-
1
-
-
0035478854
-
Random forests
-
Breiman, L. Random forests Machine Learning 2001, 45, 5-32
-
(2001)
Machine Learning
, vol.45
, pp. 5-32
-
-
Breiman, L.1
-
3
-
-
20444399504
-
Boosting: An ensemble learning tool for compound classification and QSAR modeling
-
Svetnik, V.; Wang, T.; Tong, C.; Liaw, A.; Sheridan, R. P.; Song, Q. Boosting: an ensemble learning tool for compound classification and QSAR modeling J. Chem. Inf. Comput. Sci. 2005, 45, 786-799
-
(2005)
J. Chem. Inf. Comput. Sci.
, vol.45
, pp. 786-799
-
-
Svetnik, V.1
Wang, T.2
Tong, C.3
Liaw, A.4
Sheridan, R.P.5
Song, Q.6
-
4
-
-
33846887419
-
Contemporary QSAR classifiers compared
-
Bruce, C. L.; Melville, J. L.; Picket, S. D.; Hirst, J. D. Contemporary QSAR classifiers compared J. Chem. Inf. Model. 2007, 47, 219-227
-
(2007)
J. Chem. Inf. Model.
, vol.47
, pp. 219-227
-
-
Bruce, C.L.1
Melville, J.L.2
Picket, S.D.3
Hirst, J.D.4
-
5
-
-
0345548657
-
Random forest: A classification and regression tool for compound classification and QSAR modeling
-
Svetnik, V.; Liaw, A.; Tong, C.; Culberson, J. C.; Sheridan, R. P.; Feuston, B. P. Random forest: a classification and regression tool for compound classification and QSAR modeling J. Chem. Inf. Comput. Sci. 2003, 43, 1947-1958
-
(2003)
J. Chem. Inf. Comput. Sci.
, vol.43
, pp. 1947-1958
-
-
Svetnik, V.1
Liaw, A.2
Tong, C.3
Culberson, J.C.4
Sheridan, R.P.5
Feuston, B.P.6
-
6
-
-
84919773193
-
Do we need hundreds of classifiers to solve real world problems?
-
Fernandez-Delgado, M.; Cernades, E.; Barro, S.; Amorim, D. A. Do we need hundreds of classifiers to solve real world problems? J. Machine. Learning. Res. 2014, 15, 3133-3181
-
(2014)
J. Machine. Learning. Res.
, vol.15
, pp. 3133-3181
-
-
Fernandez-Delgado, M.1
Cernades, E.2
Barro, S.3
Amorim, D.A.4
-
7
-
-
0035353660
-
Quantitative structure-activity relationship studies using Gaussian Processes
-
Burden, F. R. Quantitative structure-activity relationship studies using Gaussian Processes J. Chem. Inf. Comput. Sci. 2001, 41, 830-835
-
(2001)
J. Chem. Inf. Comput. Sci.
, vol.41
, pp. 830-835
-
-
Burden, F.R.1
-
8
-
-
85032751458
-
Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups
-
Hinton, G. E.; Deng, L.; Yu, D.; Dahl, G. E.; Mohamed, A.; Jaitly, N.; Senior, A.; Vanhoucke, V.; Nguyen, P.; Sainath, T. N.; Kingsbury, B. Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups IEEE Signal Processing Magazine 2012, 29, 82-97
-
(2012)
IEEE Signal Processing Magazine
, vol.29
, pp. 82-97
-
-
Hinton, G.E.1
Deng, L.2
Yu, D.3
Dahl, G.E.4
Mohamed, A.5
Jaitly, N.6
Senior, A.7
Vanhoucke, V.8
Nguyen, P.9
Sainath, T.N.10
Kingsbury, B.11
-
9
-
-
84876231242
-
ImageNet classification with deep convolutional neural networks
-
Krizhevsky, A.; Sutskever, I.; Hinton, G. E. ImageNet classification with deep convolutional neural networks Advances in Neural Information Processing Systems 2012, 25, 1097-1105
-
(2012)
Advances in Neural Information Processing Systems
, vol.25
, pp. 1097-1105
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
11
-
-
84859192809
-
Comparison of random forest and Pipeline Pilot naive Bayes in prospective QSAR predictions
-
Chen, B.; Sheridan, R. P.; Hornak, V.; Voigt, J. H. Comparison of random forest and Pipeline Pilot naive Bayes in prospective QSAR predictions J. Chem. Inf. Model. 2012, 52, 792-803
-
(2012)
J. Chem. Inf. Model.
, vol.52
, pp. 792-803
-
-
Chen, B.1
Sheridan, R.P.2
Hornak, V.3
Voigt, J.H.4
-
12
-
-
84876520796
-
Time-split cross-validation as a method for estimating the goodness of prospective prediction
-
Sheridan, R. P. Time-split cross-validation as a method for estimating the goodness of prospective prediction J. Chem. Inf. Model. 2013, 53, 783-790
-
(2013)
J. Chem. Inf. Model.
, vol.53
, pp. 783-790
-
-
Sheridan, R.P.1
-
13
-
-
33845379303
-
Atom pairs as molecular features in structure-activity studies: Definition and application
-
Carhart, R. E.; Smith, D. H.; Ventkataraghavan, R. Atom pairs as molecular features in structure-activity studies: definition and application J. Chem. Inf. Comput. Sci. 1985, 25, 64-73
-
(1985)
J. Chem. Inf. Comput. Sci.
, vol.25
, pp. 64-73
-
-
Carhart, R.E.1
Smith, D.H.2
Ventkataraghavan, R.3
-
14
-
-
0001577643
-
Chemical similarity using physiochemical property descriptors
-
Kearsley, S. K.; Sallamack, S.; Fluder, E. M.; Andose, J. D.; Mosley, R. T.; Sheridan, R. P. Chemical similarity using physiochemical property descriptors J. Chem. Inform. Comp. Sci. 1996, 36, 118-27
-
(1996)
J. Chem. Inform. Comp. Sci.
, vol.36
, pp. 118-127
-
-
Kearsley, S.K.1
Sallamack, S.2
Fluder, E.M.3
Andose, J.D.4
Mosley, R.T.5
Sheridan, R.P.6
-
15
-
-
0022471098
-
Learning representations by back-propagating errors
-
Rumelhart, D. E.; Hinton, G. E.; Williams, R. J. Learning representations by back-propagating errors Nature 1986, 323, 533-536
-
(1986)
Nature
, vol.323
, pp. 533-536
-
-
Rumelhart, D.E.1
Hinton, G.E.2
Williams, R.J.3
-
16
-
-
33745805403
-
A fast learning algorithm for deep belief nets
-
Hinton, G. E.; Osindero, S.; Teh, Y. W. A fast learning algorithm for deep belief nets Neural Computation 2006, 18, 1527-1554
-
(2006)
Neural Computation
, vol.18
, pp. 1527-1554
-
-
Hinton, G.E.1
Osindero, S.2
Teh, Y.W.3
-
17
-
-
84904163933
-
Dropout: A simple way to prevent neural networks from overfitting
-
Srivastava, N.; Hinton, G. E.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent neural networks from overfitting J. Mach. Learn. Res. 2014, 15, 1929-1958
-
(2014)
J. Mach. Learn. Res.
, vol.15
, pp. 1929-1958
-
-
Srivastava, N.1
Hinton, G.E.2
Krizhevsky, A.3
Sutskever, I.4
Salakhutdinov, R.5
-
18
-
-
84896538964
-
Dropout training as adaptive regularization
-
MIT Press: Cambridge, MA
-
Wager, S.; Wang, S.; Liang, P. Dropout training as adaptive regularization. Advances in Neural Information Processing Systems 26 (NIPS 2013); MIT Press: Cambridge, MA, 2013; pp 351-359.
-
(2013)
Advances in Neural Information Processing Systems 26 (NIPS 2013)
, pp. 351-359
-
-
Wager, S.1
Wang, S.2
Liang, P.3
-
19
-
-
80053455455
-
-
Department of Computer Science, University of Toronto, Technical report UTML TR2010-002
-
Tieleman, T. Gnumpy: an easy way to use GPU boards in Python; Department of Computer Science, University of Toronto, 2010; Technical report UTML TR2010-002.
-
(2010)
Gnumpy: An Easy Way to Use GPU Boards in Python
-
-
Tieleman, T.1
-
20
-
-
78149337911
-
-
Department of Computer Science, University of Toronto, Technical report UTML TR2009-004
-
Mnih, V. Cudamat: a CUDA-based matrix class for Python; Department of Computer Science, University of Toronto, 2009; Technical report UTML TR2009-004.
-
(2009)
Cudamat: A CUDA-based Matrix Class for Python
-
-
Mnih, V.1
-
21
-
-
77956509090
-
Rectified linear units improve restricted Boltzmann machines
-
Haifa, Israel, June 21-24
-
Nair, V.; Hinton, G. E. Rectified linear units improve restricted Boltzmann machines. Proceedings of the 27th International Conference on Machine Learning, Haifa, Israel, June 21-24, 2010; pp 807-814.
-
(2010)
Proceedings of the 27th International Conference on Machine Learning
, pp. 807-814
-
-
Nair, V.1
Hinton, G.E.2
|