메뉴 건너뛰기




Volumn 07-12-June-2015, Issue , 2015, Pages 249-258

Improving object detection with deep convolutional networks via Bayesian optimization and structured prediction

Author keywords

[No Author keywords available]

Indexed keywords

BAYESIAN NETWORKS; COMPUTER VISION; CONVOLUTION; NEURAL NETWORKS; OBJECT DETECTION; OBJECT RECOGNITION;

EID: 84959196836     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2015.7298621     Document Type: Conference Paper
Times cited : (195)

References (47)
  • 1
    • 26444564954 scopus 로고    scopus 로고
    • Face recognition with local binary patterns
    • T. Ahonen, A. Hadid, and M. Pietikinen. Face recognition with local binary patterns. In ECCV, 2004
    • (2004) ECCV
    • Ahonen, T.1    Hadid, A.2    Pietikinen, M.3
  • 5
    • 70350619001 scopus 로고    scopus 로고
    • Learning to localize objects with structured output regression
    • M. B. Blaschko and C. H. Lampert. Learning to localize objects with structured output regression. In ECCV, 2008
    • (2008) ECCV
    • Blaschko, M.B.1    Lampert, C.H.2
  • 6
    • 85161966246 scopus 로고    scopus 로고
    • Sparse feature learning for deep belief networks
    • Y.-l. Boureau, Y. L. Cun, et al. Sparse feature learning for deep belief networks. In NIPS, pages 1185-1192, 2008
    • (2008) NIPS , pp. 1185-1192
    • Boureau, Y.-L.1    Cun, Y.L.2
  • 7
    • 84866636076 scopus 로고    scopus 로고
    • Learning to localize detected objects
    • Q. Dai and D. Hoiem. Learning to localize detected objects. In CVPR, 2012
    • (2012) CVPR
    • Dai, Q.1    Hoiem, D.2
  • 8
    • 33645146449 scopus 로고    scopus 로고
    • Histograms of oriented gradients for human detection
    • N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In CVPR, 2005
    • (2005) CVPR
    • Dalal, N.1    Triggs, B.2
  • 10
    • 84906504048 scopus 로고    scopus 로고
    • DeCAF: A deep convolutional activation feature for generic visual recognition
    • abs/1310. 1531
    • J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, and T. Darrell. DeCAF: A deep convolutional activation feature for generic visual recognition. CoRR, abs/1310. 1531, 2013
    • (2013) CoRR
    • Donahue, J.1    Jia, Y.2    Vinyals, O.3    Hoffman, J.4    Zhang, N.5    Tzeng, E.6    Darrell, T.7
  • 11
    • 84911443425 scopus 로고    scopus 로고
    • Scalable object detection using deep neural networks
    • D. Erhan, C. Szegedy, A. Toshev, and D. Anguelov. Scalable object detection using deep neural networks. In CVPR, 2014
    • (2014) CVPR
    • Erhan, D.1    Szegedy, C.2    Toshev, A.3    Anguelov, D.4
  • 17
    • 84866704163 scopus 로고    scopus 로고
    • Are we ready for autonomous driving? the KITTI vision benchmark suite
    • A. Geiger, P. Lenz, and R. Urtasun. Are we ready for autonomous driving? the KITTI vision benchmark suite. In CVPR, 2012
    • (2012) CVPR
    • Geiger, A.1    Lenz, P.2    Urtasun, R.3
  • 18
    • 84911400494 scopus 로고    scopus 로고
    • Rich feature hierarchies for accurate object detection and semantic segmentation
    • R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. In CVPR, 2014
    • (2014) CVPR
    • Girshick, R.1    Donahue, J.2    Darrell, T.3    Malik, J.4
  • 21
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • G. E. Hinton and R. R. Salakhutdinov. Reducing the dimensionality of data with neural networks. Science, 313(5786): 504-507, 2006
    • (2006) Science , vol.313 , Issue.5786 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.R.2
  • 22
  • 24
    • 0035577808 scopus 로고    scopus 로고
    • A taxonomy of global optimization methods based on response surfaces
    • D. R. Jones. A taxonomy of global optimization methods based on response surfaces. Journal of Global Optimization, 21(4):345-383, 2001
    • (2001) Journal of Global Optimization , vol.21 , Issue.4 , pp. 345-383
    • Jones, D.R.1
  • 25
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS, 2012
    • (2012) NIPS
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 27
    • 80053540444 scopus 로고    scopus 로고
    • Unsupervised learning of hierarchical representations with convolutional deep belief networks
    • H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng. Unsupervised learning of hierarchical representations with convolutional deep belief networks. Communications of the ACM, 54(10):95-103, 2011
    • (2011) Communications of the ACM , vol.54 , Issue.10 , pp. 95-103
    • Lee, H.1    Grosse, R.2    Ranganath, R.3    Ng, A.Y.4
  • 29
    • 84908678178 scopus 로고    scopus 로고
    • Network in network
    • abs/1312. 4400
    • M. Lin, Q. Chen, and S. Yan. Network in network. CoRR, abs/1312. 4400, 2013
    • (2013) CoRR
    • Lin, M.1    Chen, Q.2    Yan, S.3
  • 30
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive image features from scale-invariant keypoints
    • D. G. Lowe. Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 60(2): 91-110, 2004
    • (2004) International Journal of Computer Vision , vol.60 , Issue.2 , pp. 91-110
    • Lowe, D.G.1
  • 31
    • 0342813049 scopus 로고
    • The application of Bayesian methods for seeking the extremum
    • J. Mockus, V. Tiesis, and A. Zilinskas. The application of Bayesian methods for seeking the extremum. Towards Global Optimization, 2(117-129):2, 1978
    • (1978) Towards Global Optimization , vol.2 , Issue.117-129 , pp. 2
    • Mockus, J.1    Tiesis, V.2    Zilinskas, A.3
  • 32
  • 35
    • 84910651844 scopus 로고    scopus 로고
    • Deep learning in neural networks: An overview
    • J. Schmidhuber. Deep learning in neural networks: An overview. Neural Networks, 61:85-117, 2015
    • (2015) Neural Networks , vol.61 , pp. 85-117
    • Schmidhuber, J.1
  • 36
    • 84911369716 scopus 로고    scopus 로고
    • Accurate object detection with joint classification-regression random forests
    • S. Schulter, C. Leistner, P. Wohlhart, P. M. Roth, and H. Bischof. Accurate object detection with joint classification-regression random forests. In CVPR, 2014
    • (2014) CVPR
    • Schulter, S.1    Leistner, C.2    Wohlhart, P.3    Roth, P.M.4    Bischof, H.5
  • 37
    • 84887328988 scopus 로고    scopus 로고
    • Pedestrian detection with unsupervised multi-stage feature learning
    • P. Sermanet, K. Kavukcuoglu, S. Chintala, and Y. LeCun. Pedestrian detection with unsupervised multi-stage feature learning. In CVPR, 2013
    • (2013) CVPR
    • Sermanet, P.1    Kavukcuoglu, K.2    Chintala, S.3    LeCun, Y.4
  • 38
    • 85083951635 scopus 로고    scopus 로고
    • OverFeat: Integrated recognition, localization and detection using convolutional networks
    • P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun. OverFeat: Integrated recognition, localization and detection using convolutional networks. In ICLR, 2014
    • (2014) ICLR
    • Sermanet, P.1    Eigen, D.2    Zhang, X.3    Mathieu, M.4    Fergus, R.5    LeCun, Y.6
  • 39
    • 85083953063 scopus 로고    scopus 로고
    • Very deep convolutional networks for large-scale image recognition
    • K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. In ICLR, 2015
    • (2015) ICLR
    • Simonyan, K.1    Zisserman, A.2
  • 40
    • 84869201485 scopus 로고    scopus 로고
    • Practical Bayesian optimization of machine learning algorithms
    • J. Snoek, H. Larochelle, and R. P. Adams. Practical Bayesian optimization of machine learning algorithms. In NIPS, 2012
    • (2012) NIPS
    • Snoek, J.1    Larochelle, H.2    Adams, R.P.3
  • 41
    • 84898989329 scopus 로고    scopus 로고
    • Deep neural networks for object detection
    • C. Szegedy, A. Toshev, and D. Erhan. Deep neural networks for object detection. In NIPS, 2013
    • (2013) NIPS
    • Szegedy, C.1    Toshev, A.2    Erhan, D.3
  • 45
    • 84898769710 scopus 로고    scopus 로고
    • Regionlets for generic object detection
    • Dec
    • X. Wang, M. Yang, S. Zhu, and Y. Lin. Regionlets for generic object detection. In ICCV, pages 17-24, Dec 2013
    • (2013) ICCV , pp. 17-24
    • Wang, X.1    Yang, M.2    Zhu, S.3    Lin, Y.4
  • 46
    • 84906489074 scopus 로고    scopus 로고
    • Visualizing and understanding convolutional networks
    • Springer
    • M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional networks. In ECCV, pages 818-833. Springer, 2014
    • (2014) ECCV , pp. 818-833
    • Zeiler, M.D.1    Fergus, R.2
  • 47
    • 84959194604 scopus 로고    scopus 로고
    • Improving object detection with deep convolutional networks via Bayesian optimization and structured prediction
    • abs/1504. 03293
    • Y. Zhang, K. Sohn, R. Villegas, G. Pan, and H. Lee. Improving object detection with deep convolutional networks via Bayesian optimization and structured prediction. CoRR, abs/1504. 03293, 2015. URL http://arxiv. org/abs/1504. 03293.
    • (2015) CoRR
    • Zhang, Y.1    Sohn, K.2    Villegas, R.3    Pan, G.4    Lee, H.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.