메뉴 건너뛰기




Volumn 55, Issue 2, 2015, Pages 263-274

Deep neural nets as a method for quantitative structure-activity relationships

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTATIONAL CHEMISTRY; COMPUTER HARDWARE; DECISION TREES; DEEP NEURAL NETWORKS; GRAPHICS PROCESSING UNIT; MOLECULAR GRAPHICS; NATURAL LANGUAGE PROCESSING SYSTEMS; PROGRAM PROCESSORS; SUPPORT VECTOR MACHINES;

EID: 84923367417     PISSN: 15499596     EISSN: 1549960X     Source Type: Journal    
DOI: 10.1021/ci500747n     Document Type: Article
Times cited : (973)

References (21)
  • 1
  • 7
    • 0035353660 scopus 로고    scopus 로고
    • Quantitative structure-activity relationship studies using Gaussian Processes
    • Burden, F. R. Quantitative structure-activity relationship studies using Gaussian Processes J. Chem. Inf. Comput. Sci. 2001, 41, 830-835
    • (2001) J. Chem. Inf. Comput. Sci. , vol.41 , pp. 830-835
    • Burden, F.R.1
  • 11
    • 84859192809 scopus 로고    scopus 로고
    • Comparison of random forest and Pipeline Pilot naive Bayes in prospective QSAR predictions
    • Chen, B.; Sheridan, R. P.; Hornak, V.; Voigt, J. H. Comparison of random forest and Pipeline Pilot naive Bayes in prospective QSAR predictions J. Chem. Inf. Model. 2012, 52, 792-803
    • (2012) J. Chem. Inf. Model. , vol.52 , pp. 792-803
    • Chen, B.1    Sheridan, R.P.2    Hornak, V.3    Voigt, J.H.4
  • 12
    • 84876520796 scopus 로고    scopus 로고
    • Time-split cross-validation as a method for estimating the goodness of prospective prediction
    • Sheridan, R. P. Time-split cross-validation as a method for estimating the goodness of prospective prediction J. Chem. Inf. Model. 2013, 53, 783-790
    • (2013) J. Chem. Inf. Model. , vol.53 , pp. 783-790
    • Sheridan, R.P.1
  • 13
    • 33845379303 scopus 로고
    • Atom pairs as molecular features in structure-activity studies: Definition and application
    • Carhart, R. E.; Smith, D. H.; Ventkataraghavan, R. Atom pairs as molecular features in structure-activity studies: definition and application J. Chem. Inf. Comput. Sci. 1985, 25, 64-73
    • (1985) J. Chem. Inf. Comput. Sci. , vol.25 , pp. 64-73
    • Carhart, R.E.1    Smith, D.H.2    Ventkataraghavan, R.3
  • 15
    • 0022471098 scopus 로고
    • Learning representations by back-propagating errors
    • Rumelhart, D. E.; Hinton, G. E.; Williams, R. J. Learning representations by back-propagating errors Nature 1986, 323, 533-536
    • (1986) Nature , vol.323 , pp. 533-536
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 16
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • Hinton, G. E.; Osindero, S.; Teh, Y. W. A fast learning algorithm for deep belief nets Neural Computation 2006, 18, 1527-1554
    • (2006) Neural Computation , vol.18 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.W.3
  • 19
    • 80053455455 scopus 로고    scopus 로고
    • Department of Computer Science, University of Toronto, Technical report UTML TR2010-002
    • Tieleman, T. Gnumpy: an easy way to use GPU boards in Python; Department of Computer Science, University of Toronto, 2010; Technical report UTML TR2010-002.
    • (2010) Gnumpy: An Easy Way to Use GPU Boards in Python
    • Tieleman, T.1
  • 20
    • 78149337911 scopus 로고    scopus 로고
    • Department of Computer Science, University of Toronto, Technical report UTML TR2009-004
    • Mnih, V. Cudamat: a CUDA-based matrix class for Python; Department of Computer Science, University of Toronto, 2009; Technical report UTML TR2009-004.
    • (2009) Cudamat: A CUDA-based Matrix Class for Python
    • Mnih, V.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.