메뉴 건너뛰기




Volumn 51, Issue 2, 2006, Pages 425-441

Use of border information in the classification of mammographic masses

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER APPLICATIONS; IMAGE PROCESSING; NEURAL NETWORKS;

EID: 32544461460     PISSN: 00319155     EISSN: None     Source Type: Journal    
DOI: 10.1088/0031-9155/51/2/016     Document Type: Article
Times cited : (89)

References (36)
  • 3
    • 0025585326 scopus 로고
    • Use of gray level value distribution of run lengths for texture analysis
    • Chu A, Sehgal C and Greenleaf J 1990 Use of gray level value distribution of run lengths for texture analysis Pattern Recognit. Lett. 11 415-20
    • (1990) Pattern Recognit. Lett. , vol.11 , Issue.6 , pp. 415-420
    • Chu, A.1    Sehgal, C.2    Greenleaf, J.3
  • 5
    • 0028828517 scopus 로고
    • Breast masses. Appropriate evaluation
    • Evans W 1995 Breast masses. Appropriate evaluation Radiol. Clin. N. Am. 33 1085-108
    • (1995) Radiol. Clin. N. Am. , vol.33 , pp. 1085-1108
    • Evans, W.1
  • 6
    • 0001416258 scopus 로고
    • Texture analysis using gray level run lengths
    • Galloway M 1975 Texture analysis using gray level run lengths Comput. Graph. Image Process. 4 172-9
    • (1975) Comput. Graph. Image Process. , vol.4 , pp. 172-179
    • Galloway, M.1
  • 7
    • 0023919699 scopus 로고
    • Nonpalpable breast lesions: Recommendations for biopsy based on suspicion of carcinoma at mammography
    • Hall F, Storella J, Silverstone D and Wyshak G 1988 Nonpalpable breast lesions: recommendations for biopsy based on suspicion of carcinoma at mammography Radiology 167 353-8
    • (1988) Radiology , vol.167 , pp. 353-358
    • Hall, F.1    Storella, J.2    Silverstone, D.3    Wyshak, G.4
  • 11
    • 0028857937 scopus 로고
    • Analysis of spiculation in the computerized classification of mammographic masses
    • Huo Z, Giger M, Vyborny C, Bick U, Lu P, Wolverton D and Schmidt R 1995 Analysis of spiculation in the computerized classification of mammographic masses Med. Phys. 22 1569-79
    • (1995) Med. Phys. , vol.22 , Issue.10 , pp. 1569-1579
    • Huo, Z.1    Giger, M.2    Vyborny, C.3    Bick, U.4    Lu, P.5    Wolverton, D.6    Schmidt, R.7
  • 12
    • 0033663963 scopus 로고    scopus 로고
    • Computerized classification of benign and malignant masses on digitized mammograms: A study of robustness
    • Huo Z, Giger M, Vyborny C, Wolverton D and Metz C 2000 Computerized classification of benign and malignant masses on digitized mammograms: a study of robustness Acad. Radiol. 7 1077-84
    • (2000) Acad. Radiol. , vol.7 , Issue.12 , pp. 1077-1084
    • Huo, Z.1    Giger, M.2    Vyborny, C.3    Wolverton, D.4    Metz, C.5
  • 13
    • 0031875382 scopus 로고    scopus 로고
    • Automated computerized classification of malignant and benign masses on digitized mammograms
    • Huo Z, Giger M, Vyborny C, Wolverton D, Schmidt R and Doi K 1998 Automated computerized classification of malignant and benign masses on digitized mammograms Acad. Radiol. 5 155-68
    • (1998) Acad. Radiol. , vol.5 , Issue.3 , pp. 155-168
    • Huo, Z.1    Giger, M.2    Vyborny, C.3    Wolverton, D.4    Schmidt, R.5    Doi, K.6
  • 15
    • 0031909808 scopus 로고    scopus 로고
    • Automated classification of parenchymal patterns in mammograms
    • Karssemeijer N 1998 Automated classification of parenchymal patterns in mammograms Phys. Med. Biol. 43 365-78
    • (1998) Phys. Med. Biol. , vol.43 , Issue.2 , pp. 365-378
    • Karssemeijer, N.1
  • 16
    • 0030269884 scopus 로고    scopus 로고
    • Detection of stellate distortions in mammograms
    • Karssemeijer N and te Brake G 1996 Detection of stellate distortions in mammograms IEEE Trans. Med. Imaging 15 611-9
    • (1996) IEEE Trans. Med. Imaging , vol.15 , Issue.5 , pp. 611-619
    • Karssemeijer, N.1    Te Brake, G.2
  • 18
    • 2442692889 scopus 로고    scopus 로고
    • Classification of mammographic masses using generalized dynamic fuzzy neural networks
    • Lim W and Er M 2004 Classification of mammographic masses using generalized dynamic fuzzy neural networks Med. Phys. 31 1288-95
    • (2004) Med. Phys. , vol.31 , Issue.5 , pp. 1288-1295
    • Lim, W.1    Er, M.2
  • 19
    • 0036462557 scopus 로고    scopus 로고
    • A multiple circular path convolution neural network system for detection of mammographic masses
    • Lo S, Li H, Wang Y, Kinnard L and Freedman M 2002 A multiple circular path convolution neural network system for detection of mammographic masses IEEE Trans. Med. Imaging 21 150-8
    • (2002) IEEE Trans. Med. Imaging , vol.21 , Issue.2 , pp. 150-158
    • Lo, S.1    Li, H.2    Wang, Y.3    Kinnard, L.4    Freedman, M.5
  • 20
    • 0032525017 scopus 로고    scopus 로고
    • Maximum-likelihood estimation of receiver operating characteristic curve (roc) curves from continuously-distributed data
    • Metz C, Herman B and Shen J 1998 Maximum-likelihood estimation of receiver operating characteristic curve (roc) curves from continuously- distributed data Statist. Med. 17 1033-53
    • (1998) Statist. Med. , vol.17 , Issue.9 , pp. 1033-1053
    • Metz, C.1    Herman, B.2    Shen, J.3
  • 21
    • 0002167042 scopus 로고
    • A new approach for testing the significance of differences between roc curves measured from correlated data
    • Metz C, Wang P and Kronman H 1984 A new approach for testing the significance of differences between roc curves measured from correlated data Information Processing in Medical Imaging: Proc. 8th Conf. pp 432-45
    • (1984) Information Processing in Medical Imaging: Proc. 8th Conf. , pp. 432-445
    • Metz, C.1    Wang, P.2    Kronman, H.3
  • 22
    • 0025364044 scopus 로고
    • Biopsy of occult breast lesions. Analysis of 1261 abnormalities
    • Meyer J, Eberlein T, Stomper P and Sonnenfeld M 1990 Biopsy of occult breast lesions. Analysis of 1261 abnormalities JAMA 263 2341-3
    • (1990) JAMA , vol.263 , Issue.17 , pp. 2341-2343
    • Meyer, J.1    Eberlein, T.2    Stomper, P.3    Sonnenfeld, M.4
  • 23
    • 0034287385 scopus 로고    scopus 로고
    • Gradient and texture analysis for the classification of mammographic masses
    • Mudigonda N, Rangayyan R and Desautels J 2000 Gradient and texture analysis for the classification of mammographic masses IEEE Trans. Med. Imaging 19 1032-43
    • (2000) IEEE Trans. Med. Imaging , vol.19 , Issue.10 , pp. 1032-1043
    • Mudigonda, N.1    Rangayyan, R.2    Desautels, J.3
  • 24
    • 0027983046 scopus 로고
    • Effect of case selection on the performance of computer-aided detection schemes
    • Nishikawa R, Giger M, Doi K, Metz C, Yin F, Vyborny C and Schmidt R 1994 Effect of case selection on the performance of computer-aided detection schemes Med. Phys. 21 265-9
    • (1994) Med. Phys. , vol.21 , Issue.2 , pp. 265-269
    • Nishikawa, R.1    Giger, M.2    Doi, K.3    Metz, C.4    Yin, F.5    Vyborny, C.6    Schmidt, R.7
  • 27
    • 0031976735 scopus 로고    scopus 로고
    • Computerized characterization of masses on mammograms: The rubber band straightening transform and texture analysis
    • Sahiner B, Chan H, Petrick N, Helvie M and Goodsitt M 1998a Computerized characterization of masses on mammograms: the rubber band straightening transform and texture analysis Med. Phys. 25 516-26
    • (1998) Med. Phys. , vol.25 , Issue.4 , pp. 516-526
    • Sahiner, B.1    Chan, H.2    Petrick, N.3    Helvie, M.4    Goodsitt, M.5
  • 28
    • 0031710635 scopus 로고    scopus 로고
    • Design of a high-sensitivity classifier based on a genetic algorithm: Application to computer-aided diagnosis
    • Sahiner B, Chan H, Petrick N, Helvie M and Goodsitt M 1998b Design of a high-sensitivity classifier based on a genetic algorithm: application to computer-aided diagnosis Phys. Med. Biol. 43 2853-71
    • (1998) Phys. Med. Biol. , vol.43 , Issue.10 , pp. 2853-2871
    • Sahiner, B.1    Chan, H.2    Petrick, N.3    Helvie, M.4    Goodsitt, M.5
  • 29
    • 0034917794 scopus 로고    scopus 로고
    • Improvement of mammographic mass characterization using spiculation measures and morphological features
    • Sahiner B, Chan H, Petrick N, Helvie M and Hadjiiski L 2001 Improvement of mammographic mass characterization using spiculation measures and morphological features Med. Phys. 28 1455-65
    • (2001) Med. Phys. , vol.28 , Issue.7 , pp. 1455-1465
    • Sahiner, B.1    Chan, H.2    Petrick, N.3    Helvie, M.4    Hadjiiski, L.5
  • 30
    • 0035339809 scopus 로고    scopus 로고
    • Beyond randomized controlled trials: Organized mammographic screening substantially reduces breast carcinoma mortality
    • Tabar L, Vitak B, Chen H, Yen M, Duffy S and Smith R 2001 Beyond randomized controlled trials: organized mammographic screening substantially reduces breast carcinoma mortality Cancer 91 1724-31
    • (2001) Cancer , vol.91 , pp. 1724-1731
    • Tabar, L.1    Vitak, B.2    Chen, H.3    Yen, M.4    Duffy, S.5    Smith, R.6
  • 31
    • 0033153747 scopus 로고    scopus 로고
    • Single and multiscale detection of masses in digital mammograms
    • te Brake G and Karssemeijer N 1999 Single and multiscale detection of masses in digital mammograms IEEE Trans. Med. Imaging 18 628-39
    • (1999) IEEE Trans. Med. Imaging , vol.18 , Issue.7 , pp. 628-639
    • Te Brake, G.1    Karssemeijer, N.2
  • 32
    • 0033772931 scopus 로고    scopus 로고
    • An automatic method to discriminate malignant masses from normal tissue in digital mammograms
    • te Brake G, Karssemeijer N and Hendriks J 2000 An automatic method to discriminate malignant masses from normal tissue in digital mammograms Phys. Med. Biol. 45 2843-57
    • (2000) Phys. Med. Biol. , vol.45 , Issue.10 , pp. 2843-2857
    • Te Brake, G.1    Karssemeijer, N.2    Hendriks, J.3
  • 33
    • 2442666562 scopus 로고    scopus 로고
    • A new 2D-segmentation method based on dynamic programming applied to computer aided detection in mammography
    • Timp S and Karssemeijer N 2004 A new 2D-segmentation method based on dynamic programming applied to computer aided detection in mammography Med. Phys. 31 958-71
    • (2004) Med. Phys. , vol.31 , Issue.5 , pp. 958-971
    • Timp, S.1    Karssemeijer, N.2
  • 35
    • 0029321798 scopus 로고
    • Recursive implementation of the Gaussian filter
    • Young I and van Vliet L 1995 Recursive implementation of the Gaussian filter Signal Process. 44 139-51
    • (1995) Signal Process. , vol.44 , Issue.2 , pp. 139-151
    • Young, I.1    Van Vliet, L.2
  • 36
    • 0035384865 scopus 로고    scopus 로고
    • An artificial intelligent algorithm for tumor detection in screening mammogram
    • Zheng L and Chan A 2001 An artificial intelligent algorithm for tumor detection in screening mammogram IEEE Trans. Med. Imaging 20 559-67
    • (2001) IEEE Trans. Med. Imaging , vol.20 , Issue.7 , pp. 559-567
    • Zheng, L.1    Chan, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.