-
1
-
-
44949138796
-
A review of Parkinson’s disease
-
Davie CA. A review of Parkinson’s disease. Br Med Bull. 2008;86(1):109-127.
-
(2008)
Br Med Bull
, vol.86
, Issue.1
, pp. 109-127
-
-
Davie, C.A.1
-
2
-
-
84937840738
-
Metabolic risk factors of sporadic Alzheimer’s disease: Implications in the pathology, pathogenesis and treatment
-
Chakrabarti S, Khemka VK, Banerjee A, Chatterjee G, Ganguly A, Biswas A. Metabolic risk factors of sporadic Alzheimer’s disease: implications in the pathology, pathogenesis and treatment. Aging Dis. 2015;6(4):282-299.
-
(2015)
Aging Dis
, vol.6
, Issue.4
, pp. 282-299
-
-
Chakrabarti, S.1
Khemka, V.K.2
Banerjee, A.3
Chatterjee, G.4
Ganguly, A.5
Biswas, A.6
-
3
-
-
0037417254
-
Alzheimer’s disease and Parkinson’s disease
-
Nussbaum RL, Ellis CE. Alzheimer’s disease and Parkinson’s disease. N Engl J Med. 2003;348(14):1356-1364.
-
(2003)
N Engl J Med
, vol.348
, Issue.14
, pp. 1356-1364
-
-
Nussbaum, R.L.1
Ellis, C.E.2
-
4
-
-
84901806613
-
Shared mechanisms of neurodegeneration in Alzheimer’s disease and Parkinson’s disease
-
Xie A, Gao J, Xu L, Meng D. Shared mechanisms of neurodegeneration in Alzheimer’s disease and Parkinson’s disease. Biomed Res Int. 2014;2014:648740.
-
(2014)
Biomed Res Int
, vol.2014
-
-
Xie, A.1
Gao, J.2
Xu, L.3
Meng, D.4
-
5
-
-
84878992823
-
Mitochondrial biology and Parkinson’s disease
-
Perier C, Vila M. Mitochondrial biology and Parkinson’s disease. Cold Spring Harb Perspect Med. 2011;2(2):a009332.
-
(2011)
Cold Spring Harb Perspect Med
, vol.2
, Issue.2
-
-
Perier, C.1
Vila, M.2
-
6
-
-
80055078418
-
The mitochondrial dynamics of Alzheimer’s disease and Parkinson’s disease offer important opportunities for therapeutic intervention
-
Bonda DJ, Smith MA, Perry G, Lee HG, Wang X, Zhu X. The mitochondrial dynamics of Alzheimer’s disease and Parkinson’s disease offer important opportunities for therapeutic intervention. Curr Pharm Des. 2011;17(31):3374-3380.
-
(2011)
Curr Pharm Des
, vol.17
, Issue.31
, pp. 3374-3380
-
-
Bonda, D.J.1
Smith, M.A.2
Perry, G.3
Lee, H.G.4
Wang, X.5
Zhu, X.6
-
7
-
-
84881027032
-
Mitochondrial dysfunction and oxidative stress in Parkinson’s disease
-
Subramaniam SR, Chesselet M-F. Mitochondrial dysfunction and oxidative stress in Parkinson’s disease. Prog Neurobiol. 2013;106-107:17-32.
-
(2013)
Prog Neurobiol
, vol.106-107
, pp. 17-32
-
-
Subramaniam, S.R.1
Chesselet, M.-F.2
-
8
-
-
77956699395
-
New insights into the role of mitochondrial dysfunction and protein aggregation in Parkinson’s disease
-
Xie W, Wan OW, Chung KK. New insights into the role of mitochondrial dysfunction and protein aggregation in Parkinson’s disease. Biochim Biophys Acta. 2010;1802(11):935-941.
-
(2010)
Biochim Biophys Acta
, vol.1802
, Issue.11
, pp. 935-941
-
-
Xie, W.1
Wan, O.W.2
Chung, K.K.3
-
9
-
-
0036591849
-
Lipid peroxidation and protein oxidation in Alzheimer’s disease brain: Potential causes and consequences involving amyloid beta-peptide-associated free radical oxidative stress
-
Butterfield DA, Lauderback CM. Lipid peroxidation and protein oxidation in Alzheimer’s disease brain: potential causes and consequences involving amyloid beta-peptide-associated free radical oxidative stress. Free Radic Biol Med. 2002;32(11):1050-1060.
-
(2002)
Free Radic Biol Med
, vol.32
, Issue.11
, pp. 1050-1060
-
-
Butterfield, D.A.1
Lauderback, C.M.2
-
10
-
-
39149122810
-
Amyloid beta, mitochondrial dysfunction and synaptic damage: Implications for cognitive decline in aging and Alzheimer’s disease
-
Reddy PH, Beal MF. Amyloid beta, mitochondrial dysfunction and synaptic damage: implications for cognitive decline in aging and Alzheimer’s disease. Trends Mol Med. 2008;14(2):45-53.
-
(2008)
Trends Mol Med
, vol.14
, Issue.2
, pp. 45-53
-
-
Reddy, P.H.1
Beal, M.F.2
-
11
-
-
61549111872
-
α-Synuclein and neuronal cell death
-
Cookson MR. α-Synuclein and neuronal cell death. Mol Neurodegener. 2009;4:9.
-
(2009)
Mol Neurodegener
, vol.4
, pp. 9
-
-
Cookson, M.R.1
-
12
-
-
84963520567
-
The amyloid hypothesis of Alzheimer’s disease at 25 years
-
Selkoe DJ, Hardy J. The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol Med. 2016;8(6):595-608.
-
(2016)
EMBO Mol Med
, vol.8
, Issue.6
, pp. 595-608
-
-
Selkoe, D.J.1
Hardy, J.2
-
13
-
-
76649116890
-
Mechanism of amyloid plaque formation suggests an intracellular basis of a pathogenicity
-
Friedrich RP, Tepper K, Ronicke R, et al. Mechanism of amyloid plaque formation suggests an intracellular basis of a pathogenicity. Proc Natl Acad Sci U S A. 2010;107(5):1942-1947.
-
(2010)
Proc Natl Acad Sci U S A
, vol.107
, Issue.5
, pp. 1942-1947
-
-
Friedrich, R.P.1
Tepper, K.2
Ronicke, R.3
-
14
-
-
70349503591
-
Biophysics of Parkinson’s Disease: Structure and aggregation of α-synuclein
-
Uversky VN, Eliezer D. Biophysics of Parkinson’s Disease: structure and aggregation of α-synuclein. Curr Protein Peptide Sci. 2009;10:483-499.
-
(2009)
Curr Protein Peptide Sci
, vol.10
, pp. 483-499
-
-
Uversky, V.N.1
Eliezer, D.2
-
15
-
-
77956661146
-
Current concepts of neuropathological diagnostics in practice: Neurodegenerative diseases
-
Kovacs GG, Budka H. Current concepts of neuropathological diagnostics in practice: neurodegenerative diseases. Clin Neuropathol. 2010;29(5):271-288.
-
(2010)
Clin Neuropathol
, vol.29
, Issue.5
, pp. 271-288
-
-
Kovacs, G.G.1
Budka, H.2
-
16
-
-
79959886270
-
Amyloid precursor protein processing and Alzheimer’s disease
-
O’brien RJ, Wong PC. Amyloid precursor protein processing and Alzheimer’s disease. Ann Rev Neurosci. 2011;34:185-204.
-
(2011)
Ann Rev Neurosci
, vol.34
, pp. 185-204
-
-
O’Brien, R.J.1
Wong, P.C.2
-
17
-
-
67349276645
-
Amyloid precursor protein and alpha synuclein translation, implications for iron and inflammation in neurodegenerative diseases
-
Cahill CM, Lahiri DK, Huang X, Rogers JT. Amyloid precursor protein and alpha synuclein translation, implications for iron and inflammation in neurodegenerative diseases. Biochim Biophys Acta. 2009;1790(7):615-628.
-
(2009)
Biochim Biophys Acta
, vol.1790
, Issue.7
, pp. 615-628
-
-
Cahill, C.M.1
Lahiri, D.K.2
Huang, X.3
Rogers, J.T.4
-
18
-
-
77951842993
-
Methylation regulates alpha-synuclein expression and is decreased in Parkinson’s disease patients’ brains
-
Jowaed A, Schmitt I, Kaut O, Wüllner U. Methylation regulates alpha-synuclein expression and is decreased in Parkinson’s disease patients’ brains. J Neurosci. 2010;30(18):6355-6359.
-
(2010)
J Neurosci
, vol.30
, Issue.18
, pp. 6355-6359
-
-
Jowaed, A.1
Schmitt, I.2
Kaut, O.3
Wüllner, U.4
-
19
-
-
84980052506
-
Protein aggregation and degradation mechanisms in neurodegenerative diseases
-
Takalo M, Salminen A, Soininen H, Hiltunen M, Haapasalo A. Protein aggregation and degradation mechanisms in neurodegenerative diseases. Am J Neurodegener Dis. 2013;2(1):1-14.
-
(2013)
Am J Neurodegener Dis
, vol.2
, Issue.1
, pp. 1-14
-
-
Takalo, M.1
Salminen, A.2
Soininen, H.3
Hiltunen, M.4
Haapasalo, A.5
-
20
-
-
84989284335
-
Degradation of misfolded proteins in neurodegenerative diseases: Therapeutic targets and strategies
-
Ciechanover A, Kwon YT. Degradation of misfolded proteins in neurodegenerative diseases: therapeutic targets and strategies. Exp Mol Med. 2015;47:e147.
-
(2015)
Exp Mol Med
, vol.47
-
-
Ciechanover, A.1
Kwon, Y.T.2
-
21
-
-
44849094781
-
Proteotoxic stress and inducible chaperone networks in neurodegenerative disease and aging
-
Morimoto RI. Proteotoxic stress and inducible chaperone networks in neurodegenerative disease and aging. Genes Dev. 2008;22(11):1427-1438.
-
(2008)
Genes Dev
, vol.22
, Issue.11
, pp. 1427-1438
-
-
Morimoto, R.I.1
-
22
-
-
84893853030
-
Molecular chaperones and proteostasis regulation during redox imbalance
-
Niforou K, Cheimonidou C, Trougakos IP. Molecular chaperones and proteostasis regulation during redox imbalance. Redox Biol. 2014;2:323-332.
-
(2014)
Redox Biol
, vol.2
, pp. 323-332
-
-
Niforou, K.1
Cheimonidou, C.2
Trougakos, I.P.3
-
23
-
-
0029984062
-
Antioxidant and redox regulation of gene transcription
-
Sen CK, Packer L. Antioxidant and redox regulation of gene transcription. FASEB J. 1996;10(7):709-720.
-
(1996)
FASEB J
, vol.10
, Issue.7
, pp. 709-720
-
-
Sen, C.K.1
Packer, L.2
-
26
-
-
84961506813
-
Posttranslational modification and mutation of histidine 50 trigger alpha synuclein aggregation and toxicity
-
Xiang W, Menges S, Schlachetzki J, et al. Posttranslational modification and mutation of histidine 50 trigger alpha synuclein aggregation and toxicity. Mol Neurodegener. 2015;10:8.
-
(2015)
Mol Neurodegener
, vol.10
, pp. 8
-
-
Xiang, W.1
Menges, S.2
Schlachetzki, J.3
-
27
-
-
84937730909
-
Alpha-synuclein function and dysfunction on cellular membranes
-
Snead D, Eliezer D. Alpha-synuclein function and dysfunction on cellular membranes. Exp Neurobiol. 2014;23(4):292-313.
-
(2014)
Exp Neurobiol
, vol.23
, Issue.4
, pp. 292-313
-
-
Snead, D.1
Eliezer, D.2
-
28
-
-
77951290337
-
Alpha-synuclein induced membrane depolarization and loss of phosphorylation capacity of isolated rat brain mitochondria: Implications in Parkinson’s disease
-
Banerjee K, Sinha M, Pham Cle L, et al. Alpha-synuclein induced membrane depolarization and loss of phosphorylation capacity of isolated rat brain mitochondria: implications in Parkinson’s disease. FEBS Lett. 2010;584(8):1571-1576.
-
(2010)
FEBS Lett
, vol.584
, Issue.8
, pp. 1571-1576
-
-
Banerjee, K.1
Sinha, M.2
Pham Cle, L.3
-
29
-
-
67650732998
-
Impaired balance of mitochondrial fission and fusion in Alzheimer’s disease
-
Wang X, Su B, Lee H, et al. Impaired balance of mitochondrial fission and fusion in Alzheimer’s disease. J Neurosci. 2009;29(28):9090-9103.
-
(2009)
J Neurosci
, vol.29
, Issue.28
, pp. 9090-9103
-
-
Wang, X.1
Su, B.2
Lee, H.3
-
30
-
-
33748283747
-
Accumulation of amyloid precursor protein in the mitochondrial import channels of human Alzheimer’s disease brain is associated with mitochondrial dysfunction
-
Devi L, Prabhu BM, Galati DF, Avadhani NG, Anandatheerthavarada HK. Accumulation of amyloid precursor protein in the mitochondrial import channels of human Alzheimer’s disease brain is associated with mitochondrial dysfunction. J Neurosci. 2006;26(35):9057-9068.
-
(2006)
J Neurosci
, vol.26
, Issue.35
, pp. 9057-9068
-
-
Devi, L.1
Prabhu, B.M.2
Galati, D.F.3
Avadhani, N.G.4
Anandatheerthavarada, H.K.5
-
31
-
-
84863683962
-
α-Synuclein and mitochondrial dysfunction: A pathogenic partnership in Parkinson’s disease
-
Protter D, Lang C, Cooper AA. α-Synuclein and mitochondrial dysfunction: a pathogenic partnership in Parkinson’s disease. Parkinson’s Dis. 2012;2012.
-
(2012)
Parkinson’s Dis
, vol.2012
-
-
Protter, D.1
Lang, C.2
Cooper, A.A.3
-
32
-
-
84882939776
-
Advances in the pathogenesis of Alzheimer’s disease: A re-evaluation of amyloid cascade hypothesis
-
Dong S, Duan Y, Hu Y, Zhao Z. Advances in the pathogenesis of Alzheimer’s disease: a re-evaluation of amyloid cascade hypothesis. Transl Neurodegener. 2012;1(1):18.
-
(2012)
Transl Neurodegener
, vol.1
, Issue.1
, pp. 18
-
-
Dong, S.1
Duan, Y.2
Hu, Y.3
Zhao, Z.4
-
33
-
-
79953276681
-
The pathogenesis of Alzheimer’s disease: A reevaluation of the Amyloid cascade Hypothesis
-
Armstrong RA. The pathogenesis of Alzheimer’s disease: a reevaluation of the Amyloid cascade Hypothesis. Int J Alzheimers Dis. 2011;2011:1-6.
-
(2011)
Int J Alzheimers Dis
, vol.2011
, pp. 1-6
-
-
Armstrong, R.A.1
-
34
-
-
84892377524
-
Trafficking regulation of proteins in Alzheimer’s disease
-
Jiang S, Li Y, Zhang X, Bu G, Xu H, Zhang Y. Trafficking regulation of proteins in Alzheimer’s disease. Mol Neurodegener. 2014;9:6.
-
(2014)
Mol Neurodegener
, vol.9
, pp. 6
-
-
Jiang, S.1
Li, Y.2
Zhang, X.3
Bu, G.4
Xu, H.5
Zhang, Y.6
-
35
-
-
84880863640
-
Phosphorylation of tau protein as the link between oxidative stress, mitochondrial dysfunction, and connectivity failure: Implications for Alzheimer’s disease
-
Mondragón-rodríguez S, Perry G, Zhu X, Moreira PI, Acevedo-aquino MC, Williams S. Phosphorylation of tau protein as the link between oxidative stress, mitochondrial dysfunction, and connectivity failure: implications for Alzheimer’s disease. Oxid Med Cell Longev. 2013;2013:940603.
-
(2013)
Oxid Med Cell Longev
, vol.2013
-
-
Mondragón-Rodríguez, S.1
Perry, G.2
Zhu, X.3
Moreira, P.I.4
Acevedo-Aquino, M.C.5
Williams, S.6
-
36
-
-
0029999787
-
Alzheimer’s disease hyperphosphorylated tau sequesters normal tau into tangles of filaments and disassembles microtubules
-
Alonso AC, Grundke-Iqbal I, Iqbal K. Alzheimer’s disease hyperphosphorylated tau sequesters normal tau into tangles of filaments and disassembles microtubules. Nat Med. 1996;2(7):783-787.
-
(1996)
Nat Med
, vol.2
, Issue.7
, pp. 783-787
-
-
Alonso, A.C.1
Grundke-Iqbal, I.2
Iqbal, K.3
-
37
-
-
84877072330
-
Amyloid β-peptide (1-42)-induced oxidative stress in Alzheimer disease: Importance in disease pathogenesis and progression
-
Butterfield DA, Swomley AM, Sultana S. Amyloid β-peptide (1-42)-induced oxidative stress in Alzheimer disease: importance in disease pathogenesis and progression. Antioxid Redox Signal. 2013;19:823-835.
-
(2013)
Antioxid Redox Signal
, vol.19
, pp. 823-835
-
-
Butterfield, D.A.1
Swomley, A.M.2
Sultana, S.3
-
38
-
-
84907196714
-
Redox proteomics analysis to decipher the neurobiology of Alzheimer-like neurodegeneration: Overlaps in down’s syndrome and Alzheimer’s disease brain
-
Butterfield DA, Di Domenico F, Swomley AM, Head E, Perluigi M. Redox proteomics analysis to decipher the neurobiology of Alzheimer-like neurodegeneration: overlaps in down’s syndrome and Alzheimer’s disease brain. Biochem J. 2014;463(2):177-189.
-
(2014)
Biochem J
, vol.463
, Issue.2
, pp. 177-189
-
-
Butterfield, D.A.1
Di Domenico, F.2
Swomley, A.M.3
Head, E.4
Perluigi, M.5
-
39
-
-
0033753842
-
Transcriptional regulation of Alzheimer’s disease genes: Implications for susceptibility
-
Theuns J, Van Broeckhoven C. Transcriptional regulation of Alzheimer’s disease genes: implications for susceptibility. Hum Mol Genet. 2000;9(16):2383-2394.
-
(2000)
Hum Mol Genet
, vol.9
, Issue.16
, pp. 2383-2394
-
-
Theuns, J.1
Van Broeckhoven, C.2
-
40
-
-
0029063726
-
DNA binding and regulatory effects of transcription factors SP1 and USF at the rat amyloid precursor protein gene promoter
-
Hoffman PW, Chernak JM. DNA binding and regulatory effects of transcription factors SP1 and USF at the rat amyloid precursor protein gene promoter. Nucleic Acids Res. 1995;23(12):2229-2235.
-
(1995)
Nucleic Acids Res
, vol.23
, Issue.12
, pp. 2229-2235
-
-
Hoffman, P.W.1
Chernak, J.M.2
-
41
-
-
84923345656
-
Metformin increases APP expression and processing via oxidative stress, mitochondrial dysfunction and NF-κB activation: Use of insulin to attenuate metformin’s effect
-
Picone P, Nuzzo D, Caruana L, et al. Metformin increases APP expression and processing via oxidative stress, mitochondrial dysfunction and NF-κB activation: use of insulin to attenuate metformin’s effect. Biochim Biophys Acta. 2015;1853(5):1046-1059.
-
(2015)
Biochim Biophys Acta
, vol.1853
, Issue.5
, pp. 1046-1059
-
-
Picone, P.1
Nuzzo, D.2
Caruana, L.3
-
42
-
-
77954142794
-
Advanced glycation end products enhance amyloid precursor protein expression by inducing reactive oxygen species
-
Ko SY, Lin YP, Lin YS, Chang SS. Advanced glycation end products enhance amyloid precursor protein expression by inducing reactive oxygen species. Free Radic Biol Med. 2010;49(3):474-480.
-
(2010)
Free Radic Biol Med
, vol.49
, Issue.3
, pp. 474-480
-
-
Ko, S.Y.1
Lin, Y.P.2
Lin, Y.S.3
Chang, S.S.4
-
43
-
-
0347928847
-
An iron-responsive element type II in the 5′-untranslated region of the Alzheimer’s amyloid precursor protein transcript
-
Rogers JT, Randall JD, Cahill CM, et al. An iron-responsive element type II in the 5′-untranslated region of the Alzheimer’s amyloid precursor protein transcript. J Biol Chem. 2002;277(47):45518-45528.
-
(2002)
J Biol Chem
, vol.277
, Issue.47
, pp. 45518-45528
-
-
Rogers, J.T.1
Randall, J.D.2
Cahill, C.M.3
-
44
-
-
1842504323
-
Redox-active metals, oxidative stress, and Alzheimer’s disease pathology
-
Huang X, Moir RD, Tanzi RE, Bush AI, Rogers JT. Redox-active metals, oxidative stress, and Alzheimer’s disease pathology. Ann N Y Acad Sci. 2004;1012:153-163.
-
(2004)
Ann N Y Acad Sci
, vol.1012
, pp. 153-163
-
-
Huang, X.1
Moir, R.D.2
Tanzi, R.E.3
Bush, A.I.4
Rogers, J.T.5
-
45
-
-
84886133344
-
Transcriptional regulation and its misregulation in Alzheimer’s disease
-
Chen XF, Zhang YW, Xu H, Bu G. Transcriptional regulation and its misregulation in Alzheimer’s disease. Mol Brain. 2013;6:44.
-
(2013)
Mol Brain
, vol.6
, pp. 44
-
-
Chen, X.F.1
Zhang, Y.W.2
Xu, H.3
Bu, G.4
-
46
-
-
84876210341
-
BACE1 is at the crossroad of a toxic vicious cycle involving cellular stress and β-amyloid production in Alzheimer’s disease
-
Chami L, Checler F. BACE1 is at the crossroad of a toxic vicious cycle involving cellular stress and β-amyloid production in Alzheimer’s disease. Mol Neurodegener. 2012;7:52.
-
(2012)
Mol Neurodegener
, vol.7
, pp. 52
-
-
Chami, L.1
Checler, F.2
-
47
-
-
58549119790
-
The up-regulation of BACE1 mediated by hypoxia and ischemic injury: Role of oxidative stress and HIF1alpha
-
Guglielmotto M, Aragno M, Autelli R, et al. The up-regulation of BACE1 mediated by hypoxia and ischemic injury: role of oxidative stress and HIF1alpha. J Neurochem. 2009;108(4):1045-1056.
-
(2009)
J Neurochem
, vol.108
, Issue.4
, pp. 1045-1056
-
-
Guglielmotto, M.1
Aragno, M.2
Autelli, R.3
-
48
-
-
84930918904
-
Reactive oxygen species, redox signaling and neuroinflammation in Alzheimer’s disease: The NF-κB connection
-
Kaur U, Banerjee P, Bir A, Sinha M, Biswas A, Chakrabarti S. Reactive oxygen species, redox signaling and neuroinflammation in Alzheimer’s disease: the NF-κB connection. Curr Top Med Chem. 2015;15(5):446-457.
-
(2015)
Curr Top Med Chem
, vol.15
, Issue.5
, pp. 446-457
-
-
Kaur, U.1
Banerjee, P.2
Bir, A.3
Sinha, M.4
Biswas, A.5
Chakrabarti, S.6
-
49
-
-
20944444768
-
Oxidative stress potentiates BACE1 gene expression and Abeta generation
-
Tong Y, Zhou W, Fung V, et al. Oxidative stress potentiates BACE1 gene expression and Abeta generation. J Neural Transm. 2004;112(3):455-469.
-
(2004)
J Neural Transm
, vol.112
, Issue.3
, pp. 455-469
-
-
Tong, Y.1
Zhou, W.2
Fung, V.3
-
50
-
-
0036403838
-
Oxidative stress increases expression and activity of BACE in NT2 neurons
-
Tamagno E, Bardini P, Obbili A, et al. Oxidative stress increases expression and activity of BACE in NT2 neurons. Neurobiol Dis. 2002;10(3):279-288.
-
(2002)
Neurobiol Dis
, vol.10
, Issue.3
, pp. 279-288
-
-
Tamagno, E.1
Bardini, P.2
Obbili, A.3
-
51
-
-
19944433845
-
Beta-site APP cleaving enzyme up-regulation induced by 4-hydroxynonenal is mediated by stress-activated protein kinases pathways
-
Tamagno E, Parola M, Bardini P, et al. Beta-site APP cleaving enzyme up-regulation induced by 4-hydroxynonenal is mediated by stress-activated protein kinases pathways. J Neurochem. 2005;92(3):628-636.
-
(2005)
J Neurochem
, vol.92
, Issue.3
, pp. 628-636
-
-
Tamagno, E.1
Parola, M.2
Bardini, P.3
-
52
-
-
38049098793
-
Oxidative stress activates a positive feedback between the γ- and β-secretase cleavages of the β-amyloid precursor protein
-
Tamagno E, Guglielmotto M, Aragno M, et al. Oxidative stress activates a positive feedback between the γ- and β-secretase cleavages of the β-amyloid precursor protein. J Neurochem. 2008;104(3):683-695.
-
(2008)
J Neurochem
, vol.104
, Issue.3
, pp. 683-695
-
-
Tamagno, E.1
Guglielmotto, M.2
Aragno, M.3
-
53
-
-
84859073666
-
Oxidative stress increases BACE1 protein levels through activation of the PKR-eIF2α pathway
-
Mouton-liger F, Paquet C, Dumurgier J, et al. Oxidative stress increases BACE1 protein levels through activation of the PKR-eIF2α pathway. Biochem Biophys Acta. 2012;1822(6):885-896.
-
(2012)
Biochem Biophys Acta
, vol.1822
, Issue.6
, pp. 885-896
-
-
Mouton-Liger, F.1
Paquet, C.2
Dumurgier, J.3
-
54
-
-
0034643895
-
Oxidative stress induces intracellular accumulation of amyloid beta-protein (Abeta) in human neuroblastoma cells
-
Misonou H, Morishima-kawashima M, Ihara Y. Oxidative stress induces intracellular accumulation of amyloid beta-protein (Abeta) in human neuroblastoma cells. Biochemistry. 2000;39(23):6951-6959.
-
(2000)
Biochemistry
, vol.39
, Issue.23
, pp. 6951-6959
-
-
Misonou, H.1
Morishima-Kawashima, M.2
Ihara, Y.3
-
55
-
-
65649105035
-
Clearance of amyloid-beta peptide across the blood-brain barrier: Implication for therapies in Alzheimer’s disease
-
Deane R, Bell RD, Sagare A, Zlokovic BV. Clearance of amyloid-beta peptide across the blood-brain barrier: implication for therapies in Alzheimer’s disease. CNS Neurol Disord Drug Targets. 2009;8(1):16-30.
-
(2009)
CNS Neurol Disord Drug Targets
, vol.8
, Issue.1
, pp. 16-30
-
-
Deane, R.1
Bell, R.D.2
Sagare, A.3
Zlokovic, B.V.4
-
56
-
-
67349093525
-
Clearance mechanisms of Alzheimer’s amyloid-β peptide: Implications for therapeutic design and diagnostic tests
-
Bates KA, Verdile G, Li Q-X, et al. Clearance mechanisms of Alzheimer’s amyloid-β peptide: implications for therapeutic design and diagnostic tests. Mol Psychiatr. 2008;14(5):469-486.
-
(2008)
Mol Psychiatr
, vol.14
, Issue.5
, pp. 469-486
-
-
Bates, K.A.1
Verdile, G.2
Li, Q.-X.3
-
57
-
-
84938691190
-
Impaired vascular-mediated clearance of brain amyloid beta in Alzheimer’s disease: The role, regulation and restoration of LRP1
-
Ramanathan A, Nelson AR, Sagare AP, Zlokovic BV. Impaired vascular-mediated clearance of brain amyloid beta in Alzheimer’s disease: the role, regulation and restoration of LRP1. Front Aging Neurosci. 2015;7:136.
-
(2015)
Front Aging Neurosci
, vol.7
, pp. 136
-
-
Ramanathan, A.1
Nelson, A.R.2
Sagare, A.P.3
Zlokovic, B.V.4
-
58
-
-
19944426148
-
Amyloid β induces neuronal cell death through ROS-mediated ASK1 activation
-
Kadowaki H, Nishitoh H, Urano F, et al. Amyloid β induces neuronal cell death through ROS-mediated ASK1 activation. Cell Death Differ. 2005;12(1):19-24.
-
(2005)
Cell Death Differ
, vol.12
, Issue.1
, pp. 19-24
-
-
Kadowaki, H.1
Nishitoh, H.2
Urano, F.3
-
59
-
-
0028233494
-
Hydrogen peroxide mediates amyloid β protein toxicity
-
Behl C. Hydrogen peroxide mediates amyloid β protein toxicity. Cell. 1994;77(6):817-827.
-
(1994)
Cell
, vol.77
, Issue.6
, pp. 817-827
-
-
Behl, C.1
-
60
-
-
84887892331
-
Oxidative stress and amyloid beta toxicity in Alzheimer’s disease: Intervention in a complex relationship by antioxidants
-
Chakrabarti S, Sinha M, Thakurta IG, Banerjee P, Chattopadhyay M. Oxidative stress and amyloid beta toxicity in Alzheimer’s disease: intervention in a complex relationship by antioxidants. Curr Med Chem. 2013;20(37):4648-4664.
-
(2013)
Curr Med Chem
, vol.20
, Issue.37
, pp. 4648-4664
-
-
Chakrabarti, S.1
Sinha, M.2
Thakurta, I.G.3
Banerjee, P.4
Chattopadhyay, M.5
-
61
-
-
34547147090
-
The redox chemistry of the Alzheimer’s disease amyloid β peptide
-
Smith DG, Cappai R, Barnham KJ. The redox chemistry of the Alzheimer’s disease amyloid β peptide. Biochim Biophys Acta. 2007;1768(8):1976-1990.
-
(2007)
Biochim Biophys Acta
, vol.1768
, Issue.8
, pp. 1976-1990
-
-
Smith, D.G.1
Cappai, R.2
Barnham, K.J.3
-
62
-
-
84874115680
-
Antioxidant role of amyloid β protein in cell-free and biological systems: Implication for the pathogenesis of Alzheimer disease
-
Sinha M, Bhowmick P, Banerjee A, Chakrabarti S. Antioxidant role of amyloid β protein in cell-free and biological systems: implication for the pathogenesis of Alzheimer disease. Free Radic Biol Med. 2013;56:184-192.
-
(2013)
Free Radic Biol Med
, vol.56
, pp. 184-192
-
-
Sinha, M.1
Bhowmick, P.2
Banerjee, A.3
Chakrabarti, S.4
-
63
-
-
45249097300
-
Amyloid beta peptide and NMDA induce ROS from NADPH oxidase and AA release from cytosolic phospholipase A2 in cortical neurons
-
Shelat PB, Chalimoniuk M, Wang JH, et al. Amyloid beta peptide and NMDA induce ROS from NADPH oxidase and AA release from cytosolic phospholipase A2 in cortical neurons. J Neurochem. 2008;106(1):45-55.
-
(2008)
J Neurochem
, vol.106
, Issue.1
, pp. 45-55
-
-
Shelat, P.B.1
Chalimoniuk, M.2
Wang, J.H.3
-
64
-
-
84980407672
-
Mitochondria-targeted antioxidant mitotempo protects mitochondrial function against amyloid beta toxicity in primary cultured mouse neurons
-
Hu H, Li M. Mitochondria-targeted antioxidant mitotempo protects mitochondrial function against amyloid beta toxicity in primary cultured mouse neurons. Biochem Biophys Res Commun. 2016;478(1):174-180.
-
(2016)
Biochem Biophys Res Commun
, vol.478
, Issue.1
, pp. 174-180
-
-
Hu, H.1
Li, M.2
-
65
-
-
0036845314
-
Microglia enhance β-amyloid peptide-induced toxicity in cortical and mesencephalic neurons by producing reactive oxygen species
-
Qin L, Liu Y, Cooper C, Liu B, Wilson B, Hong J-S. Microglia enhance β-amyloid peptide-induced toxicity in cortical and mesencephalic neurons by producing reactive oxygen species. J Neurochem. 2002;83(4):973-983.
-
(2002)
J Neurochem
, vol.83
, Issue.4
, pp. 973-983
-
-
Qin, L.1
Liu, Y.2
Cooper, C.3
Liu, B.4
Wilson, B.5
Hong, J.-S.6
-
66
-
-
33748454440
-
A key role for the microglial NADPH oxidase in APP-dependent killing of neurons
-
Qin B, Cartier L, Dubois-dauphin M, Li B, Serrander L, Krause KH. A key role for the microglial NADPH oxidase in APP-dependent killing of neurons. Neurobiol Aging. 2006;27(11):1577-1587.
-
(2006)
Neurobiol Aging
, vol.27
, Issue.11
, pp. 1577-1587
-
-
Qin, B.1
Cartier, L.2
Dubois-Dauphin, M.3
Li, B.4
Serrander, L.5
Krause, K.H.6
-
67
-
-
84897935089
-
Microglia receptors and their implications in the response to amyloid β for Alzheimer’s disease pathogenesis
-
Doens D, Fernández PL. Microglia receptors and their implications in the response to amyloid β for Alzheimer’s disease pathogenesis. J Neuroinflammation. 2014;11:48.
-
(2014)
J Neuroinflammation
, vol.11
, pp. 48
-
-
Doens, D.1
Fernández, P.L.2
-
68
-
-
0036141148
-
CD36, a class B scavenger receptor, is expressed on microglia in Alzheimer’s disease brains and can mediate production of reactive oxygen species in response to beta-amyloid fibrils
-
Coraci IS, Husemann J, Berman JW, et al. CD36, a class B scavenger receptor, is expressed on microglia in Alzheimer’s disease brains and can mediate production of reactive oxygen species in response to beta-amyloid fibrils. Am J Pathol. 2002;160(1):101-112.
-
(2002)
Am J Pathol
, vol.160
, Issue.1
, pp. 101-112
-
-
Coraci, I.S.1
Husemann, J.2
Berman, J.W.3
-
69
-
-
78651308665
-
Microglial MAC1 receptor and PI3K are essential in mediating β-amyloid peptide-induced microglial activation and subsequent neurotoxicity
-
Zhang D, Hu X, Qian L, et al. Microglial MAC1 receptor and PI3K are essential in mediating β-amyloid peptide-induced microglial activation and subsequent neurotoxicity. J Neuroinflammation. 2011;8(1):3.
-
(2011)
J Neuroinflammation
, vol.8
, Issue.1
, pp. 3
-
-
Zhang, D.1
Hu, X.2
Qian, L.3
-
70
-
-
84892419941
-
Phosphorylation of tau protein at sites Ser (396-404) is one of the earliest events in Alzheimer’s disease and Down syndrome
-
Mondragón-rodríguez S, Perry G, Luna-muñoz J, Acevedo-aquino MC, Williams S. Phosphorylation of tau protein at sites Ser (396-404) is one of the earliest events in Alzheimer’s disease and Down syndrome. Neuropathol Appl Neurobiol. 2014;40(2):121-135.
-
(2014)
Neuropathol Appl Neurobiol
, vol.40
, Issue.2
, pp. 121-135
-
-
Mondragón-Rodríguez, S.1
Perry, G.2
Luna-Muñoz, J.3
Acevedo-Aquino, M.C.4
Williams, S.5
-
71
-
-
84947998831
-
Tau hyperphosphorylation and oxidative stress, a critical vicious circle in neurodegenerative tauopathies?
-
Alavi Naini SM, Soussi-yanicostas N. Tau hyperphosphorylation and oxidative stress, a critical vicious circle in neurodegenerative tauopathies? Oxid Med Cell Longev. 2015;2015:151979.
-
(2015)
Oxid Med Cell Longev
, vol.2015
-
-
Alavi Naini, S.M.1
Soussi-Yanicostas, N.2
-
72
-
-
72249109630
-
Chronic oxidative stress causes increased tau phosphorylation in M17 neuroblastoma cells
-
Su B, Wang X, Lee HG, et al. Chronic oxidative stress causes increased tau phosphorylation in M17 neuroblastoma cells. Neurosci Lett. 2010;468(3):267-271.
-
(2010)
Neurosci Lett
, vol.468
, Issue.3
, pp. 267-271
-
-
Su, B.1
Wang, X.2
Lee, H.G.3
-
73
-
-
84904093190
-
Aβ and tau toxicities in Alzheimer’s are linked via oxidative stress-induced p38 activation: Protective role of vitamin
-
Giraldo E, Lloret A, Fuchsberger T, Viña J. Aβ and tau toxicities in Alzheimer’s are linked via oxidative stress-induced p38 activation: protective role of vitamin E. Redox Biol. 2014;2:873-877.
-
(2014)
E. Redox Biol
, vol.2
, pp. 873-877
-
-
Giraldo, E.1
Lloret, A.2
Fuchsberger, T.3
Viña, J.4
-
74
-
-
12844250694
-
Induction of hyperphosphorylated tau in primary rat cortical neuron cultures mediated by oxidative stress and glycogen synthase kinase-3
-
Lovell MA, Xiong S, Xie C, Davies P, Markesbery WR. Induction of hyperphosphorylated tau in primary rat cortical neuron cultures mediated by oxidative stress and glycogen synthase kinase-3. J Alzheimers Dis. 2004;6(6):659-671.
-
(2004)
J Alzheimers Dis
, vol.6
, Issue.6
, pp. 659-671
-
-
Lovell, M.A.1
Xiong, S.2
Xie, C.3
Davies, P.4
Markesbery, W.R.5
-
75
-
-
0037357190
-
Iron-induced oxidative stress modify tau phosphorylation patterns in hippocampal cell cultures
-
Egaña JT, Zambrano C, Nuñez MT, Gonzalez-billault C, Maccioni RB. Iron-induced oxidative stress modify tau phosphorylation patterns in hippocampal cell cultures. Biometals. 2003;16(1):215-223.
-
(2003)
Biometals
, vol.16
, Issue.1
, pp. 215-223
-
-
Egaña, J.T.1
Zambrano, C.2
Nuñez, M.T.3
Gonzalez-Billault, C.4
Maccioni, R.B.5
-
76
-
-
2342466091
-
Oxidative stress promotes tau dephosphorylation in neuronal cells: The roles of cdk5 and PP1
-
Zambrano CA, Egaña JT, Núñez MT, Maccioni RB, González-billault C. Oxidative stress promotes tau dephosphorylation in neuronal cells: the roles of cdk5 and PP1. Free Radic Biol Med. 2004;36(11):1393-1402.
-
(2004)
Free Radic Biol Med
, vol.36
, Issue.11
, pp. 1393-1402
-
-
Zambrano, C.A.1
Egaña, J.T.2
Núñez, M.T.3
Maccioni, R.B.4
González-Billault, C.5
-
77
-
-
71749121998
-
Mitochondrial dysfunction is a trigger of Alzheimer’s disease pathophysiology
-
Moreira PI, Carvalho C, Zhu X, Smith MA, Perry G. Mitochondrial dysfunction is a trigger of Alzheimer’s disease pathophysiology. Biochim Biophys Acta. 2010;1802(1):2-10.
-
(2010)
Biochim Biophys Acta
, vol.1802
, Issue.1
, pp. 2-10
-
-
Moreira, P.I.1
Carvalho, C.2
Zhu, X.3
Smith, M.A.4
Perry, G.5
-
78
-
-
85001882183
-
Mitochondrial dysfunction in Alzheimer’s disease and the rationale for bioenergetics based therapies
-
Onyango IG, Dennis J, Khan SM. Mitochondrial dysfunction in Alzheimer’s disease and the rationale for bioenergetics based therapies. Aging Dis. 2016;7(2):201-214.
-
(2016)
Aging Dis
, vol.7
, Issue.2
, pp. 201-214
-
-
Onyango, I.G.1
Dennis, J.2
Khan, S.M.3
-
79
-
-
34848899898
-
Amyloid-beta-induced mitochondrial dysfunction
-
Chen JX, Yan SD. Amyloid-beta-induced mitochondrial dysfunction. J Alzheimers Dis. 2007;12(2):177-184.
-
(2007)
J Alzheimers Dis
, vol.12
, Issue.2
, pp. 177-184
-
-
Chen, J.X.1
Yan, S.D.2
-
80
-
-
84907990407
-
Amyloid-β peptide induces mitochondrial dysfunction by inhibition of preprotein maturation
-
Mossmann D, Vögtle F, Taskin AA, et al. Amyloid-β peptide induces mitochondrial dysfunction by inhibition of preprotein maturation. Cell Metab. 2014;20(4):662-669.
-
(2014)
Cell Metab
, vol.20
, Issue.4
, pp. 662-669
-
-
Mossmann, D.1
Vögtle, F.2
Taskin, A.A.3
-
81
-
-
84868286870
-
New insights in the amyloid-beta interaction with mitochondria
-
Spuch C, Ortolano S, Navarro C. New insights in the amyloid-beta interaction with mitochondria. J Aging Res. 2012;2012:324968.
-
(2012)
J Aging Res
, vol.2012
-
-
Spuch, C.1
Ortolano, S.2
Navarro, C.3
-
82
-
-
84455173852
-
Aging promotes amyloid-β peptide induced mitochondrial dysfunctions in rat brain: A molecular link between aging and Alzheimer’s disease
-
Sinha M, Behera P, Bhowmick P, Banerjee K, Basu S, Chakrabarti S. Aging promotes amyloid-β peptide induced mitochondrial dysfunctions in rat brain: a molecular link between aging and Alzheimer’s disease. J Alzheimers Dis. 2011;27(4):753-765.
-
(2011)
J Alzheimers Dis
, vol.27
, Issue.4
, pp. 753-765
-
-
Sinha, M.1
Behera, P.2
Bhowmick, P.3
Banerjee, K.4
Basu, S.5
Chakrabarti, S.6
-
83
-
-
34547214510
-
Abeta ion channels. Prospects for treating Alzheimer’s disease with Abeta channel blockers
-
Arispe N, Diaz JC, Simakova O. Abeta ion channels. Prospects for treating Alzheimer’s disease with Abeta channel blockers. Biochim Biophys Acta. 2007;1768(8):1952-1965.
-
(2007)
Biochim Biophys Acta
, vol.1768
, Issue.8
, pp. 1952-1965
-
-
Arispe, N.1
Diaz, J.C.2
Simakova, O.3
-
84
-
-
34547203205
-
Amyloid beta ion channel: 3D structure and relevance to amyloid channel paradigm
-
Lal R, Lin H, Quist AP. Amyloid beta ion channel: 3D structure and relevance to amyloid channel paradigm. Biochim Biophys Acta. 2007;1768(8):1966-1975.
-
(2007)
Biochim Biophys Acta
, vol.1768
, Issue.8
, pp. 1966-1975
-
-
Lal, R.1
Lin, H.2
Quist, A.P.3
-
85
-
-
33751079341
-
Phospholipases A2 mediate amyloid-beta peptide-induced mitochondrial dysfunction
-
Zhu D, Lai Y, Shelat PB, Hu C, Sun GY, Lee JC. Phospholipases A2 mediate amyloid-beta peptide-induced mitochondrial dysfunction. J Neurosci. 2006;26(43):11111-11119.
-
(2006)
J Neurosci
, vol.26
, Issue.43
, pp. 11111-11119
-
-
Zhu, D.1
Lai, Y.2
Shelat, P.B.3
Hu, C.4
Sun, G.Y.5
Lee, J.C.6
-
86
-
-
1642499152
-
Beta-amyloid peptides induce mitochondrial dysfunction and oxidative stress in astrocytes and death of neurons through activation of NADPH oxidase
-
Abramov AY, Canevari L, Duchen MR. Beta-amyloid peptides induce mitochondrial dysfunction and oxidative stress in astrocytes and death of neurons through activation of NADPH oxidase. J Neurosci. 2004;24(2):565-575.
-
(2004)
J Neurosci
, vol.24
, Issue.2
, pp. 565-575
-
-
Abramov, A.Y.1
Canevari, L.2
Duchen, M.R.3
-
87
-
-
84911423174
-
The prevalence of Parkinson’s disease: A systematic review and meta-analysis
-
Pringsheim T, Jette N, Frolkis A, Steeves TDL. The prevalence of Parkinson’s disease: a systematic review and meta-analysis. Mov Disord. 2014;29(13):1583-1590.
-
(2014)
Mov Disord
, vol.29
, Issue.13
, pp. 1583-1590
-
-
Pringsheim, T.1
Jette, N.2
Frolkis, A.3
Steeves, T.D.L.4
-
89
-
-
5444255434
-
Stages in the development of Parkinson’s disease-related pathology
-
Braak H, Ghebremedhin E, Rüb U, Bratzke H, Del Tredici K. Stages in the development of Parkinson’s disease-related pathology. Cell Tissue Res. 2004;318(1):121-134.
-
(2004)
Cell Tissue Res
, vol.318
, Issue.1
, pp. 121-134
-
-
Braak, H.1
Ghebremedhin, E.2
Rüb, U.3
Bratzke, H.4
Del Tredici, K.5
-
91
-
-
84872458771
-
Aggregation and neurotoxicity of recombinant α-synuclein aggregates initiated by dimerization
-
Roostaee A, Beaudoin S, Staskevicius A, Roucou X. Aggregation and neurotoxicity of recombinant α-synuclein aggregates initiated by dimerization. Mol Neurodegener. 2013;8:5.
-
(2013)
Mol Neurodegener
, vol.8
, pp. 5
-
-
Roostaee, A.1
Beaudoin, S.2
Staskevicius, A.3
Roucou, X.4
-
92
-
-
78649652766
-
CpG demethylation enhances alpha-synuclein expression and affects the pathogenesis of Parkinson’s disease
-
Matsumoto L, Takuma H, Tamaoka A, et al. CpG demethylation enhances alpha-synuclein expression and affects the pathogenesis of Parkinson’s disease. PLoS One. 2010;5(11):e15522.
-
(2010)
Plos One
, vol.5
, Issue.11
-
-
Matsumoto, L.1
Takuma, H.2
Tamaoka, A.3
-
93
-
-
84861453955
-
α-Synuclein expression is modulated at the translational level by iron
-
Febbraro F, Giorgi M, Caldarola S, Loreni F, Romero-ramos M. α-Synuclein expression is modulated at the translational level by iron. Neuroreport. 2012;23(9):576-580.
-
(2012)
Neuroreport
, vol.23
, Issue.9
, pp. 576-580
-
-
Febbraro, F.1
Giorgi, M.2
Caldarola, S.3
Loreni, F.4
Romero-Ramos, M.5
-
94
-
-
84879607073
-
Lysosomal impairment in Parkinson’s disease
-
Dehay B, Martinez-vicente M, Caldwell GA, et al. Lysosomal impairment in Parkinson’s disease. Mov Disord. 2013;28(6):725-732.
-
(2013)
Mov Disord
, vol.28
, Issue.6
, pp. 725-732
-
-
Dehay, B.1
Martinez-Vicente, M.2
Caldwell, G.A.3
-
95
-
-
68649118090
-
A critical evaluation of the ubiquitin-proteasome system in Parkinson’s disease
-
Cook C, Petrucelli L. A critical evaluation of the ubiquitin-proteasome system in Parkinson’s disease. Biochim Biophys Acta. 2009;1792(7):664-675.
-
(2009)
Biochim Biophys Acta
, vol.1792
, Issue.7
, pp. 664-675
-
-
Cook, C.1
Petrucelli, L.2
-
96
-
-
0037227397
-
Altered proteasomal function in sporadic Parkinson’s disease
-
Mcnaught KS, Belizaire R, Isacson O, Jenner P, Olanow CW. Altered proteasomal function in sporadic Parkinson’s disease. Exp Neurol. 2003;179(1):38-46.
-
(2003)
Exp Neurol
, vol.179
, Issue.1
, pp. 38-46
-
-
McNaught, K.S.1
Belizaire, R.2
Isacson, O.3
Jenner, P.4
Olanow, C.W.5
-
97
-
-
0034967925
-
The ubiquitin-proteasome pathway and proteasome inhibitors
-
Myung J, Kim KB, Crews CM. The ubiquitin-proteasome pathway and proteasome inhibitors. Med Res Rev. 2001;21(4):245-273.
-
(2001)
Med Res Rev
, vol.21
, Issue.4
, pp. 245-273
-
-
Myung, J.1
Kim, K.B.2
Crews, C.M.3
-
98
-
-
0035430788
-
Failure of the ubiquitin-proteasome system in Parkinson’s disease
-
McNaught KS, Olanow CW, Halliwell B, Isacson O, Jenner P. Failure of the ubiquitin-proteasome system in Parkinson’s disease. Nat Rev Neurosci. 2001;2(8):589-594.
-
(2001)
Nat Rev Neurosci
, vol.2
, Issue.8
, pp. 589-594
-
-
McNaught, K.S.1
Olanow, C.W.2
Halliwell, B.3
Isacson, O.4
Jenner, P.5
-
99
-
-
3042794162
-
Systemic exposure to proteasome inhibitors causes a progressive model of Parkinson’s disease
-
McNaught KS, Perl DP, Brownell AL, Olanow CW. Systemic exposure to proteasome inhibitors causes a progressive model of Parkinson’s disease. Ann Neurol. 2004;56(1):149-162.
-
(2004)
Ann Neurol
, vol.56
, Issue.1
, pp. 149-162
-
-
McNaught, K.S.1
Perl, D.P.2
Brownell, A.L.3
Olanow, C.W.4
-
100
-
-
14844325779
-
Molecular pathogenesis of Parkinson disease
-
Eriksen JL, Wszolek Z, Petrucelli L. Molecular pathogenesis of Parkinson disease. Arch Neurol. 2005;62(3):353-357.
-
(2005)
Arch Neurol
, vol.62
, Issue.3
, pp. 353-357
-
-
Eriksen, J.L.1
Wszolek, Z.2
Petrucelli, L.3
-
101
-
-
0035870881
-
Inducible expression of mutant alpha-synuclein decreases proteasome activity and increases sensitivity to mitochondria-dependent apoptosis
-
Tanaka Y, Engelender S, Igarashi S, et al. Inducible expression of mutant alpha-synuclein decreases proteasome activity and increases sensitivity to mitochondria-dependent apoptosis. Hum Mol Genet. 2001;10(9):919-926.
-
(2001)
Hum Mol Genet
, vol.10
, Issue.9
, pp. 919-926
-
-
Tanaka, Y.1
Engelender, S.2
Igarashi, S.3
-
102
-
-
70350130100
-
Lactacystin requires reactive oxygen species and BAX redistribution to induce mitochondria mediated cell death
-
Perez-Alvarez S, Solesio ME, Manzanares J, Jordán J, Galindo MF. Lactacystin requires reactive oxygen species and BAX redistribution to induce mitochondria mediated cell death. Br J Pharmacol. 2009;158(4):1121-1130.
-
(2009)
Br J Pharmacol
, vol.158
, Issue.4
, pp. 1121-1130
-
-
Perez-Alvarez, S.1
Solesio, M.E.2
Manzanares, J.3
Jordán, J.4
Galindo, M.F.5
-
103
-
-
67650153168
-
Dopamine (DA) induced irreversible proteasome inhibition via DA derived quinones
-
Zhou ZD, Lim TM. Dopamine (DA) induced irreversible proteasome inhibition via DA derived quinones. Free Radic Res. 2009;43(4):417-430.
-
(2009)
Free Radic Res
, vol.43
, Issue.4
, pp. 417-430
-
-
Zhou, Z.D.1
Lim, T.M.2
-
104
-
-
0038413759
-
Aggregated and monomeric alpha-synuclein bind to the S6’ proteasomal protein and inhibit proteasomal function.
-
Snyder H, Mensah K, Theisler C, Lee J, Matouschek A, Wolozin B. Aggregated and monomeric alpha-synuclein bind to the S6’ proteasomal protein and inhibit proteasomal function. J Biol Chem. 2003;278(14):11753-11759.
-
(2003)
J Biol Chem
, vol.278
, Issue.14
, pp. 11753-11759
-
-
Snyder, H.1
Mensah, K.2
Theisler, C.3
Lee, J.4
Matouschek, A.5
Wolozin, B.6
-
105
-
-
70549088602
-
Genome-wide association study reveals genetic risk underlying Parkinson’s disease
-
Simón-sánchez J, Schulte C, Bras JM, et al. Genome-wide association study reveals genetic risk underlying Parkinson’s disease. Nat Genet. 2009;41(12):1308-1312.
-
(2009)
Nat Genet
, vol.41
, Issue.12
, pp. 1308-1312
-
-
Simón-Sánchez, J.1
Schulte, C.2
Bras, J.M.3
-
106
-
-
0036679197
-
Alpha-synucleinopathy and selective dopaminergic neuron loss in a rat lentiviral-based model of Parkinson’s disease
-
Lo Bianco C, Ridet JL, Schneider BL, Deglon N, Aebischer P. Alpha-synucleinopathy and selective dopaminergic neuron loss in a rat lentiviral-based model of Parkinson’s disease. Proc Natl Acad Sci U S A. 2002;99(16):10813-10818.
-
(2002)
Proc Natl Acad Sci U S A
, vol.99
, Issue.16
, pp. 10813-10818
-
-
Lo Bianco, C.1
Ridet, J.L.2
Schneider, B.L.3
Deglon, N.4
Aebischer, P.5
-
107
-
-
84888119924
-
RAAV2/7 vector-mediated overexpression of alpha-synuclein in mouse substantia nigra induces protein aggregation and progressive dose-dependent neurodegeneration
-
Oliveras-salvá M, Van der Perren A, Casadei N, et al. rAAV2/7 vector-mediated overexpression of alpha-synuclein in mouse substantia nigra induces protein aggregation and progressive dose-dependent neurodegeneration. Mol Neurodegener. 2013;8:44.
-
(2013)
Mol Neurodegener
, vol.8
, pp. 44
-
-
Oliveras-Salvá, M.1
Van Der Perren, A.2
Casadei, N.3
-
108
-
-
84934955012
-
Intrastriatal injection of pre-formed mouse α-synuclein fibrils into rats triggers α-synuclein pathology and bilateral nigrostriatal degeneration
-
Paumier KL, Luk KC, Manfredsson FP, et al. Intrastriatal injection of pre-formed mouse α-synuclein fibrils into rats triggers α-synuclein pathology and bilateral nigrostriatal degeneration. Neurobiol Dis. 2015;82:185-199.
-
(2015)
Neurobiol Dis
, vol.82
, pp. 185-199
-
-
Paumier, K.L.1
Luk, K.C.2
Manfredsson, F.P.3
-
109
-
-
84897977607
-
Lewy body extracts from Parkinson disease brains trigger α-synuclein pathology and neurodegeneration in mice and monkeys
-
Recasens A, Dehay B, Bové J, et al. Lewy body extracts from Parkinson disease brains trigger α-synuclein pathology and neurodegeneration in mice and monkeys. Ann Neurol. 2014;75(3):351-362.
-
(2014)
Ann Neurol
, vol.75
, Issue.3
, pp. 351-362
-
-
Recasens, A.1
Dehay, B.2
Bové, J.3
-
110
-
-
77951915408
-
Alpha-synuclein overexpression increases dopamine toxicity in BE2-M17 cells
-
Bisaglia M, Greggio E, Maric D, Miller DW, Cookson MR, Bubacco L. Alpha-synuclein overexpression increases dopamine toxicity in BE2-M17 cells. BMC Neurosci. 2010;11:41.
-
(2010)
BMC Neurosci
, vol.11
, pp. 41
-
-
Bisaglia, M.1
Greggio, E.2
Maric, D.3
Miller, D.W.4
Cookson, M.R.5
Bubacco, L.6
-
111
-
-
84894291922
-
A-synuclein and mitochondrial dysfunction in Parkinson’s disease
-
Mullin S, Schapira A. A-synuclein and mitochondrial dysfunction in Parkinson’s disease. Mol Neurobiol. 2013;47(2):587-597.
-
(2013)
Mol Neurobiol
, vol.47
, Issue.2
, pp. 587-597
-
-
Mullin, S.1
Schapira, A.2
-
112
-
-
0025254401
-
Deficiency in Parkinson’s disease
-
Schapira AHV, Cooper JM, Dexter D, Clark JB, Jenner P, Marsden CD. Mitochondrial complex I deficiency in Parkinson’s disease. J Neurochem. 1990;54(3):823-827.
-
(1990)
J Neurochem
, vol.54
, Issue.3
, pp. 823-827
-
-
Schapira, A.1
Cooper, J.M.2
Dexter, D.3
Clark, J.B.4
Jenner, P.5
Marsden, C.D.6
Mitochondrial Complex, I.7
-
113
-
-
0031031845
-
Platelet mitochondrial respiratory chain function in Parkinson’s disease
-
Blake CI, Spitz E, Leehey M, Hoffer BJ, Boyson SJ. Platelet mitochondrial respiratory chain function in Parkinson’s disease. Mov Disord. 1997;12(1):3-8.
-
(1997)
Mov Disord
, vol.12
, Issue.1
, pp. 3-8
-
-
Blake, C.I.1
Spitz, E.2
Leehey, M.3
Hoffer, B.J.4
Boyson, S.J.5
-
114
-
-
0027971104
-
Mitochondrial respiratory failure in skeletal muscle from patients with Parkinson’s disease and multiple system atrophy
-
Blin O, Desnuelle C, Rascol O, et al. Mitochondrial respiratory failure in skeletal muscle from patients with Parkinson’s disease and multiple system atrophy. J Neurol Sci. 1994;125(1):95-101.
-
(1994)
J Neurol Sci
, vol.125
, Issue.1
, pp. 95-101
-
-
Blin, O.1
Desnuelle, C.2
Rascol, O.3
-
115
-
-
84937854234
-
The impact of mitochondrial fusion and fission modulation in sporadic Parkinson’s disease
-
Santos D, Esteves AR, Silva DF, Januário C, Cardoso SM. The impact of mitochondrial fusion and fission modulation in sporadic Parkinson’s disease. Mol Neurobiol. 2015;52(1):573-586.
-
(2015)
Mol Neurobiol
, vol.52
, Issue.1
, pp. 573-586
-
-
Santos, D.1
Esteves, A.R.2
Silva, D.F.3
Januário, C.4
Cardoso, S.M.5
-
116
-
-
0029908226
-
Origin and functional consequences of the complex I defect in Parkinson’s disease
-
Swerdlow RH, Parks JK, Miller SW, et al. Origin and functional consequences of the complex I defect in Parkinson’s disease. Ann Neurol. 1996;40(4):663-671.
-
(1996)
Ann Neurol
, vol.40
, Issue.4
, pp. 663-671
-
-
Swerdlow, R.H.1
Parks, J.K.2
Miller, S.W.3
-
117
-
-
67649806929
-
The cybrid model of sporadic Parkinson’s disease
-
Trimmer PA, Bennett JP. The cybrid model of sporadic Parkinson’s disease. Exp Neurol. 2009;218(2):320-325.
-
(2009)
Exp Neurol
, vol.218
, Issue.2
, pp. 320-325
-
-
Trimmer, P.A.1
Bennett, J.P.2
-
118
-
-
0141741347
-
Parkinson’s disease
-
Dauer W, Przedborski S. Parkinson’s disease. Neuron. 2003;39(6):889-909.
-
(2003)
Neuron
, vol.39
, Issue.6
, pp. 889-909
-
-
Dauer, W.1
Przedborski, S.2
-
119
-
-
84866738264
-
Differential toxicity of 6-hydroxydopamine in SH-SY5Y human neuroblastoma cells and rat brain mitochondria: Protective role of catalase and superoxide dismutase
-
Iglesias-gonzález J, Sánchez-iglesias S, Méndez-Álvarez E, et al. Differential toxicity of 6-hydroxydopamine in SH-SY5Y human neuroblastoma cells and rat brain mitochondria: protective role of catalase and superoxide dismutase. Neurochem Res. 2012;37(10):2150-2160.
-
(2012)
Neurochem Res
, vol.37
, Issue.10
, pp. 2150-2160
-
-
Iglesias-González, J.1
Sánchez-Iglesias, S.2
Méndez-Álvarez, E.3
-
120
-
-
71849084134
-
Mitochondrial dysfunction in Parkinson’s disease
-
Winklhofer KF, Haass C. Mitochondrial dysfunction in Parkinson’s disease. Biochim Biophys Acta. 2010;1802(1):29-44.
-
(2010)
Biochim Biophys Acta
, vol.1802
, Issue.1
, pp. 29-44
-
-
Winklhofer, K.F.1
Haass, C.2
-
121
-
-
79954581538
-
Mitochondrial dysfunction mediated by quinone oxidation products of dopamine: Implications in dopamine cytotoxicity and pathogenesis of Parkinson’s disease
-
Jana S, Sinha M, Chanda D, et al. Mitochondrial dysfunction mediated by quinone oxidation products of dopamine: implications in dopamine cytotoxicity and pathogenesis of Parkinson’s disease. Biochim Biophys Acta. 2011;1812(6):663-673.
-
(2011)
Biochim Biophys Acta
, vol.1812
, Issue.6
, pp. 663-673
-
-
Jana, S.1
Sinha, M.2
Chanda, D.3
-
122
-
-
33646375711
-
High levels of mitochondrial DNA deletions in substantia nigra neurons in aging and Parkinson disease
-
Bender A, Krishnan KJ, Morris CM, et al. High levels of mitochondrial DNA deletions in substantia nigra neurons in aging and Parkinson disease. Nat Genet. 2006;38(5):515-517.
-
(2006)
Nat Genet
, vol.38
, Issue.5
, pp. 515-517
-
-
Bender, A.1
Krishnan, K.J.2
Morris, C.M.3
-
123
-
-
79952693640
-
Mitophagy and Parkinson’s disease: The PINK1-parkin link
-
Deas E, Wood NW, Plun-favreau H. Mitophagy and Parkinson’s disease: the PINK1-parkin link. Biochim Biophys Acta. 2011;1813(4):623-633.
-
(2011)
Biochim Biophys Acta
, vol.1813
, Issue.4
, pp. 623-633
-
-
Deas, E.1
Wood, N.W.2
Plun-Favreau, H.3
-
124
-
-
84867773087
-
Mitophagy: Mechanisms, pathophysiological roles, and analysis
-
Ding WX, Yin XM. Mitophagy: mechanisms, pathophysiological roles, and analysis. Biol Chem. 2012;393(7):547-564.
-
(2012)
Biol Chem
, vol.393
, Issue.7
, pp. 547-564
-
-
Ding, W.X.1
Yin, X.M.2
-
125
-
-
84921369563
-
The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson’s disease
-
Pickrell AM, Youle RJ. The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson’s disease. Neuron. 2015;85(2):257-273.
-
(2015)
Neuron
, vol.85
, Issue.2
, pp. 257-273
-
-
Pickrell, A.M.1
Youle, R.J.2
-
126
-
-
75749156257
-
PINK1 is selectively stabilized on impaired mitochondria to activate parkin
-
Narendra DP, Jin SM, Tanaka A, et al. PINK1 is selectively stabilized on impaired mitochondria to activate parkin. PLoS Biol. 2010;8(1):e1000298.
-
(2010)
Plos Biol
, vol.8
, Issue.1
-
-
Narendra, D.P.1
Jin, S.M.2
Tanaka, A.3
-
127
-
-
75949098487
-
PINK1-dependent recruitment of Parkin to mitochondria in mitophagy
-
Vives-Bauza C, Zhou C, Huang Y, et al. PINK1-dependent recruitment of Parkin to mitochondria in mitophagy. Proc Natl Acad Sci U S A. 2010;107(1):378-383.
-
(2010)
Proc Natl Acad Sci U S A
, vol.107
, Issue.1
, pp. 378-383
-
-
Vives-Bauza, C.1
Zhou, C.2
Huang, Y.3
-
128
-
-
77951181836
-
PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy
-
Matsuda N, Sato S, Shiba K, et al. PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy. J Cell Biol. 2010;189(2):211-221.
-
(2010)
J Cell Biol
, vol.189
, Issue.2
, pp. 211-221
-
-
Matsuda, N.1
Sato, S.2
Shiba, K.3
-
129
-
-
84920973383
-
Role of glucose metabolism and ATP in maintaining PINK1 levels during Parkin-mediated mitochondrial damage responses
-
Lee S, Zhang C, Liu X. Role of glucose metabolism and ATP in maintaining PINK1 levels during Parkin-mediated mitochondrial damage responses. J Biol Chem. 2015;290(2):904-917.
-
(2015)
J Biol Chem
, vol.290
, Issue.2
, pp. 904-917
-
-
Lee, S.1
Zhang, C.2
Liu, X.3
-
130
-
-
79551603345
-
Bioenergetics of neurons inhibit the translocation response of Parkin following rapid mitochondrial depolarization
-
Van Laar VS, Arnold B, Cassady SJ, Chu CT, Burton EA, Berman SB. Bioenergetics of neurons inhibit the translocation response of Parkin following rapid mitochondrial depolarization. Hum Mol Genet. 2011;20(5):927-940.
-
(2011)
Hum Mol Genet
, vol.20
, Issue.5
, pp. 927-940
-
-
Van Laar, V.S.1
Arnold, B.2
Cassady, S.J.3
Chu, C.T.4
Burton, E.A.5
Berman, S.B.6
-
131
-
-
84930226005
-
Convergence of Parkin, PINK1, and α-synuclein on stress-induced mitochondrial morphological remodeling
-
Norris KL, Hao R, Chen LF, et al. Convergence of Parkin, PINK1, and α-synuclein on stress-induced mitochondrial morphological remodeling. J Biol Chem. 2015;290(22):13862-13874.
-
(2015)
J Biol Chem
, vol.290
, Issue.22
, pp. 13862-13874
-
-
Norris, K.L.1
Hao, R.2
Chen, L.F.3
-
132
-
-
84864278260
-
PINK1 defect causes mitochondrial dysfunction, proteasomal deficit and alpha-synuclein aggregation in cell culture models of Parkinson’s disease
-
Liu W, Vives-Bauza C, Acín-Peréz R, et al. PINK1 defect causes mitochondrial dysfunction, proteasomal deficit and alpha-synuclein aggregation in cell culture models of Parkinson’s disease. PLoS One. 2009;4(2):e4597.
-
(2009)
Plos One
, vol.4
, Issue.2
-
-
Liu, W.1
Vives-Bauza, C.2
Acín-Peréz, R.3
-
133
-
-
71949090833
-
Mitochondrial trafficking of APP and alpha synuclein: Relevance to mitochondrial dysfunction in Alzheimer’s and Parkinson’s diseases
-
Devi L, Anandatheerthavarada HK. Mitochondrial trafficking of APP and alpha synuclein: relevance to mitochondrial dysfunction in Alzheimer’s and Parkinson’s diseases. Biochim Biophys Acta. 2010;1802(1):11-19.
-
(2010)
Biochim Biophys Acta
, vol.1802
, Issue.1
, pp. 11-19
-
-
Devi, L.1
Anandatheerthavarada, H.K.2
-
134
-
-
78049383132
-
Mitochondrial α-synuclein accumulation impairs complex I function in dopaminergic neurons and results in increased mitophagy in vivo
-
Chinta SJ, Mallajosyula JK, Rane A, Andersen JK. Mitochondrial α-synuclein accumulation impairs complex I function in dopaminergic neurons and results in increased mitophagy in vivo. Neurosci Lett. 2010;486(3):235-239.
-
(2010)
Neurosci Lett
, vol.486
, Issue.3
, pp. 235-239
-
-
Chinta, S.J.1
Mallajosyula, J.K.2
Rane, A.3
Ersen, J.K.4
-
135
-
-
0032584686
-
Filamentous alpha-synuclein inclusions link multiple system atrophy with Parkinson’s disease and dementia with Lewy bodies
-
Spillantini MG, Crowther RA, Jakes R, Cairns NJ, Lantos PL, Goedert M. Filamentous alpha-synuclein inclusions link multiple system atrophy with Parkinson’s disease and dementia with Lewy bodies. Neurosci Lett. 1998;251(3):205-208.
-
(1998)
Neurosci Lett
, vol.251
, Issue.3
, pp. 205-208
-
-
Spillantini, M.G.1
Crowther, R.A.2
Jakes, R.3
Cairns, N.J.4
Lantos, P.L.5
Goedert, M.6
-
136
-
-
84857649648
-
Folding and misfolding of alpha-synuclein on membranes
-
Dikiy I, Eliezer D. Folding and misfolding of alpha-synuclein on membranes. Biochim Biophys Acta. 2012;1818(4):1013-1018.
-
(2012)
Biochim Biophys Acta
, vol.1818
, Issue.4
, pp. 1013-1018
-
-
Dikiy, I.1
Eliezer, D.2
-
137
-
-
84871414210
-
The many faces of α-synuclein: From structure and toxicity to therapeutic target
-
Lashuel HA, Overk CR, Oueslati A, Masliah E. The many faces of α-synuclein: from structure and toxicity to therapeutic target. Nat Rev Neurosci. 2013;14(1):38-48.
-
(2013)
Nat Rev Neurosci
, vol.14
, Issue.1
, pp. 38-48
-
-
Lashuel, H.A.1
Overk, C.R.2
Oueslati, A.3
Masliah, E.4
-
138
-
-
44049099669
-
Mitochondrial import and accumulation of alpha-synuclein impair complex I in human dopaminergic neuronal cultures and Parkinson disease brain
-
Devi L, Raghavendran V, Prabhu BM, Avadhani NG, Anandatheerthavarada HK. Mitochondrial import and accumulation of alpha-synuclein impair complex I in human dopaminergic neuronal cultures and Parkinson disease brain. J Biol Chem. 2008;283(14):9089-9100.
-
(2008)
J Biol Chem
, vol.283
, Issue.14
, pp. 9089-9100
-
-
Devi, L.1
Raghavendran, V.2
Prabhu, B.M.3
Avadhani, N.G.4
Anandatheerthavarada, H.K.5
-
139
-
-
84954311788
-
Aggregated α-synuclein and complex I deficiency: Exploration of their relationship in differentiated neurons
-
Reeve AK, Ludtmann MH, Angelova PR, et al. Aggregated α-synuclein and complex I deficiency: exploration of their relationship in differentiated neurons. Cell Death Dis. 2015;6:e1820.
-
(2015)
Cell Death Dis
, vol.6
-
-
Reeve, A.K.1
Ludtmann, M.H.2
Angelova, P.R.3
-
140
-
-
84918777743
-
α-Synuclein-induced mitochondrial dysfunction in isolated preparation and intact cells: Implications in the pathogenesis of Parkinson’s disease
-
Bir A, Sen O, Anand S, et al. α-Synuclein-induced mitochondrial dysfunction in isolated preparation and intact cells: implications in the pathogenesis of Parkinson’s disease. J Neurochem. 2014;131(6):868-877.
-
(2014)
J Neurochem
, vol.131
, Issue.6
, pp. 868-877
-
-
Bir, A.1
Sen, O.2
Anand, S.3
-
141
-
-
77958450202
-
Inhibition of mitochondrial fusion by α-synuclein is rescued by PINK1, Parkin and DJ-1
-
Kamp F, Exner N, Lutz AK, et al. Inhibition of mitochondrial fusion by α-synuclein is rescued by PINK1, Parkin and DJ-1. EMBO J. 2010;29(20):3571-3589.
-
(2010)
EMBO J
, vol.29
, Issue.20
, pp. 3571-3589
-
-
Kamp, F.1
Exner, N.2
Lutz, A.K.3
-
142
-
-
0029751104
-
Oxidative stress and the pathogenesis of Parkinson’s disease
-
Jenner P, Olanow CW. Oxidative stress and the pathogenesis of Parkinson’s disease. Neurology. 1996;47(6 suppl 3):161S-170S.
-
(1996)
Neurology
, vol.47
, Issue.6
, pp. 161S-170S
-
-
Jenner, P.1
Olanow, C.W.2
-
143
-
-
0023804321
-
Increased iron (III) and total iron content in post mortem substantia nigra of parkinsonian brain
-
Sofic E, Riederer P, Heinsen H, et al. Increased iron (III) and total iron content in post mortem substantia nigra of parkinsonian brain. J Neural Transm. 1988;74(3):199-205.
-
(1988)
J Neural Transm
, vol.74
, Issue.3
, pp. 199-205
-
-
Sofic, E.1
Riederer, P.2
Heinsen, H.3
-
144
-
-
0031455734
-
Elevated reactive oxygen species and antioxidant enzyme activities in animal and cellular models of Parkinson’s disease
-
Cassarino DS, Fall CP, Swerdlow RH, et al. Elevated reactive oxygen species and antioxidant enzyme activities in animal and cellular models of Parkinson’s disease. Biochim Biophys Acta. 1997;1362(1):77-86.
-
(1997)
Biochim Biophys Acta
, vol.1362
, Issue.1
, pp. 77-86
-
-
Cassarino, D.S.1
Fall, C.P.2
Swerdlow, R.H.3
-
145
-
-
84973895577
-
α-Synuclein binds to TOM20 and inhibits mitochondrial protein import in Parkinson’s disease
-
Di Maio R, Barrett PJ, Hoffman EK, et al. α-Synuclein binds to TOM20 and inhibits mitochondrial protein import in Parkinson’s disease. Sci Transl Med. 2016;8(342):342ra78.
-
(2016)
Sci Transl Med
, vol.8
, Issue.342
, pp. 342
-
-
Di Maio, R.1
Barrett, P.J.2
Hoffman, E.K.3
-
146
-
-
84950331777
-
Overexpression of alpha-synuclein at non-toxic levels increases dopaminergic cell death induced by copper exposure via modulation of protein degradation pathways
-
Anandhan A, Rodriguez-rocha H, Bohovych I, et al. Overexpression of alpha-synuclein at non-toxic levels increases dopaminergic cell death induced by copper exposure via modulation of protein degradation pathways. Neurobiol Dis. 2015;81:76-92.
-
(2015)
Neurobiol Dis
, vol.81
, pp. 76-92
-
-
Anandhan, A.1
Rodriguez-Rocha, H.2
Bohovych, I.3
-
147
-
-
84924975806
-
Insights on the interaction of alpha-synuclein and metals in the pathophysiology of Parkinson’s disease
-
Carboni E, Lingor P. Insights on the interaction of alpha-synuclein and metals in the pathophysiology of Parkinson’s disease. Metallomics. 2015;7(3):395-404.
-
(2015)
Metallomics
, vol.7
, Issue.3
, pp. 395-404
-
-
Carboni, E.1
Lingor, P.2
-
148
-
-
76949108822
-
The role of dopamine oxidation in mitochondrial dysfunction: Implications for Parkinson’s disease
-
Hastings TG. The role of dopamine oxidation in mitochondrial dysfunction: implications for Parkinson’s disease. J Bioenerg Biomembr. 2009;41(6):469-472.
-
(2009)
J Bioenerg Biomembr
, vol.41
, Issue.6
, pp. 469-472
-
-
Hastings, T.G.1
-
149
-
-
69049112795
-
Modulation of alpha-synuclein aggregation by dopamine: A review
-
Leong SL, Cappai R, Barnham KJ, Pham CL. Modulation of alpha-synuclein aggregation by dopamine: a review. Neurochem Res. 2009;34(10):1838-1846.
-
(2009)
Neurochem Res
, vol.34
, Issue.10
, pp. 1838-1846
-
-
Leong, S.L.1
Cappai, R.2
Barnham, K.J.3
Pham, C.L.4
-
150
-
-
84867588505
-
NADPH oxidase 1 mediates α-synucleinopathy in Parkinson’s disease
-
Cristóvão AC, Guhathakurta S, Bok E, et al. NADPH oxidase 1 mediates α-synucleinopathy in Parkinson’s disease. J Neurosci. 2012;32(42):14465-14477.
-
(2012)
J Neurosci
, vol.32
, Issue.42
, pp. 14465-14477
-
-
Cristóvão, A.C.1
Guhathakurta, S.2
Bok, E.3
-
151
-
-
84876790040
-
Oxidative and nitrative alpha-synuclein modifications and proteostatic stress: Implications for disease mechanisms and interventions in synucleinopathies
-
Schildknecht S, Gerding HR, Karreman C, et al. Oxidative and nitrative alpha-synuclein modifications and proteostatic stress: implications for disease mechanisms and interventions in synucleinopathies. J Neurochem. 2013;125(4):491-511.
-
(2013)
J Neurochem
, vol.125
, Issue.4
, pp. 491-511
-
-
Schildknecht, S.1
Gerding, H.R.2
Karreman, C.3
|