메뉴 건너뛰기




Volumn 11, Issue , 2017, Pages 797-810

Proteinopathy, oxidative stress and mitochondrial dysfunction: Cross talk in alzheimer’s disease and parkinson’s disease

Author keywords

Amyloid beta; Mitochondrial dysfunction; Oxidative stress; Proteinopathy; synuclein

Indexed keywords

ALPHA SYNUCLEIN; AMYLOID BETA PROTEIN; AMYLOID PRECURSOR PROTEIN; BETA SECRETASE 1; CELL PROTEIN; CYCLIN DEPENDENT KINASE 5; HEAT SHOCK PROTEIN 40; HEAT SHOCK PROTEIN 70; HEAT SHOCK PROTEIN 90; LOW DENSITY LIPOPROTEIN RECEPTOR RELATED PROTEIN; METAL ION; OLIGOMER; OXYGEN RADICAL; PARKIN; PINK1 PROTEIN; REACTIVE OXYGEN METABOLITE; TAU PROTEIN; UNCLASSIFIED DRUG; PROTEIN;

EID: 85015976566     PISSN: None     EISSN: 11778881     Source Type: Journal    
DOI: 10.2147/DDDT.S130514     Document Type: Article
Times cited : (228)

References (151)
  • 1
    • 44949138796 scopus 로고    scopus 로고
    • A review of Parkinson’s disease
    • Davie CA. A review of Parkinson’s disease. Br Med Bull. 2008;86(1):109-127.
    • (2008) Br Med Bull , vol.86 , Issue.1 , pp. 109-127
    • Davie, C.A.1
  • 2
    • 84937840738 scopus 로고    scopus 로고
    • Metabolic risk factors of sporadic Alzheimer’s disease: Implications in the pathology, pathogenesis and treatment
    • Chakrabarti S, Khemka VK, Banerjee A, Chatterjee G, Ganguly A, Biswas A. Metabolic risk factors of sporadic Alzheimer’s disease: implications in the pathology, pathogenesis and treatment. Aging Dis. 2015;6(4):282-299.
    • (2015) Aging Dis , vol.6 , Issue.4 , pp. 282-299
    • Chakrabarti, S.1    Khemka, V.K.2    Banerjee, A.3    Chatterjee, G.4    Ganguly, A.5    Biswas, A.6
  • 3
    • 0037417254 scopus 로고    scopus 로고
    • Alzheimer’s disease and Parkinson’s disease
    • Nussbaum RL, Ellis CE. Alzheimer’s disease and Parkinson’s disease. N Engl J Med. 2003;348(14):1356-1364.
    • (2003) N Engl J Med , vol.348 , Issue.14 , pp. 1356-1364
    • Nussbaum, R.L.1    Ellis, C.E.2
  • 4
    • 84901806613 scopus 로고    scopus 로고
    • Shared mechanisms of neurodegeneration in Alzheimer’s disease and Parkinson’s disease
    • Xie A, Gao J, Xu L, Meng D. Shared mechanisms of neurodegeneration in Alzheimer’s disease and Parkinson’s disease. Biomed Res Int. 2014;2014:648740.
    • (2014) Biomed Res Int , vol.2014
    • Xie, A.1    Gao, J.2    Xu, L.3    Meng, D.4
  • 5
    • 84878992823 scopus 로고    scopus 로고
    • Mitochondrial biology and Parkinson’s disease
    • Perier C, Vila M. Mitochondrial biology and Parkinson’s disease. Cold Spring Harb Perspect Med. 2011;2(2):a009332.
    • (2011) Cold Spring Harb Perspect Med , vol.2 , Issue.2
    • Perier, C.1    Vila, M.2
  • 6
    • 80055078418 scopus 로고    scopus 로고
    • The mito­chondrial dynamics of Alzheimer’s disease and Parkinson’s disease offer important opportunities for therapeutic intervention
    • Bonda DJ, Smith MA, Perry G, Lee HG, Wang X, Zhu X. The mito­chondrial dynamics of Alzheimer’s disease and Parkinson’s disease offer important opportunities for therapeutic intervention. Curr Pharm Des. 2011;17(31):3374-3380.
    • (2011) Curr Pharm Des , vol.17 , Issue.31 , pp. 3374-3380
    • Bonda, D.J.1    Smith, M.A.2    Perry, G.3    Lee, H.G.4    Wang, X.5    Zhu, X.6
  • 7
    • 84881027032 scopus 로고    scopus 로고
    • Mitochondrial dysfunction and oxidative stress in Parkinson’s disease
    • Subramaniam SR, Chesselet M-F. Mitochondrial dysfunction and oxidative stress in Parkinson’s disease. Prog Neurobiol. 2013;106-107:17-32.
    • (2013) Prog Neurobiol , vol.106-107 , pp. 17-32
    • Subramaniam, S.R.1    Chesselet, M.-F.2
  • 8
    • 77956699395 scopus 로고    scopus 로고
    • New insights into the role of mitochondrial dysfunction and protein aggregation in Parkinson’s disease
    • Xie W, Wan OW, Chung KK. New insights into the role of mitochondrial dysfunction and protein aggregation in Parkinson’s disease. Biochim Biophys Acta. 2010;1802(11):935-941.
    • (2010) Biochim Biophys Acta , vol.1802 , Issue.11 , pp. 935-941
    • Xie, W.1    Wan, O.W.2    Chung, K.K.3
  • 9
    • 0036591849 scopus 로고    scopus 로고
    • Lipid peroxidation and protein oxidation in Alzheimer’s disease brain: Potential causes and consequences involving amyloid beta-peptide-associated free radical oxidative stress
    • Butterfield DA, Lauderback CM. Lipid peroxidation and protein oxidation in Alzheimer’s disease brain: potential causes and consequences involving amyloid beta-peptide-associated free radical oxidative stress. Free Radic Biol Med. 2002;32(11):1050-1060.
    • (2002) Free Radic Biol Med , vol.32 , Issue.11 , pp. 1050-1060
    • Butterfield, D.A.1    Lauderback, C.M.2
  • 10
    • 39149122810 scopus 로고    scopus 로고
    • Amyloid beta, mitochondrial dysfunction and synaptic damage: Implications for cognitive decline in aging and Alzheimer’s disease
    • Reddy PH, Beal MF. Amyloid beta, mitochondrial dysfunction and synaptic damage: implications for cognitive decline in aging and Alzheimer’s disease. Trends Mol Med. 2008;14(2):45-53.
    • (2008) Trends Mol Med , vol.14 , Issue.2 , pp. 45-53
    • Reddy, P.H.1    Beal, M.F.2
  • 11
    • 61549111872 scopus 로고    scopus 로고
    • α-Synuclein and neuronal cell death
    • Cookson MR. α-Synuclein and neuronal cell death. Mol Neurodegener. 2009;4:9.
    • (2009) Mol Neurodegener , vol.4 , pp. 9
    • Cookson, M.R.1
  • 12
    • 84963520567 scopus 로고    scopus 로고
    • The amyloid hypothesis of Alzheimer’s disease at 25 years
    • Selkoe DJ, Hardy J. The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol Med. 2016;8(6):595-608.
    • (2016) EMBO Mol Med , vol.8 , Issue.6 , pp. 595-608
    • Selkoe, D.J.1    Hardy, J.2
  • 13
    • 76649116890 scopus 로고    scopus 로고
    • Mechanism of amyloid plaque formation suggests an intracellular basis of a pathogenicity
    • Friedrich RP, Tepper K, Ronicke R, et al. Mechanism of amyloid plaque formation suggests an intracellular basis of a pathogenicity. Proc Natl Acad Sci U S A. 2010;107(5):1942-1947.
    • (2010) Proc Natl Acad Sci U S A , vol.107 , Issue.5 , pp. 1942-1947
    • Friedrich, R.P.1    Tepper, K.2    Ronicke, R.3
  • 14
    • 70349503591 scopus 로고    scopus 로고
    • Biophysics of Parkinson’s Disease: Structure and aggregation of α-synuclein
    • Uversky VN, Eliezer D. Biophysics of Parkinson’s Disease: structure and aggregation of α-synuclein. Curr Protein Peptide Sci. 2009;10:483-499.
    • (2009) Curr Protein Peptide Sci , vol.10 , pp. 483-499
    • Uversky, V.N.1    Eliezer, D.2
  • 15
    • 77956661146 scopus 로고    scopus 로고
    • Current concepts of neuropathological diagnostics in practice: Neurodegenerative diseases
    • Kovacs GG, Budka H. Current concepts of neuropathological diagnostics in practice: neurodegenerative diseases. Clin Neuropathol. 2010;29(5):271-288.
    • (2010) Clin Neuropathol , vol.29 , Issue.5 , pp. 271-288
    • Kovacs, G.G.1    Budka, H.2
  • 16
    • 79959886270 scopus 로고    scopus 로고
    • Amyloid precursor protein processing and Alzheimer’s disease
    • O’brien RJ, Wong PC. Amyloid precursor protein processing and Alzheimer’s disease. Ann Rev Neurosci. 2011;34:185-204.
    • (2011) Ann Rev Neurosci , vol.34 , pp. 185-204
    • O’Brien, R.J.1    Wong, P.C.2
  • 17
    • 67349276645 scopus 로고    scopus 로고
    • Amyloid precursor protein and alpha synuclein translation, implications for iron and inflammation in neurodegenerative diseases
    • Cahill CM, Lahiri DK, Huang X, Rogers JT. Amyloid precursor protein and alpha synuclein translation, implications for iron and inflammation in neurodegenerative diseases. Biochim Biophys Acta. 2009;1790(7):615-628.
    • (2009) Biochim Biophys Acta , vol.1790 , Issue.7 , pp. 615-628
    • Cahill, C.M.1    Lahiri, D.K.2    Huang, X.3    Rogers, J.T.4
  • 18
    • 77951842993 scopus 로고    scopus 로고
    • Methylation regulates alpha-synuclein expression and is decreased in Parkinson’s disease patients’ brains
    • Jowaed A, Schmitt I, Kaut O, Wüllner U. Methylation regulates alpha-synuclein expression and is decreased in Parkinson’s disease patients’ brains. J Neurosci. 2010;30(18):6355-6359.
    • (2010) J Neurosci , vol.30 , Issue.18 , pp. 6355-6359
    • Jowaed, A.1    Schmitt, I.2    Kaut, O.3    Wüllner, U.4
  • 20
    • 84989284335 scopus 로고    scopus 로고
    • Degradation of misfolded proteins in neurodegenerative diseases: Therapeutic targets and strategies
    • Ciechanover A, Kwon YT. Degradation of misfolded proteins in neurodegenerative diseases: therapeutic targets and strategies. Exp Mol Med. 2015;47:e147.
    • (2015) Exp Mol Med , vol.47
    • Ciechanover, A.1    Kwon, Y.T.2
  • 21
    • 44849094781 scopus 로고    scopus 로고
    • Proteotoxic stress and inducible chaperone networks in neurodegenerative disease and aging
    • Morimoto RI. Proteotoxic stress and inducible chaperone networks in neurodegenerative disease and aging. Genes Dev. 2008;22(11):1427-1438.
    • (2008) Genes Dev , vol.22 , Issue.11 , pp. 1427-1438
    • Morimoto, R.I.1
  • 22
    • 84893853030 scopus 로고    scopus 로고
    • Molecular chaperones and proteostasis regulation during redox imbalance
    • Niforou K, Cheimonidou C, Trougakos IP. Molecular chaperones and proteostasis regulation during redox imbalance. Redox Biol. 2014;2:323-332.
    • (2014) Redox Biol , vol.2 , pp. 323-332
    • Niforou, K.1    Cheimonidou, C.2    Trougakos, I.P.3
  • 23
    • 0029984062 scopus 로고    scopus 로고
    • Antioxidant and redox regulation of gene transcription
    • Sen CK, Packer L. Antioxidant and redox regulation of gene transcription. FASEB J. 1996;10(7):709-720.
    • (1996) FASEB J , vol.10 , Issue.7 , pp. 709-720
    • Sen, C.K.1    Packer, L.2
  • 24
    • 79955757695 scopus 로고    scopus 로고
    • Oxidative stress-mediated regulation of proteasome complexes
    • Aiken CT, Kaake RM, Wang X, Huang L. Oxidative stress-mediated regulation of proteasome complexes. Mol Cell Proteomics. 2011;10(5):R110006924.
    • (2011) Mol Cell Proteomics , vol.10 , Issue.5
    • Aiken, C.T.1    Kaake, R.M.2    Wang, X.3    Huang, L.4
  • 26
    • 84961506813 scopus 로고    scopus 로고
    • Posttranslational modification and mutation of histidine 50 trigger alpha synuclein aggregation and toxicity
    • Xiang W, Menges S, Schlachetzki J, et al. Posttranslational modification and mutation of histidine 50 trigger alpha synuclein aggregation and toxicity. Mol Neurodegener. 2015;10:8.
    • (2015) Mol Neurodegener , vol.10 , pp. 8
    • Xiang, W.1    Menges, S.2    Schlachetzki, J.3
  • 27
    • 84937730909 scopus 로고    scopus 로고
    • Alpha-synuclein function and dysfunction on cel­lular membranes
    • Snead D, Eliezer D. Alpha-synuclein function and dysfunction on cel­lular membranes. Exp Neurobiol. 2014;23(4):292-313.
    • (2014) Exp Neurobiol , vol.23 , Issue.4 , pp. 292-313
    • Snead, D.1    Eliezer, D.2
  • 28
    • 77951290337 scopus 로고    scopus 로고
    • Alpha-synuclein induced membrane depolarization and loss of phosphorylation capacity of isolated rat brain mitochondria: Implications in Parkinson’s disease
    • Banerjee K, Sinha M, Pham Cle L, et al. Alpha-synuclein induced membrane depolarization and loss of phosphorylation capacity of isolated rat brain mitochondria: implications in Parkinson’s disease. FEBS Lett. 2010;584(8):1571-1576.
    • (2010) FEBS Lett , vol.584 , Issue.8 , pp. 1571-1576
    • Banerjee, K.1    Sinha, M.2    Pham Cle, L.3
  • 29
    • 67650732998 scopus 로고    scopus 로고
    • Impaired balance of mitochondrial fission and fusion in Alzheimer’s disease
    • Wang X, Su B, Lee H, et al. Impaired balance of mitochondrial fission and fusion in Alzheimer’s disease. J Neurosci. 2009;29(28):9090-9103.
    • (2009) J Neurosci , vol.29 , Issue.28 , pp. 9090-9103
    • Wang, X.1    Su, B.2    Lee, H.3
  • 30
    • 33748283747 scopus 로고    scopus 로고
    • Accumulation of amyloid precursor protein in the mitochondrial import channels of human Alzheimer’s disease brain is associated with mitochondrial dysfunction
    • Devi L, Prabhu BM, Galati DF, Avadhani NG, Anandatheerthavarada HK. Accumulation of amyloid precursor protein in the mitochondrial import channels of human Alzheimer’s disease brain is associated with mitochondrial dysfunction. J Neurosci. 2006;26(35):9057-9068.
    • (2006) J Neurosci , vol.26 , Issue.35 , pp. 9057-9068
    • Devi, L.1    Prabhu, B.M.2    Galati, D.F.3    Avadhani, N.G.4    Anandatheerthavarada, H.K.5
  • 31
    • 84863683962 scopus 로고    scopus 로고
    • α-Synuclein and mitochondrial dysfunction: A pathogenic partnership in Parkinson’s disease
    • Protter D, Lang C, Cooper AA. α-Synuclein and mitochondrial dysfunction: a pathogenic partnership in Parkinson’s disease. Parkinson’s Dis. 2012;2012.
    • (2012) Parkinson’s Dis , vol.2012
    • Protter, D.1    Lang, C.2    Cooper, A.A.3
  • 32
    • 84882939776 scopus 로고    scopus 로고
    • Advances in the pathogenesis of Alzheimer’s disease: A re-evaluation of amyloid cascade hypothesis
    • Dong S, Duan Y, Hu Y, Zhao Z. Advances in the pathogenesis of Alzheimer’s disease: a re-evaluation of amyloid cascade hypothesis. Transl Neurodegener. 2012;1(1):18.
    • (2012) Transl Neurodegener , vol.1 , Issue.1 , pp. 18
    • Dong, S.1    Duan, Y.2    Hu, Y.3    Zhao, Z.4
  • 33
    • 79953276681 scopus 로고    scopus 로고
    • The pathogenesis of Alzheimer’s disease: A reevaluation of the Amyloid cascade Hypothesis
    • Armstrong RA. The pathogenesis of Alzheimer’s disease: a reevaluation of the Amyloid cascade Hypothesis. Int J Alzheimers Dis. 2011;2011:1-6.
    • (2011) Int J Alzheimers Dis , vol.2011 , pp. 1-6
    • Armstrong, R.A.1
  • 35
    • 84880863640 scopus 로고    scopus 로고
    • Phosphorylation of tau protein as the link between oxidative stress, mitochondrial dysfunction, and connectivity failure: Implications for Alzheimer’s disease
    • Mondragón-rodríguez S, Perry G, Zhu X, Moreira PI, Acevedo-aquino MC, Williams S. Phosphorylation of tau protein as the link between oxidative stress, mitochondrial dysfunction, and connectivity failure: implications for Alzheimer’s disease. Oxid Med Cell Longev. 2013;2013:940603.
    • (2013) Oxid Med Cell Longev , vol.2013
    • Mondragón-Rodríguez, S.1    Perry, G.2    Zhu, X.3    Moreira, P.I.4    Acevedo-Aquino, M.C.5    Williams, S.6
  • 36
    • 0029999787 scopus 로고    scopus 로고
    • Alzheimer’s disease hyperphosphorylated tau sequesters normal tau into tangles of filaments and disassembles microtubules
    • Alonso AC, Grundke-Iqbal I, Iqbal K. Alzheimer’s disease hyperphosphorylated tau sequesters normal tau into tangles of filaments and disassembles microtubules. Nat Med. 1996;2(7):783-787.
    • (1996) Nat Med , vol.2 , Issue.7 , pp. 783-787
    • Alonso, A.C.1    Grundke-Iqbal, I.2    Iqbal, K.3
  • 37
    • 84877072330 scopus 로고    scopus 로고
    • Amyloid β-peptide (1-42)-induced oxidative stress in Alzheimer disease: Importance in disease pathogenesis and progression
    • Butterfield DA, Swomley AM, Sultana S. Amyloid β-peptide (1-42)-induced oxidative stress in Alzheimer disease: importance in disease pathogenesis and progression. Antioxid Redox Signal. 2013;19:823-835.
    • (2013) Antioxid Redox Signal , vol.19 , pp. 823-835
    • Butterfield, D.A.1    Swomley, A.M.2    Sultana, S.3
  • 38
    • 84907196714 scopus 로고    scopus 로고
    • Redox proteomics analysis to decipher the neurobiology of Alzheimer-like neurodegeneration: Overlaps in down’s syndrome and Alzheimer’s disease brain
    • Butterfield DA, Di Domenico F, Swomley AM, Head E, Perluigi M. Redox proteomics analysis to decipher the neurobiology of Alzheimer-like neurodegeneration: overlaps in down’s syndrome and Alzheimer’s disease brain. Biochem J. 2014;463(2):177-189.
    • (2014) Biochem J , vol.463 , Issue.2 , pp. 177-189
    • Butterfield, D.A.1    Di Domenico, F.2    Swomley, A.M.3    Head, E.4    Perluigi, M.5
  • 39
    • 0033753842 scopus 로고    scopus 로고
    • Transcriptional regulation of Alzheimer’s disease genes: Implications for susceptibility
    • Theuns J, Van Broeckhoven C. Transcriptional regulation of Alzheimer’s disease genes: implications for susceptibility. Hum Mol Genet. 2000;9(16):2383-2394.
    • (2000) Hum Mol Genet , vol.9 , Issue.16 , pp. 2383-2394
    • Theuns, J.1    Van Broeckhoven, C.2
  • 40
    • 0029063726 scopus 로고
    • DNA binding and regulatory effects of transcription factors SP1 and USF at the rat amyloid precursor protein gene promoter
    • Hoffman PW, Chernak JM. DNA binding and regulatory effects of transcription factors SP1 and USF at the rat amyloid precursor protein gene promoter. Nucleic Acids Res. 1995;23(12):2229-2235.
    • (1995) Nucleic Acids Res , vol.23 , Issue.12 , pp. 2229-2235
    • Hoffman, P.W.1    Chernak, J.M.2
  • 41
    • 84923345656 scopus 로고    scopus 로고
    • Metformin increases APP expression and processing via oxidative stress, mitochondrial dysfunction and NF-κB activation: Use of insulin to attenuate metformin’s effect
    • Picone P, Nuzzo D, Caruana L, et al. Metformin increases APP expression and processing via oxidative stress, mitochondrial dysfunction and NF-κB activation: use of insulin to attenuate metformin’s effect. Biochim Biophys Acta. 2015;1853(5):1046-1059.
    • (2015) Biochim Biophys Acta , vol.1853 , Issue.5 , pp. 1046-1059
    • Picone, P.1    Nuzzo, D.2    Caruana, L.3
  • 42
    • 77954142794 scopus 로고    scopus 로고
    • Advanced glycation end products enhance amyloid precursor protein expression by inducing reactive oxygen species
    • Ko SY, Lin YP, Lin YS, Chang SS. Advanced glycation end products enhance amyloid precursor protein expression by inducing reactive oxygen species. Free Radic Biol Med. 2010;49(3):474-480.
    • (2010) Free Radic Biol Med , vol.49 , Issue.3 , pp. 474-480
    • Ko, S.Y.1    Lin, Y.P.2    Lin, Y.S.3    Chang, S.S.4
  • 43
    • 0347928847 scopus 로고    scopus 로고
    • An iron-responsive element type II in the 5′-untranslated region of the Alzheimer’s amyloid precursor protein transcript
    • Rogers JT, Randall JD, Cahill CM, et al. An iron-responsive element type II in the 5′-untranslated region of the Alzheimer’s amyloid precursor protein transcript. J Biol Chem. 2002;277(47):45518-45528.
    • (2002) J Biol Chem , vol.277 , Issue.47 , pp. 45518-45528
    • Rogers, J.T.1    Randall, J.D.2    Cahill, C.M.3
  • 44
    • 1842504323 scopus 로고    scopus 로고
    • Redox-active metals, oxidative stress, and Alzheimer’s disease pathology
    • Huang X, Moir RD, Tanzi RE, Bush AI, Rogers JT. Redox-active metals, oxidative stress, and Alzheimer’s disease pathology. Ann N Y Acad Sci. 2004;1012:153-163.
    • (2004) Ann N Y Acad Sci , vol.1012 , pp. 153-163
    • Huang, X.1    Moir, R.D.2    Tanzi, R.E.3    Bush, A.I.4    Rogers, J.T.5
  • 45
    • 84886133344 scopus 로고    scopus 로고
    • Transcriptional regulation and its misregulation in Alzheimer’s disease
    • Chen XF, Zhang YW, Xu H, Bu G. Transcriptional regulation and its misregulation in Alzheimer’s disease. Mol Brain. 2013;6:44.
    • (2013) Mol Brain , vol.6 , pp. 44
    • Chen, X.F.1    Zhang, Y.W.2    Xu, H.3    Bu, G.4
  • 46
    • 84876210341 scopus 로고    scopus 로고
    • BACE1 is at the crossroad of a toxic vicious cycle involving cellular stress and β-amyloid production in Alzheimer’s disease
    • Chami L, Checler F. BACE1 is at the crossroad of a toxic vicious cycle involving cellular stress and β-amyloid production in Alzheimer’s disease. Mol Neurodegener. 2012;7:52.
    • (2012) Mol Neurodegener , vol.7 , pp. 52
    • Chami, L.1    Checler, F.2
  • 47
    • 58549119790 scopus 로고    scopus 로고
    • The up-regulation of BACE1 mediated by hypoxia and ischemic injury: Role of oxidative stress and HIF1alpha
    • Guglielmotto M, Aragno M, Autelli R, et al. The up-regulation of BACE1 mediated by hypoxia and ischemic injury: role of oxidative stress and HIF1alpha. J Neurochem. 2009;108(4):1045-1056.
    • (2009) J Neurochem , vol.108 , Issue.4 , pp. 1045-1056
    • Guglielmotto, M.1    Aragno, M.2    Autelli, R.3
  • 48
    • 84930918904 scopus 로고    scopus 로고
    • Reactive oxygen species, redox signaling and neuroinflammation in Alzheimer’s disease: The NF-κB connection
    • Kaur U, Banerjee P, Bir A, Sinha M, Biswas A, Chakrabarti S. Reactive oxygen species, redox signaling and neuroinflammation in Alzheimer’s disease: the NF-κB connection. Curr Top Med Chem. 2015;15(5):446-457.
    • (2015) Curr Top Med Chem , vol.15 , Issue.5 , pp. 446-457
    • Kaur, U.1    Banerjee, P.2    Bir, A.3    Sinha, M.4    Biswas, A.5    Chakrabarti, S.6
  • 49
    • 20944444768 scopus 로고    scopus 로고
    • Oxidative stress potentiates BACE1 gene expression and Abeta generation
    • Tong Y, Zhou W, Fung V, et al. Oxidative stress potentiates BACE1 gene expression and Abeta generation. J Neural Transm. 2004;112(3):455-469.
    • (2004) J Neural Transm , vol.112 , Issue.3 , pp. 455-469
    • Tong, Y.1    Zhou, W.2    Fung, V.3
  • 50
    • 0036403838 scopus 로고    scopus 로고
    • Oxidative stress increases expression and activity of BACE in NT2 neurons
    • Tamagno E, Bardini P, Obbili A, et al. Oxidative stress increases expression and activity of BACE in NT2 neurons. Neurobiol Dis. 2002;10(3):279-288.
    • (2002) Neurobiol Dis , vol.10 , Issue.3 , pp. 279-288
    • Tamagno, E.1    Bardini, P.2    Obbili, A.3
  • 51
    • 19944433845 scopus 로고    scopus 로고
    • Beta-site APP cleaving enzyme up-regulation induced by 4-hydroxynonenal is mediated by stress-activated protein kinases pathways
    • Tamagno E, Parola M, Bardini P, et al. Beta-site APP cleaving enzyme up-regulation induced by 4-hydroxynonenal is mediated by stress-activated protein kinases pathways. J Neurochem. 2005;92(3):628-636.
    • (2005) J Neurochem , vol.92 , Issue.3 , pp. 628-636
    • Tamagno, E.1    Parola, M.2    Bardini, P.3
  • 52
    • 38049098793 scopus 로고    scopus 로고
    • Oxidative stress activates a positive feedback between the γ- and β-secretase cleavages of the β-amyloid precursor protein
    • Tamagno E, Guglielmotto M, Aragno M, et al. Oxidative stress activates a positive feedback between the γ- and β-secretase cleavages of the β-amyloid precursor protein. J Neurochem. 2008;104(3):683-695.
    • (2008) J Neurochem , vol.104 , Issue.3 , pp. 683-695
    • Tamagno, E.1    Guglielmotto, M.2    Aragno, M.3
  • 53
    • 84859073666 scopus 로고    scopus 로고
    • Oxidative stress increases BACE1 protein levels through activation of the PKR-eIF2α pathway
    • Mouton-liger F, Paquet C, Dumurgier J, et al. Oxidative stress increases BACE1 protein levels through activation of the PKR-eIF2α pathway. Biochem Biophys Acta. 2012;1822(6):885-896.
    • (2012) Biochem Biophys Acta , vol.1822 , Issue.6 , pp. 885-896
    • Mouton-Liger, F.1    Paquet, C.2    Dumurgier, J.3
  • 54
    • 0034643895 scopus 로고    scopus 로고
    • Oxidative stress induces intracellular accumulation of amyloid beta-protein (Abeta) in human neuroblastoma cells
    • Misonou H, Morishima-kawashima M, Ihara Y. Oxidative stress induces intracellular accumulation of amyloid beta-protein (Abeta) in human neuroblastoma cells. Biochemistry. 2000;39(23):6951-6959.
    • (2000) Biochemistry , vol.39 , Issue.23 , pp. 6951-6959
    • Misonou, H.1    Morishima-Kawashima, M.2    Ihara, Y.3
  • 55
    • 65649105035 scopus 로고    scopus 로고
    • Clearance of amyloid-beta peptide across the blood-brain barrier: Implication for therapies in Alzheimer’s disease
    • Deane R, Bell RD, Sagare A, Zlokovic BV. Clearance of amyloid-beta peptide across the blood-brain barrier: implication for therapies in Alzheimer’s disease. CNS Neurol Disord Drug Targets. 2009;8(1):16-30.
    • (2009) CNS Neurol Disord Drug Targets , vol.8 , Issue.1 , pp. 16-30
    • Deane, R.1    Bell, R.D.2    Sagare, A.3    Zlokovic, B.V.4
  • 56
    • 67349093525 scopus 로고    scopus 로고
    • Clearance mechanisms of Alzheimer’s amyloid-β peptide: Implications for therapeutic design and diagnostic tests
    • Bates KA, Verdile G, Li Q-X, et al. Clearance mechanisms of Alzheimer’s amyloid-β peptide: implications for therapeutic design and diagnostic tests. Mol Psychiatr. 2008;14(5):469-486.
    • (2008) Mol Psychiatr , vol.14 , Issue.5 , pp. 469-486
    • Bates, K.A.1    Verdile, G.2    Li, Q.-X.3
  • 57
    • 84938691190 scopus 로고    scopus 로고
    • Impaired vascular-mediated clearance of brain amyloid beta in Alzheimer’s disease: The role, regulation and restoration of LRP1
    • Ramanathan A, Nelson AR, Sagare AP, Zlokovic BV. Impaired vascular-mediated clearance of brain amyloid beta in Alzheimer’s disease: the role, regulation and restoration of LRP1. Front Aging Neurosci. 2015;7:136.
    • (2015) Front Aging Neurosci , vol.7 , pp. 136
    • Ramanathan, A.1    Nelson, A.R.2    Sagare, A.P.3    Zlokovic, B.V.4
  • 58
    • 19944426148 scopus 로고    scopus 로고
    • Amyloid β induces neuronal cell death through ROS-mediated ASK1 activation
    • Kadowaki H, Nishitoh H, Urano F, et al. Amyloid β induces neuronal cell death through ROS-mediated ASK1 activation. Cell Death Differ. 2005;12(1):19-24.
    • (2005) Cell Death Differ , vol.12 , Issue.1 , pp. 19-24
    • Kadowaki, H.1    Nishitoh, H.2    Urano, F.3
  • 59
    • 0028233494 scopus 로고
    • Hydrogen peroxide mediates amyloid β protein toxicity
    • Behl C. Hydrogen peroxide mediates amyloid β protein toxicity. Cell. 1994;77(6):817-827.
    • (1994) Cell , vol.77 , Issue.6 , pp. 817-827
    • Behl, C.1
  • 60
    • 84887892331 scopus 로고    scopus 로고
    • Oxidative stress and amyloid beta toxicity in Alzheimer’s disease: Intervention in a complex relationship by antioxidants
    • Chakrabarti S, Sinha M, Thakurta IG, Banerjee P, Chattopadhyay M. Oxidative stress and amyloid beta toxicity in Alzheimer’s disease: intervention in a complex relationship by antioxidants. Curr Med Chem. 2013;20(37):4648-4664.
    • (2013) Curr Med Chem , vol.20 , Issue.37 , pp. 4648-4664
    • Chakrabarti, S.1    Sinha, M.2    Thakurta, I.G.3    Banerjee, P.4    Chattopadhyay, M.5
  • 61
    • 34547147090 scopus 로고    scopus 로고
    • The redox chemistry of the Alzheimer’s disease amyloid β peptide
    • Smith DG, Cappai R, Barnham KJ. The redox chemistry of the Alzheimer’s disease amyloid β peptide. Biochim Biophys Acta. 2007;1768(8):1976-1990.
    • (2007) Biochim Biophys Acta , vol.1768 , Issue.8 , pp. 1976-1990
    • Smith, D.G.1    Cappai, R.2    Barnham, K.J.3
  • 62
    • 84874115680 scopus 로고    scopus 로고
    • Antioxidant role of amyloid β protein in cell-free and biological systems: Implication for the pathogenesis of Alzheimer disease
    • Sinha M, Bhowmick P, Banerjee A, Chakrabarti S. Antioxidant role of amyloid β protein in cell-free and biological systems: implication for the pathogenesis of Alzheimer disease. Free Radic Biol Med. 2013;56:184-192.
    • (2013) Free Radic Biol Med , vol.56 , pp. 184-192
    • Sinha, M.1    Bhowmick, P.2    Banerjee, A.3    Chakrabarti, S.4
  • 63
    • 45249097300 scopus 로고    scopus 로고
    • Amyloid beta peptide and NMDA induce ROS from NADPH oxidase and AA release from cytosolic phospholipase A2 in cortical neurons
    • Shelat PB, Chalimoniuk M, Wang JH, et al. Amyloid beta peptide and NMDA induce ROS from NADPH oxidase and AA release from cytosolic phospholipase A2 in cortical neurons. J Neurochem. 2008;106(1):45-55.
    • (2008) J Neurochem , vol.106 , Issue.1 , pp. 45-55
    • Shelat, P.B.1    Chalimoniuk, M.2    Wang, J.H.3
  • 64
    • 84980407672 scopus 로고    scopus 로고
    • Mitochondria-targeted antioxidant mitotempo protects mitochondrial function against amyloid beta toxicity in primary cultured mouse neurons
    • Hu H, Li M. Mitochondria-targeted antioxidant mitotempo protects mitochondrial function against amyloid beta toxicity in primary cultured mouse neurons. Biochem Biophys Res Commun. 2016;478(1):174-180.
    • (2016) Biochem Biophys Res Commun , vol.478 , Issue.1 , pp. 174-180
    • Hu, H.1    Li, M.2
  • 65
    • 0036845314 scopus 로고    scopus 로고
    • Microglia enhance β-amyloid peptide-induced toxicity in cortical and mesencephalic neurons by producing reactive oxygen species
    • Qin L, Liu Y, Cooper C, Liu B, Wilson B, Hong J-S. Microglia enhance β-amyloid peptide-induced toxicity in cortical and mesencephalic neurons by producing reactive oxygen species. J Neurochem. 2002;83(4):973-983.
    • (2002) J Neurochem , vol.83 , Issue.4 , pp. 973-983
    • Qin, L.1    Liu, Y.2    Cooper, C.3    Liu, B.4    Wilson, B.5    Hong, J.-S.6
  • 66
  • 67
    • 84897935089 scopus 로고    scopus 로고
    • Microglia receptors and their implications in the response to amyloid β for Alzheimer’s disease pathogenesis
    • Doens D, Fernández PL. Microglia receptors and their implications in the response to amyloid β for Alzheimer’s disease pathogenesis. J Neuroinflammation. 2014;11:48.
    • (2014) J Neuroinflammation , vol.11 , pp. 48
    • Doens, D.1    Fernández, P.L.2
  • 68
    • 0036141148 scopus 로고    scopus 로고
    • CD36, a class B scavenger receptor, is expressed on microglia in Alzheimer’s disease brains and can mediate production of reactive oxygen species in response to beta-amyloid fibrils
    • Coraci IS, Husemann J, Berman JW, et al. CD36, a class B scavenger receptor, is expressed on microglia in Alzheimer’s disease brains and can mediate production of reactive oxygen species in response to beta-amyloid fibrils. Am J Pathol. 2002;160(1):101-112.
    • (2002) Am J Pathol , vol.160 , Issue.1 , pp. 101-112
    • Coraci, I.S.1    Husemann, J.2    Berman, J.W.3
  • 69
    • 78651308665 scopus 로고    scopus 로고
    • Microglial MAC1 receptor and PI3K are essential in mediating β-amyloid peptide-induced microglial activation and subsequent neurotoxicity
    • Zhang D, Hu X, Qian L, et al. Microglial MAC1 receptor and PI3K are essential in mediating β-amyloid peptide-induced microglial activation and subsequent neurotoxicity. J Neuroinflammation. 2011;8(1):3.
    • (2011) J Neuroinflammation , vol.8 , Issue.1 , pp. 3
    • Zhang, D.1    Hu, X.2    Qian, L.3
  • 70
    • 84892419941 scopus 로고    scopus 로고
    • Phosphorylation of tau protein at sites Ser (396-404) is one of the earliest events in Alzheimer’s disease and Down syndrome
    • Mondragón-rodríguez S, Perry G, Luna-muñoz J, Acevedo-aquino MC, Williams S. Phosphorylation of tau protein at sites Ser (396-404) is one of the earliest events in Alzheimer’s disease and Down syndrome. Neuropathol Appl Neurobiol. 2014;40(2):121-135.
    • (2014) Neuropathol Appl Neurobiol , vol.40 , Issue.2 , pp. 121-135
    • Mondragón-Rodríguez, S.1    Perry, G.2    Luna-Muñoz, J.3    Acevedo-Aquino, M.C.4    Williams, S.5
  • 71
    • 84947998831 scopus 로고    scopus 로고
    • Tau hyperphosphorylation and oxidative stress, a critical vicious circle in neurodegenerative tauopathies?
    • Alavi Naini SM, Soussi-yanicostas N. Tau hyperphosphorylation and oxidative stress, a critical vicious circle in neurodegenerative tauopathies? Oxid Med Cell Longev. 2015;2015:151979.
    • (2015) Oxid Med Cell Longev , vol.2015
    • Alavi Naini, S.M.1    Soussi-Yanicostas, N.2
  • 72
    • 72249109630 scopus 로고    scopus 로고
    • Chronic oxidative stress causes increased tau phosphorylation in M17 neuroblastoma cells
    • Su B, Wang X, Lee HG, et al. Chronic oxidative stress causes increased tau phosphorylation in M17 neuroblastoma cells. Neurosci Lett. 2010;468(3):267-271.
    • (2010) Neurosci Lett , vol.468 , Issue.3 , pp. 267-271
    • Su, B.1    Wang, X.2    Lee, H.G.3
  • 73
    • 84904093190 scopus 로고    scopus 로고
    • Aβ and tau toxicities in Alzheimer’s are linked via oxidative stress-induced p38 activation: Protective role of vitamin
    • Giraldo E, Lloret A, Fuchsberger T, Viña J. Aβ and tau toxicities in Alzheimer’s are linked via oxidative stress-induced p38 activation: protective role of vitamin E. Redox Biol. 2014;2:873-877.
    • (2014) E. Redox Biol , vol.2 , pp. 873-877
    • Giraldo, E.1    Lloret, A.2    Fuchsberger, T.3    Viña, J.4
  • 74
    • 12844250694 scopus 로고    scopus 로고
    • Induction of hyperphosphorylated tau in primary rat cortical neuron cultures mediated by oxidative stress and glycogen synthase kinase-3
    • Lovell MA, Xiong S, Xie C, Davies P, Markesbery WR. Induction of hyperphosphorylated tau in primary rat cortical neuron cultures mediated by oxidative stress and glycogen synthase kinase-3. J Alzheimers Dis. 2004;6(6):659-671.
    • (2004) J Alzheimers Dis , vol.6 , Issue.6 , pp. 659-671
    • Lovell, M.A.1    Xiong, S.2    Xie, C.3    Davies, P.4    Markesbery, W.R.5
  • 75
    • 0037357190 scopus 로고    scopus 로고
    • Iron-induced oxidative stress modify tau phosphorylation patterns in hippocampal cell cultures
    • Egaña JT, Zambrano C, Nuñez MT, Gonzalez-billault C, Maccioni RB. Iron-induced oxidative stress modify tau phosphorylation patterns in hippocampal cell cultures. Biometals. 2003;16(1):215-223.
    • (2003) Biometals , vol.16 , Issue.1 , pp. 215-223
    • Egaña, J.T.1    Zambrano, C.2    Nuñez, M.T.3    Gonzalez-Billault, C.4    Maccioni, R.B.5
  • 77
    • 71749121998 scopus 로고    scopus 로고
    • Mitochondrial dysfunction is a trigger of Alzheimer’s disease pathophysiology
    • Moreira PI, Carvalho C, Zhu X, Smith MA, Perry G. Mitochondrial dysfunction is a trigger of Alzheimer’s disease pathophysiology. Biochim Biophys Acta. 2010;1802(1):2-10.
    • (2010) Biochim Biophys Acta , vol.1802 , Issue.1 , pp. 2-10
    • Moreira, P.I.1    Carvalho, C.2    Zhu, X.3    Smith, M.A.4    Perry, G.5
  • 78
    • 85001882183 scopus 로고    scopus 로고
    • Mitochondrial dysfunction in Alzheimer’s disease and the rationale for bioenergetics based therapies
    • Onyango IG, Dennis J, Khan SM. Mitochondrial dysfunction in Alzheimer’s disease and the rationale for bioenergetics based therapies. Aging Dis. 2016;7(2):201-214.
    • (2016) Aging Dis , vol.7 , Issue.2 , pp. 201-214
    • Onyango, I.G.1    Dennis, J.2    Khan, S.M.3
  • 79
    • 34848899898 scopus 로고    scopus 로고
    • Amyloid-beta-induced mitochondrial dysfunction
    • Chen JX, Yan SD. Amyloid-beta-induced mitochondrial dysfunction. J Alzheimers Dis. 2007;12(2):177-184.
    • (2007) J Alzheimers Dis , vol.12 , Issue.2 , pp. 177-184
    • Chen, J.X.1    Yan, S.D.2
  • 80
    • 84907990407 scopus 로고    scopus 로고
    • Amyloid-β peptide induces mitochondrial dysfunction by inhibition of preprotein maturation
    • Mossmann D, Vögtle F, Taskin AA, et al. Amyloid-β peptide induces mitochondrial dysfunction by inhibition of preprotein maturation. Cell Metab. 2014;20(4):662-669.
    • (2014) Cell Metab , vol.20 , Issue.4 , pp. 662-669
    • Mossmann, D.1    Vögtle, F.2    Taskin, A.A.3
  • 81
    • 84868286870 scopus 로고    scopus 로고
    • New insights in the amyloid-beta interaction with mitochondria
    • Spuch C, Ortolano S, Navarro C. New insights in the amyloid-beta interaction with mitochondria. J Aging Res. 2012;2012:324968.
    • (2012) J Aging Res , vol.2012
    • Spuch, C.1    Ortolano, S.2    Navarro, C.3
  • 82
    • 84455173852 scopus 로고    scopus 로고
    • Aging promotes amyloid-β peptide induced mitochondrial dysfunctions in rat brain: A molecular link between aging and Alzheimer’s disease
    • Sinha M, Behera P, Bhowmick P, Banerjee K, Basu S, Chakrabarti S. Aging promotes amyloid-β peptide induced mitochondrial dysfunctions in rat brain: a molecular link between aging and Alzheimer’s disease. J Alzheimers Dis. 2011;27(4):753-765.
    • (2011) J Alzheimers Dis , vol.27 , Issue.4 , pp. 753-765
    • Sinha, M.1    Behera, P.2    Bhowmick, P.3    Banerjee, K.4    Basu, S.5    Chakrabarti, S.6
  • 83
    • 34547214510 scopus 로고    scopus 로고
    • Abeta ion channels. Prospects for treating Alzheimer’s disease with Abeta channel blockers
    • Arispe N, Diaz JC, Simakova O. Abeta ion channels. Prospects for treating Alzheimer’s disease with Abeta channel blockers. Biochim Biophys Acta. 2007;1768(8):1952-1965.
    • (2007) Biochim Biophys Acta , vol.1768 , Issue.8 , pp. 1952-1965
    • Arispe, N.1    Diaz, J.C.2    Simakova, O.3
  • 84
    • 34547203205 scopus 로고    scopus 로고
    • Amyloid beta ion channel: 3D structure and relevance to amyloid channel paradigm
    • Lal R, Lin H, Quist AP. Amyloid beta ion channel: 3D structure and relevance to amyloid channel paradigm. Biochim Biophys Acta. 2007;1768(8):1966-1975.
    • (2007) Biochim Biophys Acta , vol.1768 , Issue.8 , pp. 1966-1975
    • Lal, R.1    Lin, H.2    Quist, A.P.3
  • 85
    • 33751079341 scopus 로고    scopus 로고
    • Phospholipases A2 mediate amyloid-beta peptide-induced mitochondrial dysfunction
    • Zhu D, Lai Y, Shelat PB, Hu C, Sun GY, Lee JC. Phospholipases A2 mediate amyloid-beta peptide-induced mitochondrial dysfunction. J Neurosci. 2006;26(43):11111-11119.
    • (2006) J Neurosci , vol.26 , Issue.43 , pp. 11111-11119
    • Zhu, D.1    Lai, Y.2    Shelat, P.B.3    Hu, C.4    Sun, G.Y.5    Lee, J.C.6
  • 86
    • 1642499152 scopus 로고    scopus 로고
    • Beta-amyloid peptides induce mitochondrial dysfunction and oxidative stress in astrocytes and death of neurons through activation of NADPH oxidase
    • Abramov AY, Canevari L, Duchen MR. Beta-amyloid peptides induce mitochondrial dysfunction and oxidative stress in astrocytes and death of neurons through activation of NADPH oxidase. J Neurosci. 2004;24(2):565-575.
    • (2004) J Neurosci , vol.24 , Issue.2 , pp. 565-575
    • Abramov, A.Y.1    Canevari, L.2    Duchen, M.R.3
  • 87
    • 84911423174 scopus 로고    scopus 로고
    • The prevalence of Parkinson’s disease: A systematic review and meta-analysis
    • Pringsheim T, Jette N, Frolkis A, Steeves TDL. The prevalence of Parkinson’s disease: a systematic review and meta-analysis. Mov Disord. 2014;29(13):1583-1590.
    • (2014) Mov Disord , vol.29 , Issue.13 , pp. 1583-1590
    • Pringsheim, T.1    Jette, N.2    Frolkis, A.3    Steeves, T.D.L.4
  • 91
    • 84872458771 scopus 로고    scopus 로고
    • Aggregation and neurotoxicity of recombinant α-synuclein aggregates initiated by dimerization
    • Roostaee A, Beaudoin S, Staskevicius A, Roucou X. Aggregation and neurotoxicity of recombinant α-synuclein aggregates initiated by dimerization. Mol Neurodegener. 2013;8:5.
    • (2013) Mol Neurodegener , vol.8 , pp. 5
    • Roostaee, A.1    Beaudoin, S.2    Staskevicius, A.3    Roucou, X.4
  • 92
    • 78649652766 scopus 로고    scopus 로고
    • CpG demethylation enhances alpha-synuclein expression and affects the pathogenesis of Parkinson’s disease
    • Matsumoto L, Takuma H, Tamaoka A, et al. CpG demethylation enhances alpha-synuclein expression and affects the pathogenesis of Parkinson’s disease. PLoS One. 2010;5(11):e15522.
    • (2010) Plos One , vol.5 , Issue.11
    • Matsumoto, L.1    Takuma, H.2    Tamaoka, A.3
  • 93
    • 84861453955 scopus 로고    scopus 로고
    • α-Synuclein expression is modulated at the translational level by iron
    • Febbraro F, Giorgi M, Caldarola S, Loreni F, Romero-ramos M. α-Synuclein expression is modulated at the translational level by iron. Neuroreport. 2012;23(9):576-580.
    • (2012) Neuroreport , vol.23 , Issue.9 , pp. 576-580
    • Febbraro, F.1    Giorgi, M.2    Caldarola, S.3    Loreni, F.4    Romero-Ramos, M.5
  • 94
    • 84879607073 scopus 로고    scopus 로고
    • Lysosomal impair­ment in Parkinson’s disease
    • Dehay B, Martinez-vicente M, Caldwell GA, et al. Lysosomal impair­ment in Parkinson’s disease. Mov Disord. 2013;28(6):725-732.
    • (2013) Mov Disord , vol.28 , Issue.6 , pp. 725-732
    • Dehay, B.1    Martinez-Vicente, M.2    Caldwell, G.A.3
  • 95
    • 68649118090 scopus 로고    scopus 로고
    • A critical evaluation of the ubiquitin-proteasome system in Parkinson’s disease
    • Cook C, Petrucelli L. A critical evaluation of the ubiquitin-proteasome system in Parkinson’s disease. Biochim Biophys Acta. 2009;1792(7):664-675.
    • (2009) Biochim Biophys Acta , vol.1792 , Issue.7 , pp. 664-675
    • Cook, C.1    Petrucelli, L.2
  • 97
    • 0034967925 scopus 로고    scopus 로고
    • The ubiquitin-proteasome pathway and proteasome inhibitors
    • Myung J, Kim KB, Crews CM. The ubiquitin-proteasome pathway and proteasome inhibitors. Med Res Rev. 2001;21(4):245-273.
    • (2001) Med Res Rev , vol.21 , Issue.4 , pp. 245-273
    • Myung, J.1    Kim, K.B.2    Crews, C.M.3
  • 99
    • 3042794162 scopus 로고    scopus 로고
    • Systemic exposure to proteasome inhibitors causes a progressive model of Parkinson’s disease
    • McNaught KS, Perl DP, Brownell AL, Olanow CW. Systemic exposure to proteasome inhibitors causes a progressive model of Parkinson’s disease. Ann Neurol. 2004;56(1):149-162.
    • (2004) Ann Neurol , vol.56 , Issue.1 , pp. 149-162
    • McNaught, K.S.1    Perl, D.P.2    Brownell, A.L.3    Olanow, C.W.4
  • 100
    • 14844325779 scopus 로고    scopus 로고
    • Molecular pathogenesis of Parkinson disease
    • Eriksen JL, Wszolek Z, Petrucelli L. Molecular pathogenesis of Parkinson disease. Arch Neurol. 2005;62(3):353-357.
    • (2005) Arch Neurol , vol.62 , Issue.3 , pp. 353-357
    • Eriksen, J.L.1    Wszolek, Z.2    Petrucelli, L.3
  • 101
    • 0035870881 scopus 로고    scopus 로고
    • Inducible expression of mutant alpha-synuclein decreases proteasome activity and increases sensitivity to mitochondria-dependent apoptosis
    • Tanaka Y, Engelender S, Igarashi S, et al. Inducible expression of mutant alpha-synuclein decreases proteasome activity and increases sensitivity to mitochondria-dependent apoptosis. Hum Mol Genet. 2001;10(9):919-926.
    • (2001) Hum Mol Genet , vol.10 , Issue.9 , pp. 919-926
    • Tanaka, Y.1    Engelender, S.2    Igarashi, S.3
  • 102
    • 70350130100 scopus 로고    scopus 로고
    • Lactacystin requires reactive oxygen species and BAX redistribution to induce mitochondria mediated cell death
    • Perez-Alvarez S, Solesio ME, Manzanares J, Jordán J, Galindo MF. Lactacystin requires reactive oxygen species and BAX redistribution to induce mitochondria mediated cell death. Br J Pharmacol. 2009;158(4):1121-1130.
    • (2009) Br J Pharmacol , vol.158 , Issue.4 , pp. 1121-1130
    • Perez-Alvarez, S.1    Solesio, M.E.2    Manzanares, J.3    Jordán, J.4    Galindo, M.F.5
  • 103
    • 67650153168 scopus 로고    scopus 로고
    • Dopamine (DA) induced irreversible proteasome inhibition via DA derived quinones
    • Zhou ZD, Lim TM. Dopamine (DA) induced irreversible proteasome inhibition via DA derived quinones. Free Radic Res. 2009;43(4):417-430.
    • (2009) Free Radic Res , vol.43 , Issue.4 , pp. 417-430
    • Zhou, Z.D.1    Lim, T.M.2
  • 104
    • 0038413759 scopus 로고    scopus 로고
    • Aggregated and monomeric alpha-synuclein bind to the S6’ proteasomal protein and inhibit proteasomal function.
    • Snyder H, Mensah K, Theisler C, Lee J, Matouschek A, Wolozin B. Aggregated and monomeric alpha-synuclein bind to the S6’ proteasomal protein and inhibit proteasomal function. J Biol Chem. 2003;278(14):11753-11759.
    • (2003) J Biol Chem , vol.278 , Issue.14 , pp. 11753-11759
    • Snyder, H.1    Mensah, K.2    Theisler, C.3    Lee, J.4    Matouschek, A.5    Wolozin, B.6
  • 105
    • 70549088602 scopus 로고    scopus 로고
    • Genome-wide association study reveals genetic risk underlying Parkinson’s disease
    • Simón-sánchez J, Schulte C, Bras JM, et al. Genome-wide association study reveals genetic risk underlying Parkinson’s disease. Nat Genet. 2009;41(12):1308-1312.
    • (2009) Nat Genet , vol.41 , Issue.12 , pp. 1308-1312
    • Simón-Sánchez, J.1    Schulte, C.2    Bras, J.M.3
  • 106
    • 0036679197 scopus 로고    scopus 로고
    • Alpha-synucleinopathy and selective dopaminergic neuron loss in a rat lentiviral-based model of Parkinson’s disease
    • Lo Bianco C, Ridet JL, Schneider BL, Deglon N, Aebischer P. Alpha-synucleinopathy and selective dopaminergic neuron loss in a rat lentiviral-based model of Parkinson’s disease. Proc Natl Acad Sci U S A. 2002;99(16):10813-10818.
    • (2002) Proc Natl Acad Sci U S A , vol.99 , Issue.16 , pp. 10813-10818
    • Lo Bianco, C.1    Ridet, J.L.2    Schneider, B.L.3    Deglon, N.4    Aebischer, P.5
  • 107
    • 84888119924 scopus 로고    scopus 로고
    • RAAV2/7 vector-mediated overexpression of alpha-synuclein in mouse substantia nigra induces protein aggregation and progressive dose-dependent neurodegeneration
    • Oliveras-salvá M, Van der Perren A, Casadei N, et al. rAAV2/7 vector-mediated overexpression of alpha-synuclein in mouse substantia nigra induces protein aggregation and progressive dose-dependent neurodegeneration. Mol Neurodegener. 2013;8:44.
    • (2013) Mol Neurodegener , vol.8 , pp. 44
    • Oliveras-Salvá, M.1    Van Der Perren, A.2    Casadei, N.3
  • 108
    • 84934955012 scopus 로고    scopus 로고
    • Intrastriatal injection of pre-formed mouse α-synuclein fibrils into rats triggers α-synuclein pathology and bilateral nigrostriatal degeneration
    • Paumier KL, Luk KC, Manfredsson FP, et al. Intrastriatal injection of pre-formed mouse α-synuclein fibrils into rats triggers α-synuclein pathology and bilateral nigrostriatal degeneration. Neurobiol Dis. 2015;82:185-199.
    • (2015) Neurobiol Dis , vol.82 , pp. 185-199
    • Paumier, K.L.1    Luk, K.C.2    Manfredsson, F.P.3
  • 109
    • 84897977607 scopus 로고    scopus 로고
    • Lewy body extracts from Parkinson disease brains trigger α-synuclein pathology and neurodegeneration in mice and monkeys
    • Recasens A, Dehay B, Bové J, et al. Lewy body extracts from Parkinson disease brains trigger α-synuclein pathology and neurodegeneration in mice and monkeys. Ann Neurol. 2014;75(3):351-362.
    • (2014) Ann Neurol , vol.75 , Issue.3 , pp. 351-362
    • Recasens, A.1    Dehay, B.2    Bové, J.3
  • 111
    • 84894291922 scopus 로고    scopus 로고
    • A-synuclein and mitochondrial dysfunction in Parkinson’s disease
    • Mullin S, Schapira A. A-synuclein and mitochondrial dysfunction in Parkinson’s disease. Mol Neurobiol. 2013;47(2):587-597.
    • (2013) Mol Neurobiol , vol.47 , Issue.2 , pp. 587-597
    • Mullin, S.1    Schapira, A.2
  • 113
    • 0031031845 scopus 로고    scopus 로고
    • Platelet mitochon­drial respiratory chain function in Parkinson’s disease
    • Blake CI, Spitz E, Leehey M, Hoffer BJ, Boyson SJ. Platelet mitochon­drial respiratory chain function in Parkinson’s disease. Mov Disord. 1997;12(1):3-8.
    • (1997) Mov Disord , vol.12 , Issue.1 , pp. 3-8
    • Blake, C.I.1    Spitz, E.2    Leehey, M.3    Hoffer, B.J.4    Boyson, S.J.5
  • 114
    • 0027971104 scopus 로고
    • Mitochondrial respiratory failure in skeletal muscle from patients with Parkinson’s disease and multiple system atrophy
    • Blin O, Desnuelle C, Rascol O, et al. Mitochondrial respiratory failure in skeletal muscle from patients with Parkinson’s disease and multiple system atrophy. J Neurol Sci. 1994;125(1):95-101.
    • (1994) J Neurol Sci , vol.125 , Issue.1 , pp. 95-101
    • Blin, O.1    Desnuelle, C.2    Rascol, O.3
  • 115
    • 84937854234 scopus 로고    scopus 로고
    • The impact of mitochondrial fusion and fission modulation in sporadic Parkinson’s disease
    • Santos D, Esteves AR, Silva DF, Januário C, Cardoso SM. The impact of mitochondrial fusion and fission modulation in sporadic Parkinson’s disease. Mol Neurobiol. 2015;52(1):573-586.
    • (2015) Mol Neurobiol , vol.52 , Issue.1 , pp. 573-586
    • Santos, D.1    Esteves, A.R.2    Silva, D.F.3    Januário, C.4    Cardoso, S.M.5
  • 116
    • 0029908226 scopus 로고    scopus 로고
    • Origin and functional consequences of the complex I defect in Parkinson’s disease
    • Swerdlow RH, Parks JK, Miller SW, et al. Origin and functional consequences of the complex I defect in Parkinson’s disease. Ann Neurol. 1996;40(4):663-671.
    • (1996) Ann Neurol , vol.40 , Issue.4 , pp. 663-671
    • Swerdlow, R.H.1    Parks, J.K.2    Miller, S.W.3
  • 117
    • 67649806929 scopus 로고    scopus 로고
    • The cybrid model of sporadic Parkinson’s disease
    • Trimmer PA, Bennett JP. The cybrid model of sporadic Parkinson’s disease. Exp Neurol. 2009;218(2):320-325.
    • (2009) Exp Neurol , vol.218 , Issue.2 , pp. 320-325
    • Trimmer, P.A.1    Bennett, J.P.2
  • 118
    • 0141741347 scopus 로고    scopus 로고
    • Parkinson’s disease
    • Dauer W, Przedborski S. Parkinson’s disease. Neuron. 2003;39(6):889-909.
    • (2003) Neuron , vol.39 , Issue.6 , pp. 889-909
    • Dauer, W.1    Przedborski, S.2
  • 119
    • 84866738264 scopus 로고    scopus 로고
    • Differential toxicity of 6-hydroxydopamine in SH-SY5Y human neuroblastoma cells and rat brain mitochondria: Protective role of catalase and superoxide dismutase
    • Iglesias-gonzález J, Sánchez-iglesias S, Méndez-Álvarez E, et al. Differential toxicity of 6-hydroxydopamine in SH-SY5Y human neuroblastoma cells and rat brain mitochondria: protective role of catalase and superoxide dismutase. Neurochem Res. 2012;37(10):2150-2160.
    • (2012) Neurochem Res , vol.37 , Issue.10 , pp. 2150-2160
    • Iglesias-González, J.1    Sánchez-Iglesias, S.2    Méndez-Álvarez, E.3
  • 120
    • 71849084134 scopus 로고    scopus 로고
    • Mitochondrial dysfunction in Parkinson’s disease
    • Winklhofer KF, Haass C. Mitochondrial dysfunction in Parkinson’s disease. Biochim Biophys Acta. 2010;1802(1):29-44.
    • (2010) Biochim Biophys Acta , vol.1802 , Issue.1 , pp. 29-44
    • Winklhofer, K.F.1    Haass, C.2
  • 121
    • 79954581538 scopus 로고    scopus 로고
    • Mitochondrial dysfunction mediated by quinone oxidation products of dopamine: Implications in dopamine cytotoxicity and pathogenesis of Parkinson’s disease
    • Jana S, Sinha M, Chanda D, et al. Mitochondrial dysfunction mediated by quinone oxidation products of dopamine: implications in dopamine cytotoxicity and pathogenesis of Parkinson’s disease. Biochim Biophys Acta. 2011;1812(6):663-673.
    • (2011) Biochim Biophys Acta , vol.1812 , Issue.6 , pp. 663-673
    • Jana, S.1    Sinha, M.2    Chanda, D.3
  • 122
    • 33646375711 scopus 로고    scopus 로고
    • High levels of mitochondrial DNA deletions in substantia nigra neurons in aging and Parkinson disease
    • Bender A, Krishnan KJ, Morris CM, et al. High levels of mitochondrial DNA deletions in substantia nigra neurons in aging and Parkinson disease. Nat Genet. 2006;38(5):515-517.
    • (2006) Nat Genet , vol.38 , Issue.5 , pp. 515-517
    • Bender, A.1    Krishnan, K.J.2    Morris, C.M.3
  • 123
    • 79952693640 scopus 로고    scopus 로고
    • Mitophagy and Parkinson’s disease: The PINK1-parkin link
    • Deas E, Wood NW, Plun-favreau H. Mitophagy and Parkinson’s disease: the PINK1-parkin link. Biochim Biophys Acta. 2011;1813(4):623-633.
    • (2011) Biochim Biophys Acta , vol.1813 , Issue.4 , pp. 623-633
    • Deas, E.1    Wood, N.W.2    Plun-Favreau, H.3
  • 124
    • 84867773087 scopus 로고    scopus 로고
    • Mitophagy: Mechanisms, pathophysiological roles, and analysis
    • Ding WX, Yin XM. Mitophagy: mechanisms, pathophysiological roles, and analysis. Biol Chem. 2012;393(7):547-564.
    • (2012) Biol Chem , vol.393 , Issue.7 , pp. 547-564
    • Ding, W.X.1    Yin, X.M.2
  • 125
    • 84921369563 scopus 로고    scopus 로고
    • The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson’s disease
    • Pickrell AM, Youle RJ. The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson’s disease. Neuron. 2015;85(2):257-273.
    • (2015) Neuron , vol.85 , Issue.2 , pp. 257-273
    • Pickrell, A.M.1    Youle, R.J.2
  • 126
    • 75749156257 scopus 로고    scopus 로고
    • PINK1 is selectively stabilized on impaired mitochondria to activate parkin
    • Narendra DP, Jin SM, Tanaka A, et al. PINK1 is selectively stabilized on impaired mitochondria to activate parkin. PLoS Biol. 2010;8(1):e1000298.
    • (2010) Plos Biol , vol.8 , Issue.1
    • Narendra, D.P.1    Jin, S.M.2    Tanaka, A.3
  • 127
    • 75949098487 scopus 로고    scopus 로고
    • PINK1-dependent recruitment of Parkin to mitochondria in mitophagy
    • Vives-Bauza C, Zhou C, Huang Y, et al. PINK1-dependent recruitment of Parkin to mitochondria in mitophagy. Proc Natl Acad Sci U S A. 2010;107(1):378-383.
    • (2010) Proc Natl Acad Sci U S A , vol.107 , Issue.1 , pp. 378-383
    • Vives-Bauza, C.1    Zhou, C.2    Huang, Y.3
  • 128
    • 77951181836 scopus 로고    scopus 로고
    • PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy
    • Matsuda N, Sato S, Shiba K, et al. PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy. J Cell Biol. 2010;189(2):211-221.
    • (2010) J Cell Biol , vol.189 , Issue.2 , pp. 211-221
    • Matsuda, N.1    Sato, S.2    Shiba, K.3
  • 129
    • 84920973383 scopus 로고    scopus 로고
    • Role of glucose metabolism and ATP in maintaining PINK1 levels during Parkin-mediated mitochondrial damage responses
    • Lee S, Zhang C, Liu X. Role of glucose metabolism and ATP in maintaining PINK1 levels during Parkin-mediated mitochondrial damage responses. J Biol Chem. 2015;290(2):904-917.
    • (2015) J Biol Chem , vol.290 , Issue.2 , pp. 904-917
    • Lee, S.1    Zhang, C.2    Liu, X.3
  • 130
    • 79551603345 scopus 로고    scopus 로고
    • Bioenergetics of neurons inhibit the translocation response of Parkin following rapid mitochondrial depolarization
    • Van Laar VS, Arnold B, Cassady SJ, Chu CT, Burton EA, Berman SB. Bioenergetics of neurons inhibit the translocation response of Parkin following rapid mitochondrial depolarization. Hum Mol Genet. 2011;20(5):927-940.
    • (2011) Hum Mol Genet , vol.20 , Issue.5 , pp. 927-940
    • Van Laar, V.S.1    Arnold, B.2    Cassady, S.J.3    Chu, C.T.4    Burton, E.A.5    Berman, S.B.6
  • 131
    • 84930226005 scopus 로고    scopus 로고
    • Convergence of Parkin, PINK1, and α-synuclein on stress-induced mitochondrial morphological remodeling
    • Norris KL, Hao R, Chen LF, et al. Convergence of Parkin, PINK1, and α-synuclein on stress-induced mitochondrial morphological remodeling. J Biol Chem. 2015;290(22):13862-13874.
    • (2015) J Biol Chem , vol.290 , Issue.22 , pp. 13862-13874
    • Norris, K.L.1    Hao, R.2    Chen, L.F.3
  • 132
    • 84864278260 scopus 로고    scopus 로고
    • PINK1 defect causes mitochondrial dysfunction, proteasomal deficit and alpha-synuclein aggregation in cell culture models of Parkinson’s disease
    • Liu W, Vives-Bauza C, Acín-Peréz R, et al. PINK1 defect causes mitochondrial dysfunction, proteasomal deficit and alpha-synuclein aggregation in cell culture models of Parkinson’s disease. PLoS One. 2009;4(2):e4597.
    • (2009) Plos One , vol.4 , Issue.2
    • Liu, W.1    Vives-Bauza, C.2    Acín-Peréz, R.3
  • 133
    • 71949090833 scopus 로고    scopus 로고
    • Mitochondrial trafficking of APP and alpha synuclein: Relevance to mitochondrial dysfunction in Alzheimer’s and Parkinson’s diseases
    • Devi L, Anandatheerthavarada HK. Mitochondrial trafficking of APP and alpha synuclein: relevance to mitochondrial dysfunction in Alzheimer’s and Parkinson’s diseases. Biochim Biophys Acta. 2010;1802(1):11-19.
    • (2010) Biochim Biophys Acta , vol.1802 , Issue.1 , pp. 11-19
    • Devi, L.1    Anandatheerthavarada, H.K.2
  • 134
    • 78049383132 scopus 로고    scopus 로고
    • Mitochondrial α-synuclein accumulation impairs complex I function in dopaminergic neurons and results in increased mitophagy in vivo
    • Chinta SJ, Mallajosyula JK, Rane A, Andersen JK. Mitochondrial α-synuclein accumulation impairs complex I function in dopaminergic neurons and results in increased mitophagy in vivo. Neurosci Lett. 2010;486(3):235-239.
    • (2010) Neurosci Lett , vol.486 , Issue.3 , pp. 235-239
    • Chinta, S.J.1    Mallajosyula, J.K.2    Rane, A.3    Ersen, J.K.4
  • 135
    • 0032584686 scopus 로고    scopus 로고
    • Filamentous alpha-synuclein inclusions link multiple system atrophy with Parkinson’s disease and dementia with Lewy bodies
    • Spillantini MG, Crowther RA, Jakes R, Cairns NJ, Lantos PL, Goedert M. Filamentous alpha-synuclein inclusions link multiple system atrophy with Parkinson’s disease and dementia with Lewy bodies. Neurosci Lett. 1998;251(3):205-208.
    • (1998) Neurosci Lett , vol.251 , Issue.3 , pp. 205-208
    • Spillantini, M.G.1    Crowther, R.A.2    Jakes, R.3    Cairns, N.J.4    Lantos, P.L.5    Goedert, M.6
  • 136
    • 84857649648 scopus 로고    scopus 로고
    • Folding and misfolding of alpha-synuclein on membranes
    • Dikiy I, Eliezer D. Folding and misfolding of alpha-synuclein on membranes. Biochim Biophys Acta. 2012;1818(4):1013-1018.
    • (2012) Biochim Biophys Acta , vol.1818 , Issue.4 , pp. 1013-1018
    • Dikiy, I.1    Eliezer, D.2
  • 137
    • 84871414210 scopus 로고    scopus 로고
    • The many faces of α-synuclein: From structure and toxicity to therapeutic target
    • Lashuel HA, Overk CR, Oueslati A, Masliah E. The many faces of α-synuclein: from structure and toxicity to therapeutic target. Nat Rev Neurosci. 2013;14(1):38-48.
    • (2013) Nat Rev Neurosci , vol.14 , Issue.1 , pp. 38-48
    • Lashuel, H.A.1    Overk, C.R.2    Oueslati, A.3    Masliah, E.4
  • 138
    • 44049099669 scopus 로고    scopus 로고
    • Mitochondrial import and accumulation of alpha-synuclein impair complex I in human dopaminergic neuronal cultures and Parkinson disease brain
    • Devi L, Raghavendran V, Prabhu BM, Avadhani NG, Anandatheerthavarada HK. Mitochondrial import and accumulation of alpha-synuclein impair complex I in human dopaminergic neuronal cultures and Parkinson disease brain. J Biol Chem. 2008;283(14):9089-9100.
    • (2008) J Biol Chem , vol.283 , Issue.14 , pp. 9089-9100
    • Devi, L.1    Raghavendran, V.2    Prabhu, B.M.3    Avadhani, N.G.4    Anandatheerthavarada, H.K.5
  • 139
    • 84954311788 scopus 로고    scopus 로고
    • Aggregated α-synuclein and complex I deficiency: Exploration of their relationship in differentiated neurons
    • Reeve AK, Ludtmann MH, Angelova PR, et al. Aggregated α-synuclein and complex I deficiency: exploration of their relationship in differentiated neurons. Cell Death Dis. 2015;6:e1820.
    • (2015) Cell Death Dis , vol.6
    • Reeve, A.K.1    Ludtmann, M.H.2    Angelova, P.R.3
  • 140
    • 84918777743 scopus 로고    scopus 로고
    • α-Synuclein-induced mitochondrial dysfunction in isolated preparation and intact cells: Implications in the pathogenesis of Parkinson’s disease
    • Bir A, Sen O, Anand S, et al. α-Synuclein-induced mitochondrial dysfunction in isolated preparation and intact cells: implications in the pathogenesis of Parkinson’s disease. J Neurochem. 2014;131(6):868-877.
    • (2014) J Neurochem , vol.131 , Issue.6 , pp. 868-877
    • Bir, A.1    Sen, O.2    Anand, S.3
  • 141
    • 77958450202 scopus 로고    scopus 로고
    • Inhibition of mitochondrial fusion by α-synuclein is rescued by PINK1, Parkin and DJ-1
    • Kamp F, Exner N, Lutz AK, et al. Inhibition of mitochondrial fusion by α-synuclein is rescued by PINK1, Parkin and DJ-1. EMBO J. 2010;29(20):3571-3589.
    • (2010) EMBO J , vol.29 , Issue.20 , pp. 3571-3589
    • Kamp, F.1    Exner, N.2    Lutz, A.K.3
  • 142
    • 0029751104 scopus 로고    scopus 로고
    • Oxidative stress and the pathogenesis of Parkinson’s disease
    • Jenner P, Olanow CW. Oxidative stress and the pathogenesis of Parkinson’s disease. Neurology. 1996;47(6 suppl 3):161S-170S.
    • (1996) Neurology , vol.47 , Issue.6 , pp. 161S-170S
    • Jenner, P.1    Olanow, C.W.2
  • 143
    • 0023804321 scopus 로고
    • Increased iron (III) and total iron content in post mortem substantia nigra of parkinsonian brain
    • Sofic E, Riederer P, Heinsen H, et al. Increased iron (III) and total iron content in post mortem substantia nigra of parkinsonian brain. J Neural Transm. 1988;74(3):199-205.
    • (1988) J Neural Transm , vol.74 , Issue.3 , pp. 199-205
    • Sofic, E.1    Riederer, P.2    Heinsen, H.3
  • 144
    • 0031455734 scopus 로고    scopus 로고
    • Elevated reactive oxygen species and antioxidant enzyme activities in animal and cellular models of Parkinson’s disease
    • Cassarino DS, Fall CP, Swerdlow RH, et al. Elevated reactive oxygen species and antioxidant enzyme activities in animal and cellular models of Parkinson’s disease. Biochim Biophys Acta. 1997;1362(1):77-86.
    • (1997) Biochim Biophys Acta , vol.1362 , Issue.1 , pp. 77-86
    • Cassarino, D.S.1    Fall, C.P.2    Swerdlow, R.H.3
  • 145
    • 84973895577 scopus 로고    scopus 로고
    • α-Synuclein binds to TOM20 and inhibits mitochondrial protein import in Parkinson’s disease
    • Di Maio R, Barrett PJ, Hoffman EK, et al. α-Synuclein binds to TOM20 and inhibits mitochondrial protein import in Parkinson’s disease. Sci Transl Med. 2016;8(342):342ra78.
    • (2016) Sci Transl Med , vol.8 , Issue.342 , pp. 342
    • Di Maio, R.1    Barrett, P.J.2    Hoffman, E.K.3
  • 146
    • 84950331777 scopus 로고    scopus 로고
    • Overexpression of alpha-synuclein at non-toxic levels increases dopaminergic cell death induced by copper exposure via modulation of protein degradation pathways
    • Anandhan A, Rodriguez-rocha H, Bohovych I, et al. Overexpression of alpha-synuclein at non-toxic levels increases dopaminergic cell death induced by copper exposure via modulation of protein degradation pathways. Neurobiol Dis. 2015;81:76-92.
    • (2015) Neurobiol Dis , vol.81 , pp. 76-92
    • Anandhan, A.1    Rodriguez-Rocha, H.2    Bohovych, I.3
  • 147
    • 84924975806 scopus 로고    scopus 로고
    • Insights on the interaction of alpha-synuclein and metals in the pathophysiology of Parkinson’s disease
    • Carboni E, Lingor P. Insights on the interaction of alpha-synuclein and metals in the pathophysiology of Parkinson’s disease. Metallomics. 2015;7(3):395-404.
    • (2015) Metallomics , vol.7 , Issue.3 , pp. 395-404
    • Carboni, E.1    Lingor, P.2
  • 148
    • 76949108822 scopus 로고    scopus 로고
    • The role of dopamine oxidation in mitochondrial dysfunction: Implications for Parkinson’s disease
    • Hastings TG. The role of dopamine oxidation in mitochondrial dysfunction: implications for Parkinson’s disease. J Bioenerg Biomembr. 2009;41(6):469-472.
    • (2009) J Bioenerg Biomembr , vol.41 , Issue.6 , pp. 469-472
    • Hastings, T.G.1
  • 149
    • 69049112795 scopus 로고    scopus 로고
    • Modulation of alpha-synuclein aggregation by dopamine: A review
    • Leong SL, Cappai R, Barnham KJ, Pham CL. Modulation of alpha-synuclein aggregation by dopamine: a review. Neurochem Res. 2009;34(10):1838-1846.
    • (2009) Neurochem Res , vol.34 , Issue.10 , pp. 1838-1846
    • Leong, S.L.1    Cappai, R.2    Barnham, K.J.3    Pham, C.L.4
  • 150
    • 84867588505 scopus 로고    scopus 로고
    • NADPH oxidase 1 mediates α-synucleinopathy in Parkinson’s disease
    • Cristóvão AC, Guhathakurta S, Bok E, et al. NADPH oxidase 1 mediates α-synucleinopathy in Parkinson’s disease. J Neurosci. 2012;32(42):14465-14477.
    • (2012) J Neurosci , vol.32 , Issue.42 , pp. 14465-14477
    • Cristóvão, A.C.1    Guhathakurta, S.2    Bok, E.3
  • 151
    • 84876790040 scopus 로고    scopus 로고
    • Oxidative and nitrative alpha-synuclein modifications and proteostatic stress: Implications for disease mechanisms and interventions in synucleinopathies
    • Schildknecht S, Gerding HR, Karreman C, et al. Oxidative and nitrative alpha-synuclein modifications and proteostatic stress: implications for disease mechanisms and interventions in synucleinopathies. J Neurochem. 2013;125(4):491-511.
    • (2013) J Neurochem , vol.125 , Issue.4 , pp. 491-511
    • Schildknecht, S.1    Gerding, H.R.2    Karreman, C.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.