C.11
Fei-Fei, L.12
-
35
-
-
84910651844
-
Deep learning in neural networks: An overview
-
J. Schmidhuber. Deep learning in neural networks: An overview. Neural Networks, 61:85-117, 2015
-
(2015)
Neural Networks
, vol.61
, pp. 85-117
-
-
Schmidhuber, J.1
-
36
-
-
84911369716
-
Accurate object detection with joint classification-regression random forests
-
S. Schulter, C. Leistner, P. Wohlhart, P. M. Roth, and H. Bischof. Accurate object detection with joint classification-regression random forests. In CVPR, 2014
-
(2014)
CVPR
-
-
Schulter, S.1
Leistner, C.2
Wohlhart, P.3
Roth, P.M.4
Bischof, H.5
-
37
-
-
84887328988
-
Pedestrian detection with unsupervised multi-stage feature learning
-
P. Sermanet, K. Kavukcuoglu, S. Chintala, and Y. LeCun. Pedestrian detection with unsupervised multi-stage feature learning. In CVPR, 2013
-
(2013)
CVPR
-
-
Sermanet, P.1
Kavukcuoglu, K.2
Chintala, S.3
LeCun, Y.4
-
38
-
-
85083951635
-
OverFeat: Integrated recognition, localization and detection using convolutional networks
-
P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun. OverFeat: Integrated recognition, localization and detection using convolutional networks. In ICLR, 2014
-
(2014)
ICLR
-
-
Sermanet, P.1
Eigen, D.2
Zhang, X.3
Mathieu, M.4
Fergus, R.5
LeCun, Y.6
-
39
-
-
85083953063
-
Very deep convolutional networks for large-scale image recognition
-
K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. In ICLR, 2015
-
(2015)
ICLR
-
-
Simonyan, K.1
Zisserman, A.2
-
40
-
-
84869201485
-
Practical Bayesian optimization of machine learning algorithms
-
J. Snoek, H. Larochelle, and R. P. Adams. Practical Bayesian optimization of machine learning algorithms. In NIPS, 2012
-
(2012)
NIPS
-
-
Snoek, J.1
Larochelle, H.2
Adams, R.P.3
-
41
-
-
84898989329
-
Deep neural networks for object detection
-
C. Szegedy, A. Toshev, and D. Erhan. Deep neural networks for object detection. In NIPS, 2013
-
(2013)
NIPS
-
-
Szegedy, C.1
Toshev, A.2
Erhan, D.3
-
42
-
-
84917742909
-
-
arXiv preprint arXiv:1409. 4842
-
C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich. Going deeper with convolutions. arXiv preprint arXiv:1409. 4842, 2014
-
(2014)
Going Deeper with Convolutions
-
-
Szegedy, C.1
Liu, W.2
Jia, Y.3
Sermanet, P.4
Reed, S.5
Anguelov, D.6
Erhan, D.7
Vanhoucke, V.8
Rabinovich, A.9
-
43
-
-
24944537843
-
Large margin methods for structured and interdependent output variables
-
I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun. Large margin methods for structured and interdependent output variables. Journal of Machine Learning Research, (6): 1453-1484, 2005
-
(2005)
Journal of Machine Learning Research
, Issue.6
, pp. 1453-1484
-
-
Tsochantaridis, I.1
Joachims, T.2
Hofmann, T.3
Altun, Y.4
-
44
-
-
84881160857
-
Selective search for object recognition
-
J. R. R. Uijlings, K. E. A. Sande, T. Gevers, and A. W. M. Smeulders. Selective search for object recognition. Interna-tional Journal of Computer Vision, 104(2):154-171, 2013
-
(2013)
Interna-tional Journal of Computer Vision
, vol.104
, Issue.2
, pp. 154-171
-
-
Uijlings, J.R.R.1
Sande, K.E.A.2
Gevers, T.3
Smeulders, A.W.M.4
-
45
-
-
84898769710
-
Regionlets for generic object detection
-
Dec
-
X. Wang, M. Yang, S. Zhu, and Y. Lin. Regionlets for generic object detection. In ICCV, pages 17-24, Dec 2013
-
(2013)
ICCV
, pp. 17-24
-
-
Wang, X.1
Yang, M.2
Zhu, S.3
Lin, Y.4
-
46
-
-
84906489074
-
Visualizing and understanding convolutional networks
-
Springer
-
M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional networks. In ECCV, pages 818-833. Springer, 2014
-
(2014)
ECCV
, pp. 818-833
-
-
Zeiler, M.D.1
Fergus, R.2
-
47
-
-
84959194604
-
Improving object detection with deep convolutional networks via Bayesian optimization and structured prediction
-
abs/1504. 03293
-
Y. Zhang, K. Sohn, R. Villegas, G. Pan, and H. Lee. Improving object detection with deep convolutional networks via Bayesian optimization and structured prediction. CoRR, abs/1504. 03293, 2015. URL http://arxiv. org/abs/1504. 03293.
-
(2015)
CoRR
-
-
Zhang, Y.1
Sohn, K.2
Villegas, R.3
Pan, G.4
Lee, H.5
|