메뉴 건너뛰기




Volumn 1, Issue , 2015, Pages 577-582

Retinal vessel segmentation using deep neural networks

Author keywords

Blood vessel segmentation; Deep neural networks; GPU; Retinal imaging

Indexed keywords

BLOOD; BLOOD VESSELS; GRAPHICS PROCESSING UNIT; IMAGE SEGMENTATION; NEURAL NETWORKS; OPHTHALMOLOGY; PATHOLOGY; STATISTICAL TESTS;

EID: 84939556026     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.5220/0005313005770582     Document Type: Conference Paper
Times cited : (168)

References (24)
  • 3
    • 84939489059 scopus 로고    scopus 로고
    • WWW Document. URL, accessed 10.2.14
    • Caffe | Deep Learning Framework [WWW Document], n.d. URL http://caffe.berkeleyvision.org/(accessed 10.2.14).
    • Caffe | Deep Learning Framework
  • 8
    • 84860253391 scopus 로고    scopus 로고
    • Algorithms for the automated detection of dia-betic retinopathy using digital fundus images: A review
    • Faust, O., Acharya, R., Ng, E.Y.-K., Ng, K.-H., Suri, J.S., 2012. Algorithms for the automated detection of dia-betic retinopathy using digital fundus images: A review. J. Med. Syst. 36, 145-157.
    • (2012) J. Med. Syst. , vol.36 , pp. 145-157
    • Faust, O.1    Acharya, R.2    Ng, E.Y.-K.3    Ng, K.-H.4    Suri, J.S.5
  • 11
    • 0019152630 scopus 로고
    • Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position
    • Fukushima, K., 1980. Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biol. Cybern. 36, 193-202.
    • (1980) Biol. Cybern. , vol.36 , pp. 193-202
    • Fukushima, K.1
  • 13
    • 84860638820 scopus 로고    scopus 로고
    • Image Sciences Institute:, [WWW Document], URL, accessed 10.2.14
    • Image Sciences Institute: DRIVE: Digital Retinal Images for Vessel Extraction [WWW Document], n.d. URL http://www.isi.uu.nl/Research/Databases/DRIVE/(accessed 10.2.14).
    • DRIVE: Digital Retinal Images for Vessel Extraction
  • 15
    • 28644434715 scopus 로고    scopus 로고
    • A review of vessel extraction techniques and algorithms
    • Kirbas, C., Quek, F., 2004. A review of vessel extraction techniques and algorithms. ACM Comput. Surv. CSUR 36, 81-121.
    • (2004) ACM Comput. Surv. CSUR , vol.36 , pp. 81-121
    • Kirbas, C.1    Quek, F.2
  • 16
    • 0032207814 scopus 로고    scopus 로고
    • Edge detection and ridge detection with automatic scale selection
    • Lindeberg, T., 1998. Edge detection and ridge detection with automatic scale selection. Int. J. Comput. Vis. 30, 117-156.
    • (1998) Int. J. Comput. Vis. , vol.30 , pp. 117-156
    • Lindeberg, T.1
  • 19
    • 84931043348 scopus 로고    scopus 로고
    • IPAL UMI CNRS - TRIBVN - Pitié-Salpêtrière Hospital - The Ohio State University [WWW Document],URL, accessed 10.17.14
    • Mitosis Detection in Breast Cancer Histological Images | IPAL UMI CNRS - TRIBVN - Pitié-Salpêtrière Hospital - The Ohio State University [WWW Document], n.d. URL http://ipal.cnrs.fr/ICPR2012/(accessed 10.17.14).
    • Mitosis Detection in Breast Cancer Histological Images
  • 20
    • 5644287725 scopus 로고    scopus 로고
    • Comparative study of retinal vessel segmentation methods on a new publicly available database
    • Niemeijer, M., Staal, J., van Ginneken, B., Loog, M., Abramoff, M.D., 2004. Comparative study of retinal vessel segmentation methods on a new publicly available database, in: Medical Imaging 2004. pp. 648-656.
    • (2004) Medical Imaging 2004 , pp. 648-656
    • Niemeijer, M.1    Staal, J.2    Van Ginneken, B.3    Loog, M.4    Abramoff, M.D.5
  • 22
    • 34948844097 scopus 로고    scopus 로고
    • Retinal blood vessel segmentation using line operators and support vector classification
    • Ricci, E., Perfetti, R., 2007. Retinal Blood Vessel Segmentation Using Line Operators and Support Vector Classification. IEEE Trans. Med. Imaging 26, 1357- 1365. doi:10.1109/TMI.2007.898551.
    • (2007) IEEE Trans. Med. Imaging , vol.26 , pp. 1357-1365
    • Ricci, E.1    Perfetti, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.