메뉴 건너뛰기




Volumn 6, Issue , 2015, Pages 409-420

Redox control of protein degradation

Author keywords

Autophagy; Proteasome; Protein oxidation; Proteolysis; Unfolded protein response

Indexed keywords

OXYPROTEIN; PROTEIN; REACTIVE OXYGEN METABOLITE; UNCLASSIFIED DRUG; NERVE PROTEIN; PROTEASOME; UBIQUITIN;

EID: 84941793416     PISSN: 22132317     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.redox.2015.07.003     Document Type: Review
Times cited : (138)

References (157)
  • 1
    • 58249093939 scopus 로고    scopus 로고
    • How mitochondria produce reactive oxygen species
    • Murphy M.P. How mitochondria produce reactive oxygen species. Biochem. J. 2009, 417(1):1-13.
    • (2009) Biochem. J. , vol.417 , Issue.1 , pp. 1-13
    • Murphy, M.P.1
  • 2
    • 4444265582 scopus 로고    scopus 로고
    • Degradation of misfolded proteins prevents ER-derived oxidative stress and cell death
    • Haynes C.M., Titus E.A., Cooper A.A. Degradation of misfolded proteins prevents ER-derived oxidative stress and cell death. Mol. Cell 2004, 15(5):767-776.
    • (2004) Mol. Cell , vol.15 , Issue.5 , pp. 767-776
    • Haynes, C.M.1    Titus, E.A.2    Cooper, A.A.3
  • 3
    • 0036288639 scopus 로고    scopus 로고
    • Peroxisomal localization of inducible nitric oxide synthase in hepatocytes
    • Stolz D.B., et al. Peroxisomal localization of inducible nitric oxide synthase in hepatocytes. Hepatology 2002, 36(1):81-93.
    • (2002) Hepatology , vol.36 , Issue.1 , pp. 81-93
    • Stolz, D.B.1
  • 4
    • 8644221211 scopus 로고    scopus 로고
    • Mammalian peroxisomes and reactive oxygen species
    • Schrader M., Fahimi H.D. Mammalian peroxisomes and reactive oxygen species. Histochem. Cell Biol. 2004, 122(4):383-393.
    • (2004) Histochem. Cell Biol. , vol.122 , Issue.4 , pp. 383-393
    • Schrader, M.1    Fahimi, H.D.2
  • 5
    • 65549167849 scopus 로고    scopus 로고
    • Stress-induced activation of Nox contributes to cell survival signalling via production of hydrogen peroxide
    • Groeger G., et al. Stress-induced activation of Nox contributes to cell survival signalling via production of hydrogen peroxide. J. Neurochem. 2009, 109(5):1544-1554.
    • (2009) J. Neurochem. , vol.109 , Issue.5 , pp. 1544-1554
    • Groeger, G.1
  • 6
    • 84873410016 scopus 로고    scopus 로고
    • Amputation-induced reactive oxygen species are required for successful Xenopus tadpole tail regeneration
    • Love N.R., et al. Amputation-induced reactive oxygen species are required for successful Xenopus tadpole tail regeneration. Nat. Cell Biol. 2013, 15(2):222-228.
    • (2013) Nat. Cell Biol. , vol.15 , Issue.2 , pp. 222-228
    • Love, N.R.1
  • 7
    • 84866425239 scopus 로고    scopus 로고
    • Aiding and abetting roles of NOX oxidases in cellular transformation
    • Block K., Gorin Y. Aiding and abetting roles of NOX oxidases in cellular transformation. Nat. Rev. Cancer 2012, 12(9):627-637.
    • (2012) Nat. Rev. Cancer , vol.12 , Issue.9 , pp. 627-637
    • Block, K.1    Gorin, Y.2
  • 8
    • 84876890840 scopus 로고    scopus 로고
    • Redox regulation of protein kinases
    • Corcoran A., Cotter T.G. Redox regulation of protein kinases. FEBS J. 2013, 280(9):1944-1965.
    • (2013) FEBS J. , vol.280 , Issue.9 , pp. 1944-1965
    • Corcoran, A.1    Cotter, T.G.2
  • 9
    • 84901316606 scopus 로고    scopus 로고
    • Cellular mechanisms and physiological consequences of redox-dependent signalling
    • Holmstrom K.M., Finkel T. Cellular mechanisms and physiological consequences of redox-dependent signalling. Nat. Rev. Mol. Cell Biol. 2014, 15(6):411-421.
    • (2014) Nat. Rev. Mol. Cell Biol. , vol.15 , Issue.6 , pp. 411-421
    • Holmstrom, K.M.1    Finkel, T.2
  • 10
    • 84899988992 scopus 로고    scopus 로고
    • Oxidative stress: an essential factor in the pathogenesis of gastrointestinal mucosal diseases
    • Bhattacharyya A., et al. Oxidative stress: an essential factor in the pathogenesis of gastrointestinal mucosal diseases. Physiol. Rev. 2014, 94(2):329-354.
    • (2014) Physiol. Rev. , vol.94 , Issue.2 , pp. 329-354
    • Bhattacharyya, A.1
  • 11
    • 37249026703 scopus 로고    scopus 로고
    • Intracellular protein degradation from a vague idea through the lysosome and the ubiquitin-proteasome system and on to human diseases and drug targeting: Nobel Lecture, December 8, 2004
    • Ciechanover A. Intracellular protein degradation from a vague idea through the lysosome and the ubiquitin-proteasome system and on to human diseases and drug targeting: Nobel Lecture, December 8, 2004. Ann. N. Y. Acad. Sci. 2007, 1116:1-28.
    • (2007) Ann. N. Y. Acad. Sci. , vol.1116 , pp. 1-28
    • Ciechanover, A.1
  • 12
    • 0027771443 scopus 로고
    • Structural features of the 26S proteasome complex
    • Peters J.M., et al. Structural features of the 26S proteasome complex. J. Mol. Biol. 1993, 234(4):932-937.
    • (1993) J. Mol. Biol. , vol.234 , Issue.4 , pp. 932-937
    • Peters, J.M.1
  • 13
    • 0028300177 scopus 로고
    • PA28 activator protein forms regulatory caps on proteasome stacked rings
    • Gray C.W., Slaughter C.A., DeMartino G.N. PA28 activator protein forms regulatory caps on proteasome stacked rings. J. Mol. Biol. 1994, 236(1):7-15.
    • (1994) J. Mol. Biol. , vol.236 , Issue.1 , pp. 7-15
    • Gray, C.W.1    Slaughter, C.A.2    DeMartino, G.N.3
  • 14
    • 0030982143 scopus 로고    scopus 로고
    • Degradation of oxidized proteins in mammalian cells
    • Grune T., Reinheckel T., Davies K.J. Degradation of oxidized proteins in mammalian cells. FASEB J. 1997, 11(7):526-534.
    • (1997) FASEB J. , vol.11 , Issue.7 , pp. 526-534
    • Grune, T.1    Reinheckel, T.2    Davies, K.J.3
  • 15
    • 0034798361 scopus 로고    scopus 로고
    • Protein oxidation and 20S proteasome-dependent proteolysis in mammalian cells
    • Shringarpure R., Grune T., Davies K.J. Protein oxidation and 20S proteasome-dependent proteolysis in mammalian cells. Cell. Mol. Life Sci. 2001, 58(10):1442-1450.
    • (2001) Cell. Mol. Life Sci. , vol.58 , Issue.10 , pp. 1442-1450
    • Shringarpure, R.1    Grune, T.2    Davies, K.J.3
  • 16
    • 78649848069 scopus 로고    scopus 로고
    • The immunoproteasome, the 20S proteasome and the PA28alphabeta proteasome regulator are oxidative-stress-adaptive proteolytic complexes
    • Pickering A.M., et al. The immunoproteasome, the 20S proteasome and the PA28alphabeta proteasome regulator are oxidative-stress-adaptive proteolytic complexes. Biochem. J. 2010, 432(3):585-594.
    • (2010) Biochem. J. , vol.432 , Issue.3 , pp. 585-594
    • Pickering, A.M.1
  • 17
    • 0028905549 scopus 로고
    • Oxidative stress and recovery from oxidative stress are associated with altered ubiquitin conjugating and proteolytic activities in bovine lens epithelial cells
    • Shang F., Taylor A. Oxidative stress and recovery from oxidative stress are associated with altered ubiquitin conjugating and proteolytic activities in bovine lens epithelial cells. Biochem. J. 1995, 307(Pt 1):297-303.
    • (1995) Biochem. J. , vol.307 , pp. 297-303
    • Shang, F.1    Taylor, A.2
  • 18
    • 0032212875 scopus 로고    scopus 로고
    • Comparative resistance of the 20S and 26S proteasome to oxidative stress
    • Reinheckel T., et al. Comparative resistance of the 20S and 26S proteasome to oxidative stress. Biochem. J. 1998, 335(Pt 3):637-642.
    • (1998) Biochem. J. , vol.335 , pp. 637-642
    • Reinheckel, T.1
  • 19
    • 0034194227 scopus 로고    scopus 로고
    • Differential impairment of 20S and 26S proteasome activities in human hematopoietic K562 cells during oxidative stress
    • Reinheckel T., et al. Differential impairment of 20S and 26S proteasome activities in human hematopoietic K562 cells during oxidative stress. Arch. Biochem. Biophys. 2000, 377(1):65-68.
    • (2000) Arch. Biochem. Biophys. , vol.377 , Issue.1 , pp. 65-68
    • Reinheckel, T.1
  • 20
    • 49049106143 scopus 로고    scopus 로고
    • The proteasome: a target of oxidative damage in cultured human retina pigment epithelial cells
    • Zhang X., et al. The proteasome: a target of oxidative damage in cultured human retina pigment epithelial cells. Invest. Ophthalmol. Vis. Sci. 2008, 49(8):3622-3630.
    • (2008) Invest. Ophthalmol. Vis. Sci. , vol.49 , Issue.8 , pp. 3622-3630
    • Zhang, X.1
  • 21
    • 26444577079 scopus 로고    scopus 로고
    • Selectivity of the ubiquitin pathway for oxidatively modified proteins: relevance to protein precipitation diseases
    • Dudek E.J., et al. Selectivity of the ubiquitin pathway for oxidatively modified proteins: relevance to protein precipitation diseases. FASEB J. 2005, 19(12):1707-1709.
    • (2005) FASEB J. , vol.19 , Issue.12 , pp. 1707-1709
    • Dudek, E.J.1
  • 22
    • 77956527159 scopus 로고    scopus 로고
    • Enhancement of proteasome activity by a small-molecule inhibitor of USP14
    • Lee B.H., et al. Enhancement of proteasome activity by a small-molecule inhibitor of USP14. Nature 2010, 467(7312):179-184.
    • (2010) Nature , vol.467 , Issue.7312 , pp. 179-184
    • Lee, B.H.1
  • 23
    • 79955757695 scopus 로고    scopus 로고
    • Oxidative stress-mediated regulation of proteasome complexes
    • R110 006924
    • Aiken C.T., et al. Oxidative stress-mediated regulation of proteasome complexes. Mol. Cell Proteom. 2011, 10(5). R110 006924.
    • (2011) Mol. Cell Proteom. , vol.10 , Issue.5
    • Aiken, C.T.1
  • 24
    • 79957933700 scopus 로고    scopus 로고
    • Ubiquitin-proteasome pathway and cellular responses to oxidative stress
    • Shang F., Taylor A. Ubiquitin-proteasome pathway and cellular responses to oxidative stress. Free Radic. Biol. Med. 2011, 51(1):5-16.
    • (2011) Free Radic. Biol. Med. , vol.51 , Issue.1 , pp. 5-16
    • Shang, F.1    Taylor, A.2
  • 25
    • 0029051439 scopus 로고
    • Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension
    • Wang G.L., et al. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc. Natl. Acad. Sci. USA 1995, 92(12):5510-5514.
    • (1995) Proc. Natl. Acad. Sci. USA , vol.92 , Issue.12 , pp. 5510-5514
    • Wang, G.L.1
  • 26
    • 0031038419 scopus 로고    scopus 로고
    • Complex role of protein phosphorylation in gene activation by hypoxia
    • Salceda S., et al. Complex role of protein phosphorylation in gene activation by hypoxia. Kidney Int. 1997, 51(2):556-559.
    • (1997) Kidney Int. , vol.51 , Issue.2 , pp. 556-559
    • Salceda, S.1
  • 27
    • 0030724889 scopus 로고    scopus 로고
    • Regulation of ubiquitin-conjugating enzymes by glutathione following oxidative stress
    • Jahngen-Hodge J., et al. Regulation of ubiquitin-conjugating enzymes by glutathione following oxidative stress. J. Biol. Chem. 1997, 272(45):28218-28226.
    • (1997) J. Biol. Chem. , vol.272 , Issue.45 , pp. 28218-28226
    • Jahngen-Hodge, J.1
  • 28
    • 3242733689 scopus 로고    scopus 로고
    • Nitrosative stress linked to sporadic Parkinson's disease: S-nitrosylation of parkin regulates its E3 ubiquitin ligase activity
    • Yao D., et al. Nitrosative stress linked to sporadic Parkinson's disease: S-nitrosylation of parkin regulates its E3 ubiquitin ligase activity. Proc. Natl. Acad. Sci. USA 2004, 101(29):10810-10814.
    • (2004) Proc. Natl. Acad. Sci. USA , vol.101 , Issue.29 , pp. 10810-10814
    • Yao, D.1
  • 29
    • 0036591860 scopus 로고    scopus 로고
    • Impairment of proteasome function upon UVA- and UVB-irradiation of human keratinocytes
    • Bulteau A.L., et al. Impairment of proteasome function upon UVA- and UVB-irradiation of human keratinocytes. Free Radic. Biol. Med. 2002, 32(11):1157-1170.
    • (2002) Free Radic. Biol. Med. , vol.32 , Issue.11 , pp. 1157-1170
    • Bulteau, A.L.1
  • 30
    • 27144441722 scopus 로고    scopus 로고
    • Oxidative modification of proteasome: identification of an oxidation-sensitive subunit in 26S proteasome
    • Ishii T., et al. Oxidative modification of proteasome: identification of an oxidation-sensitive subunit in 26S proteasome. Biochemistry 2005, 44(42):13893-13901.
    • (2005) Biochemistry , vol.44 , Issue.42 , pp. 13893-13901
    • Ishii, T.1
  • 31
    • 69249099667 scopus 로고    scopus 로고
    • S-glutathionylation of the Rpn2 regulatory subunit inhibits 26S proteasomal function
    • Zmijewski J.W., Banerjee S., Abraham E. S-glutathionylation of the Rpn2 regulatory subunit inhibits 26S proteasomal function. J. Biol. Chem. 2009, 284(33):22213-22221.
    • (2009) J. Biol. Chem. , vol.284 , Issue.33 , pp. 22213-22221
    • Zmijewski, J.W.1    Banerjee, S.2    Abraham, E.3
  • 32
    • 84859867653 scopus 로고    scopus 로고
    • Redox control of 20S proteasome gating
    • Silva G.M., et al. Redox control of 20S proteasome gating. Antioxid. Redox Signal. 2012, 16(11):1183-1194.
    • (2012) Antioxid. Redox Signal. , vol.16 , Issue.11 , pp. 1183-1194
    • Silva, G.M.1
  • 33
    • 0033033698 scopus 로고    scopus 로고
    • Poly-ADP ribose polymerase activates nuclear proteasome to degrade oxidatively damaged histones
    • Ullrich O., et al. Poly-ADP ribose polymerase activates nuclear proteasome to degrade oxidatively damaged histones. Proc. Natl. Acad. Sci. USA 1999, 96(11):6223-6228.
    • (1999) Proc. Natl. Acad. Sci. USA , vol.96 , Issue.11 , pp. 6223-6228
    • Ullrich, O.1
  • 34
    • 84861231399 scopus 로고    scopus 로고
    • The diverse roles and clinical relevance of PARPs in DNA damage repair: current state of the art
    • De Vos M., Schreiber V., Dantzer F. The diverse roles and clinical relevance of PARPs in DNA damage repair: current state of the art. Biochem. Pharmacol. 2012, 84(2):137-146.
    • (2012) Biochem. Pharmacol. , vol.84 , Issue.2 , pp. 137-146
    • De Vos, M.1    Schreiber, V.2    Dantzer, F.3
  • 35
    • 1542344946 scopus 로고    scopus 로고
    • Phosphorylation of 20S proteasome alpha subunit C8 (alpha7) stabilizes the 26S proteasome and plays a role in the regulation of proteasome complexes by gamma-interferon
    • Bose S., et al. Phosphorylation of 20S proteasome alpha subunit C8 (alpha7) stabilizes the 26S proteasome and plays a role in the regulation of proteasome complexes by gamma-interferon. Biochem. J. 2004, 378(Pt 1):177-184.
    • (2004) Biochem. J. , vol.378 , pp. 177-184
    • Bose, S.1
  • 36
    • 78449252451 scopus 로고    scopus 로고
    • ASK1 negatively regulates the 26S proteasome
    • Um J.W., et al. ASK1 negatively regulates the 26S proteasome. J. Biol. Chem. 2010, 285(47):36434-36446.
    • (2010) J. Biol. Chem. , vol.285 , Issue.47 , pp. 36434-36446
    • Um, J.W.1
  • 37
    • 0042346327 scopus 로고    scopus 로고
    • Central role of the proteasome in senescence and survival of human fibroblasts: induction of a senescence-like phenotype upon its inhibition and resistance to stress upon its activation
    • Chondrogianni N., et al. Central role of the proteasome in senescence and survival of human fibroblasts: induction of a senescence-like phenotype upon its inhibition and resistance to stress upon its activation. J. Biol. Chem. 2003, 278(30):28026-28037.
    • (2003) J. Biol. Chem. , vol.278 , Issue.30 , pp. 28026-28037
    • Chondrogianni, N.1
  • 38
    • 28744438867 scopus 로고    scopus 로고
    • Ump1 extends yeast lifespan and enhances viability during oxidative stress: central role for the proteasome?
    • Chen Q., et al. Ump1 extends yeast lifespan and enhances viability during oxidative stress: central role for the proteasome?. Free Radic. Biol. Med. 2006, 40(1):120-126.
    • (2006) Free Radic. Biol. Med. , vol.40 , Issue.1 , pp. 120-126
    • Chen, Q.1
  • 39
    • 34250661684 scopus 로고    scopus 로고
    • Overexpression of hUMP1/POMP proteasome accessory protein enhances proteasome-mediated antioxidant defence
    • Chondrogianni N., Gonos E.S. Overexpression of hUMP1/POMP proteasome accessory protein enhances proteasome-mediated antioxidant defence. Exp. Gerontol. 2007, 42(9):899-903.
    • (2007) Exp. Gerontol. , vol.42 , Issue.9 , pp. 899-903
    • Chondrogianni, N.1    Gonos, E.S.2
  • 40
    • 29744460964 scopus 로고    scopus 로고
    • Chemical structure-dependent gene expression of proteasome subunits via regulation of the antioxidant response element
    • Takabe W., et al. Chemical structure-dependent gene expression of proteasome subunits via regulation of the antioxidant response element. Free Radic. Res. 2006, 40(1):21-30.
    • (2006) Free Radic. Res. , vol.40 , Issue.1 , pp. 21-30
    • Takabe, W.1
  • 41
    • 77950907407 scopus 로고    scopus 로고
    • Nuclear erythroid factor 2-mediated proteasome activation delays senescence in human fibroblasts
    • Kapeta S., Chondrogianni N., Gonos E.S. Nuclear erythroid factor 2-mediated proteasome activation delays senescence in human fibroblasts. J. Biol. Chem. 2010, 285(11):8171-8184.
    • (2010) J. Biol. Chem. , vol.285 , Issue.11 , pp. 8171-8184
    • Kapeta, S.1    Chondrogianni, N.2    Gonos, E.S.3
  • 42
    • 8644263976 scopus 로고    scopus 로고
    • A proteasomal stress response: pre-treatment with proteasome inhibitors increases proteasome activity and reduces neuronal vulnerability to oxidative injury
    • Lee C.S., et al. A proteasomal stress response: pre-treatment with proteasome inhibitors increases proteasome activity and reduces neuronal vulnerability to oxidative injury. J. Neurochem. 2004, 91(4):996-1006.
    • (2004) J. Neurochem. , vol.91 , Issue.4 , pp. 996-1006
    • Lee, C.S.1
  • 43
    • 0034537290 scopus 로고    scopus 로고
    • Autophagy as a regulated pathway of cellular degradation
    • Klionsky D.J., Emr S.D. Autophagy as a regulated pathway of cellular degradation. Science 2000, 290(5497):1717-1721.
    • (2000) Science , vol.290 , Issue.5497 , pp. 1717-1721
    • Klionsky, D.J.1    Emr, S.D.2
  • 44
    • 27644484061 scopus 로고    scopus 로고
    • Autophagy: molecular machinery for self-eating
    • Yorimitsu T., Klionsky D.J. Autophagy: molecular machinery for self-eating. Cell Death Differ. 2005, 12(Suppl 2):S1542-S1552.
    • (2005) Cell Death Differ. , vol.12 , Issue.SUPPL 2 , pp. S1542-S1552
    • Yorimitsu, T.1    Klionsky, D.J.2
  • 45
    • 0442323561 scopus 로고    scopus 로고
    • Autophagy: in sickness and in health
    • Cuervo A.M. Autophagy: in sickness and in health. Trends Cell Biol. 2004, 14(2):70-77.
    • (2004) Trends Cell Biol. , vol.14 , Issue.2 , pp. 70-77
    • Cuervo, A.M.1
  • 46
    • 79954422997 scopus 로고    scopus 로고
    • Chaperone-mediated autophagy in protein quality control
    • Arias E., Cuervo A.M. Chaperone-mediated autophagy in protein quality control. Curr. Opin. Cell Biol. 2011, 23(2):184-189.
    • (2011) Curr. Opin. Cell Biol. , vol.23 , Issue.2 , pp. 184-189
    • Arias, E.1    Cuervo, A.M.2
  • 47
    • 84864318195 scopus 로고    scopus 로고
    • Chaperone-mediated autophagy: a unique way to enter the lysosome world
    • Kaushik S., Cuervo A.M. Chaperone-mediated autophagy: a unique way to enter the lysosome world. Trends Cell Biol. 2012, 22(8):407-417.
    • (2012) Trends Cell Biol. , vol.22 , Issue.8 , pp. 407-417
    • Kaushik, S.1    Cuervo, A.M.2
  • 48
    • 84859161154 scopus 로고    scopus 로고
    • Microautophagy: lesser-known self-eating
    • Li W.W., Li J., Bao J.K. Microautophagy: lesser-known self-eating. Cell. Mol. Life Sci. 2012, 69(7):1125-1136.
    • (2012) Cell. Mol. Life Sci. , vol.69 , Issue.7 , pp. 1125-1136
    • Li, W.W.1    Li, J.2    Bao, J.K.3
  • 49
    • 79959992219 scopus 로고    scopus 로고
    • Lysosomal thiol reductase negatively regulates autophagy by altering glutathione synthesis and oxidation
    • Chiang H.S., Maric M. Lysosomal thiol reductase negatively regulates autophagy by altering glutathione synthesis and oxidation. Free Radic. Biol. Med. 2011, 51(3):688-699.
    • (2011) Free Radic. Biol. Med. , vol.51 , Issue.3 , pp. 688-699
    • Chiang, H.S.1    Maric, M.2
  • 50
    • 84870925187 scopus 로고    scopus 로고
    • Glutathione participates in the modulation of starvation-induced autophagy in carcinoma cells
    • Desideri E., Filomeni G., Ciriolo M.R. Glutathione participates in the modulation of starvation-induced autophagy in carcinoma cells. Autophagy 2012, 8(12):1769-1781.
    • (2012) Autophagy , vol.8 , Issue.12 , pp. 1769-1781
    • Desideri, E.1    Filomeni, G.2    Ciriolo, M.R.3
  • 51
    • 0031595780 scopus 로고    scopus 로고
    • IkappaB is a substrate for a selective pathway of lysosomal proteolysis
    • Cuervo A.M., et al. IkappaB is a substrate for a selective pathway of lysosomal proteolysis. Mol. Biol. Cell 1998, 9(8):1995-2010.
    • (1998) Mol. Biol. Cell , vol.9 , Issue.8 , pp. 1995-2010
    • Cuervo, A.M.1
  • 52
    • 6344275803 scopus 로고    scopus 로고
    • Activation of chaperone-mediated autophagy during oxidative stress
    • Kiffin R., et al. Activation of chaperone-mediated autophagy during oxidative stress. Mol. Biol. Cell. 2004, 15(11):4829-4840.
    • (2004) Mol. Biol. Cell. , vol.15 , Issue.11 , pp. 4829-4840
    • Kiffin, R.1
  • 53
    • 33749185898 scopus 로고    scopus 로고
    • Autophagy as a cell-repair mechanism: activation of chaperone-mediated autophagy during oxidative stress
    • Kaushik S., Cuervo A.M. Autophagy as a cell-repair mechanism: activation of chaperone-mediated autophagy during oxidative stress. Mol. Asp. Med. 2006, 27(5-6):444-454.
    • (2006) Mol. Asp. Med. , vol.27 , Issue.5-6 , pp. 444-454
    • Kaushik, S.1    Cuervo, A.M.2
  • 54
    • 33645829816 scopus 로고    scopus 로고
    • Consequences of the selective blockage of chaperone-mediated autophagy
    • Massey A.C., et al. Consequences of the selective blockage of chaperone-mediated autophagy. Proc. Natl. Acad. Sci. USA 2006, 103(15):5805-5810.
    • (2006) Proc. Natl. Acad. Sci. USA , vol.103 , Issue.15 , pp. 5805-5810
    • Massey, A.C.1
  • 55
    • 51349095898 scopus 로고    scopus 로고
    • Restoration of chaperone-mediated autophagy in aging liver improves cellular maintenance and hepatic function
    • Zhang C., Cuervo A.M. Restoration of chaperone-mediated autophagy in aging liver improves cellular maintenance and hepatic function. Nat. Med. 2008, 14(9):959-965.
    • (2008) Nat. Med. , vol.14 , Issue.9 , pp. 959-965
    • Zhang, C.1    Cuervo, A.M.2
  • 56
    • 84908085343 scopus 로고    scopus 로고
    • A new pathway for mitochondrial quality control: mitochondrial-derived vesicles
    • Sugiura A., et al. A new pathway for mitochondrial quality control: mitochondrial-derived vesicles. EMBO J. 2014, 33(19):2142-2156.
    • (2014) EMBO J. , vol.33 , Issue.19 , pp. 2142-2156
    • Sugiura, A.1
  • 57
    • 84856221632 scopus 로고    scopus 로고
    • A vesicular transport pathway shuttles cargo from mitochondria to lysosomes
    • Soubannier V., et al. A vesicular transport pathway shuttles cargo from mitochondria to lysosomes. Curr. Biol. 2012, 22(2):135-141.
    • (2012) Curr. Biol. , vol.22 , Issue.2 , pp. 135-141
    • Soubannier, V.1
  • 58
    • 84871537265 scopus 로고    scopus 로고
    • Reconstitution of mitochondria derived vesicle formation demonstrates selective enrichment of oxidized cargo
    • Soubannier V., et al. Reconstitution of mitochondria derived vesicle formation demonstrates selective enrichment of oxidized cargo. PLoS One 2012, 7(12):e52830.
    • (2012) PLoS One , vol.7 , Issue.12 , pp. e52830
    • Soubannier, V.1
  • 59
    • 84897863239 scopus 로고    scopus 로고
    • Parkin and PINK1 function in a vesicular trafficking pathway regulating mitochondrial quality control
    • McLelland G.L., et al. Parkin and PINK1 function in a vesicular trafficking pathway regulating mitochondrial quality control. EMBO J. 2014, 33(4):282-295.
    • (2014) EMBO J. , vol.33 , Issue.4 , pp. 282-295
    • McLelland, G.L.1
  • 60
    • 84884820652 scopus 로고    scopus 로고
    • Regulation of autophagy by stress-responsive transcription factors
    • Pietrocola F., et al. Regulation of autophagy by stress-responsive transcription factors. Semin. Cancer Biol. 2013, 23(5):310-322.
    • (2013) Semin. Cancer Biol. , vol.23 , Issue.5 , pp. 310-322
    • Pietrocola, F.1
  • 61
    • 84883830467 scopus 로고    scopus 로고
    • Phosphorylation of p62 activates the Keap1-Nrf2 pathway during selective autophagy
    • Ichimura Y., et al. Phosphorylation of p62 activates the Keap1-Nrf2 pathway during selective autophagy. Mol. Cell 2013, 51(5):618-631.
    • (2013) Mol. Cell , vol.51 , Issue.5 , pp. 618-631
    • Ichimura, Y.1
  • 62
    • 84863425313 scopus 로고    scopus 로고
    • P62 At the interface of autophagy, oxidative stress signaling, and cancer
    • Nezis I.P., Stenmark H. p62 At the interface of autophagy, oxidative stress signaling, and cancer. Antioxid. Redox Signal. 2012, 17(5):786-793.
    • (2012) Antioxid. Redox Signal. , vol.17 , Issue.5 , pp. 786-793
    • Nezis, I.P.1    Stenmark, H.2
  • 63
    • 84897093101 scopus 로고    scopus 로고
    • Nrf2 reduces levels of phosphorylated tau protein by inducing autophagy adaptor protein NDP52
    • Jo C., et al. Nrf2 reduces levels of phosphorylated tau protein by inducing autophagy adaptor protein NDP52. Nat. Commun. 2014, 5:3496.
    • (2014) Nat. Commun. , vol.5 , pp. 3496
    • Jo, C.1
  • 64
    • 84919784890 scopus 로고    scopus 로고
    • T-cell populations and cytokine expression are impaired in thymus and spleen of protein malnourished BALB/c mice infected with leishmania infantum
    • Cuervo-Escobar S., et al. T-cell populations and cytokine expression are impaired in thymus and spleen of protein malnourished BALB/c mice infected with leishmania infantum. PLoS One 2014, 9(12):e114584.
    • (2014) PLoS One , vol.9 , Issue.12 , pp. e114584
    • Cuervo-Escobar, S.1
  • 65
    • 77954955573 scopus 로고    scopus 로고
    • Trehalose ameliorates dopaminergic and tau pathology in parkin deleted/tau overexpressing mice through autophagy activation
    • Rodriguez-Navarro J.A., et al. Trehalose ameliorates dopaminergic and tau pathology in parkin deleted/tau overexpressing mice through autophagy activation. Neurobiol. Dis. 2010, 39(3):423-438.
    • (2010) Neurobiol. Dis. , vol.39 , Issue.3 , pp. 423-438
    • Rodriguez-Navarro, J.A.1
  • 66
    • 70350575440 scopus 로고    scopus 로고
    • Modulation of intracellular ROS levels by TIGAR controls autophagy
    • Bensaad K., Cheung E.C., Vousden K.H. Modulation of intracellular ROS levels by TIGAR controls autophagy. EMBO J. 2009, 28(19):3015-3026.
    • (2009) EMBO J. , vol.28 , Issue.19 , pp. 3015-3026
    • Bensaad, K.1    Cheung, E.C.2    Vousden, K.H.3
  • 67
    • 67650376373 scopus 로고    scopus 로고
    • Oxidized proteins: mechanisms of removal and consequences of accumulation
    • Dunlop R.A., Brunk U.T., Rodgers K.J. Oxidized proteins: mechanisms of removal and consequences of accumulation. IUBMB Life 2009, 61(5):522-527.
    • (2009) IUBMB Life , vol.61 , Issue.5 , pp. 522-527
    • Dunlop, R.A.1    Brunk, U.T.2    Rodgers, K.J.3
  • 68
    • 77449157041 scopus 로고    scopus 로고
    • Crosstalk between Hsp70 molecular chaperone, lysosomes and proteasomes in autophagy-mediated proteolysis in human retinal pigment epithelial cells
    • Ryhanen T., et al. Crosstalk between Hsp70 molecular chaperone, lysosomes and proteasomes in autophagy-mediated proteolysis in human retinal pigment epithelial cells. J. Cell. Mol. Med. 2009, 13(9B):3616-3631.
    • (2009) J. Cell. Mol. Med. , vol.13 , Issue.9 B , pp. 3616-3631
    • Ryhanen, T.1
  • 70
    • 84878775231 scopus 로고    scopus 로고
    • Lipofuscin: formation, effects and role of macroautophagy
    • Hohn A., Grune T. Lipofuscin: formation, effects and role of macroautophagy. Redox Biol. 2013, 1(1):140-144.
    • (2013) Redox Biol. , vol.1 , Issue.1 , pp. 140-144
    • Hohn, A.1    Grune, T.2
  • 71
    • 0035607509 scopus 로고    scopus 로고
    • The influence of oxidation of membrane thiol groups on lysosomal proton permeability
    • Wan F.Y., Wang Y.N., Zhang G.J. The influence of oxidation of membrane thiol groups on lysosomal proton permeability. Biochem. J. 2001, 360(Pt 2):355-362.
    • (2001) Biochem. J. , vol.360 , pp. 355-362
    • Wan, F.Y.1    Wang, Y.N.2    Zhang, G.J.3
  • 72
    • 0032821609 scopus 로고    scopus 로고
    • Ceroid/lipofuscin-loaded human fibroblasts show increased susceptibility to oxidative stress
    • Terman A., Abrahamsson N., Brunk U.T. Ceroid/lipofuscin-loaded human fibroblasts show increased susceptibility to oxidative stress. Exp. Gerontol. 1999, 34(6):755-770.
    • (1999) Exp. Gerontol. , vol.34 , Issue.6 , pp. 755-770
    • Terman, A.1    Abrahamsson, N.2    Brunk, U.T.3
  • 73
    • 0033188153 scopus 로고    scopus 로고
    • Beta-cells, oxidative stress, lysosomal stability, and apoptotic/necrotic cell death
    • Olejnicka B.T., et al. Beta-cells, oxidative stress, lysosomal stability, and apoptotic/necrotic cell death. Antioxid. Redox Signal. 1999, 1(3):305-315.
    • (1999) Antioxid. Redox Signal. , vol.1 , Issue.3 , pp. 305-315
    • Olejnicka, B.T.1
  • 74
    • 0036710928 scopus 로고    scopus 로고
    • Lipofuscin: mechanisms of age-related accumulation and influence on cell function
    • Brunk U.T., Terman A. Lipofuscin: mechanisms of age-related accumulation and influence on cell function. Free Radic. Biol. Med. 2002, 33(5):611-619.
    • (2002) Free Radic. Biol. Med. , vol.33 , Issue.5 , pp. 611-619
    • Brunk, U.T.1    Terman, A.2
  • 75
    • 0033436344 scopus 로고    scopus 로고
    • Lysosomal release of cathepsin D precedes relocation of cytochrome c and loss of mitochondrial transmembrane potential during apoptosis induced by oxidative stress
    • Roberg K., Johansson U., Ollinger K. Lysosomal release of cathepsin D precedes relocation of cytochrome c and loss of mitochondrial transmembrane potential during apoptosis induced by oxidative stress. Free Radic. Biol. Med. 1999, 27(11-12):1228-1237.
    • (1999) Free Radic. Biol. Med. , vol.27 , Issue.11-12 , pp. 1228-1237
    • Roberg, K.1    Johansson, U.2    Ollinger, K.3
  • 76
    • 0033950037 scopus 로고    scopus 로고
    • Lysosomal destabilization during macrophage damage induced by cholesterol oxidation products
    • Yuan X.M., et al. Lysosomal destabilization during macrophage damage induced by cholesterol oxidation products. Free Radic. Biol. Med. 2000, 28(2):208-218.
    • (2000) Free Radic. Biol. Med. , vol.28 , Issue.2 , pp. 208-218
    • Yuan, X.M.1
  • 77
    • 0035191580 scopus 로고    scopus 로고
    • Lysosomal involvement in hepatocyte cytotoxicity induced by Cu(2+) but not Cd(2+)
    • Pourahmad J., Ross S., O'Brien P.J. Lysosomal involvement in hepatocyte cytotoxicity induced by Cu(2+) but not Cd(2+). Free Radic. Biol. Med. 2001, 30(1):89-97.
    • (2001) Free Radic. Biol. Med. , vol.30 , Issue.1 , pp. 89-97
    • Pourahmad, J.1    Ross, S.2    O'Brien, P.J.3
  • 78
    • 33645521571 scopus 로고    scopus 로고
    • Autophagic programmed cell death by selective catalase degradation
    • Yu L., et al. Autophagic programmed cell death by selective catalase degradation. Proc. Natl. Acad. Sci. USA 2006, 103(13):4952-4957.
    • (2006) Proc. Natl. Acad. Sci. USA , vol.103 , Issue.13 , pp. 4952-4957
    • Yu, L.1
  • 79
    • 34249815482 scopus 로고    scopus 로고
    • Autophagy, ageing and apoptosis: the role of oxidative stress and lysosomal iron
    • Kurz T., Terman A., Brunk U.T. Autophagy, ageing and apoptosis: the role of oxidative stress and lysosomal iron. Arch. Biochem. Biophys. 2007, 462(2):220-230.
    • (2007) Arch. Biochem. Biophys. , vol.462 , Issue.2 , pp. 220-230
    • Kurz, T.1    Terman, A.2    Brunk, U.T.3
  • 80
    • 84886749523 scopus 로고    scopus 로고
    • IRE1: ER stress sensor and cell fate executor
    • Chen Y., Brandizzi F. IRE1: ER stress sensor and cell fate executor. Trends Cell Biol. 2013, 23(11):547-555.
    • (2013) Trends Cell Biol. , vol.23 , Issue.11 , pp. 547-555
    • Chen, Y.1    Brandizzi, F.2
  • 81
    • 84908078105 scopus 로고    scopus 로고
    • The unfolded protein response triggers selective mRNA release from the endoplasmic reticulum
    • Reid D.W., et al. The unfolded protein response triggers selective mRNA release from the endoplasmic reticulum. Cell 2014, 158(6):1362-1374.
    • (2014) Cell , vol.158 , Issue.6 , pp. 1362-1374
    • Reid, D.W.1
  • 82
    • 84863740827 scopus 로고    scopus 로고
    • The impact of the unfolded protein response on human disease
    • Wang S., Kaufman R.J. The impact of the unfolded protein response on human disease. J. Cell Biol. 2012, 197(7):857-867.
    • (2012) J. Cell Biol. , vol.197 , Issue.7 , pp. 857-867
    • Wang, S.1    Kaufman, R.J.2
  • 83
    • 84865245211 scopus 로고    scopus 로고
    • Unfolded protein response
    • Cao S.S., Kaufman R.J. Unfolded protein response. Curr. Biol. 2012, 22(16):R622-R626.
    • (2012) Curr. Biol. , vol.22 , Issue.16 , pp. R622-R626
    • Cao, S.S.1    Kaufman, R.J.2
  • 84
    • 84890411602 scopus 로고    scopus 로고
    • Stressed to death - mechanisms of ER stress-induced cell death
    • Sovolyova N., et al. Stressed to death - mechanisms of ER stress-induced cell death. Biol. Chem. 2014, 395(1):1-13.
    • (2014) Biol. Chem. , vol.395 , Issue.1 , pp. 1-13
    • Sovolyova, N.1
  • 85
    • 7944232052 scopus 로고    scopus 로고
    • Nitric oxide induces coupling of mitochondrial signalling with the endoplasmic reticulum stress response
    • Xu W., et al. Nitric oxide induces coupling of mitochondrial signalling with the endoplasmic reticulum stress response. Nat. Cell Biol. 2004, 6(11):1129-1134.
    • (2004) Nat. Cell Biol. , vol.6 , Issue.11 , pp. 1129-1134
    • Xu, W.1
  • 86
    • 35848957485 scopus 로고    scopus 로고
    • Endoplasmic reticulum stress and oxidative stress: a vicious cycle or a double-edged sword?
    • Malhotra J.D., Kaufman R.J. Endoplasmic reticulum stress and oxidative stress: a vicious cycle or a double-edged sword?. Antioxid. Redox Signal. 2007, 9(12):2277-2293.
    • (2007) Antioxid. Redox Signal. , vol.9 , Issue.12 , pp. 2277-2293
    • Malhotra, J.D.1    Kaufman, R.J.2
  • 87
    • 0033815971 scopus 로고    scopus 로고
    • ATF6 activated by proteolysis binds in the presence of NF-Y (CBF) directly to the cis-acting element responsible for the mammalian unfolded protein response
    • Yoshida H., et al. ATF6 activated by proteolysis binds in the presence of NF-Y (CBF) directly to the cis-acting element responsible for the mammalian unfolded protein response. Mol. Cell. Biol. 2000, 20(18):6755-6767.
    • (2000) Mol. Cell. Biol. , vol.20 , Issue.18 , pp. 6755-6767
    • Yoshida, H.1
  • 88
    • 84884541569 scopus 로고    scopus 로고
    • Endoplasmic reticulum stress in human skeletal muscle: any contribution to sarcopenia?
    • Deldicque L. Endoplasmic reticulum stress in human skeletal muscle: any contribution to sarcopenia?. Front. Physiol. 2013, 4:236.
    • (2013) Front. Physiol. , vol.4 , pp. 236
    • Deldicque, L.1
  • 89
    • 33846223428 scopus 로고    scopus 로고
    • Role of disulfide bridges formed in the luminal domain of ATF6 in sensing endoplasmic reticulum stress
    • Nadanaka S., et al. Role of disulfide bridges formed in the luminal domain of ATF6 in sensing endoplasmic reticulum stress. Mol. Cell. Biol. 2007, 27(3):1027-1043.
    • (2007) Mol. Cell. Biol. , vol.27 , Issue.3 , pp. 1027-1043
    • Nadanaka, S.1
  • 90
    • 10644233167 scopus 로고    scopus 로고
    • CHOP induces death by promoting protein synthesis and oxidation in the stressed endoplasmic reticulum
    • Marciniak S.J., et al. CHOP induces death by promoting protein synthesis and oxidation in the stressed endoplasmic reticulum. Genes Dev. 2004, 18(24):3066-3077.
    • (2004) Genes Dev. , vol.18 , Issue.24 , pp. 3066-3077
    • Marciniak, S.J.1
  • 91
    • 84862996844 scopus 로고    scopus 로고
    • CHOP potentially co-operates with FOXO3a in neuronal cells to regulate PUMA and BIM expression in response to ER stress
    • Ghosh A.P., et al. CHOP potentially co-operates with FOXO3a in neuronal cells to regulate PUMA and BIM expression in response to ER stress. PLoS One 2012, 7(6):e39586.
    • (2012) PLoS One , vol.7 , Issue.6 , pp. e39586
    • Ghosh, A.P.1
  • 92
    • 77954366843 scopus 로고    scopus 로고
    • Molecular symbiosis of CHOP and C/EBP beta isoform LIP contributes to endoplasmic reticulum stress-induced apoptosis
    • Chiribau C.B., et al. Molecular symbiosis of CHOP and C/EBP beta isoform LIP contributes to endoplasmic reticulum stress-induced apoptosis. Mol. Cell. Biol. 2010, 30(14):3722-3731.
    • (2010) Mol. Cell. Biol. , vol.30 , Issue.14 , pp. 3722-3731
    • Chiribau, C.B.1
  • 93
    • 0141752795 scopus 로고    scopus 로고
    • Nrf2 is a direct PERK substrate and effector of PERK-dependent cell survival
    • Cullinan S.B., et al. Nrf2 is a direct PERK substrate and effector of PERK-dependent cell survival. Mol. Cell. Biol. 2003, 23(20):7198-7209.
    • (2003) Mol. Cell. Biol. , vol.23 , Issue.20 , pp. 7198-7209
    • Cullinan, S.B.1
  • 94
    • 2442542312 scopus 로고    scopus 로고
    • PERK-dependent activation of Nrf2 contributes to redox homeostasis and cell survival following endoplasmic reticulum stress
    • Cullinan S.B., Diehl J.A. PERK-dependent activation of Nrf2 contributes to redox homeostasis and cell survival following endoplasmic reticulum stress. J. Biol. Chem. 2004, 279(19):20108-20117.
    • (2004) J. Biol. Chem. , vol.279 , Issue.19 , pp. 20108-20117
    • Cullinan, S.B.1    Diehl, J.A.2
  • 95
    • 14044270949 scopus 로고    scopus 로고
    • Genes regulated in neurons undergoing transcription-dependent apoptosis belong to signaling pathways rather than the apoptotic machinery
    • Desagher S., et al. Genes regulated in neurons undergoing transcription-dependent apoptosis belong to signaling pathways rather than the apoptotic machinery. J. Biol. Chem. 2005, 280(7):5693-5702.
    • (2005) J. Biol. Chem. , vol.280 , Issue.7 , pp. 5693-5702
    • Desagher, S.1
  • 96
    • 84889889353 scopus 로고    scopus 로고
    • Nrf2 and Nrf1 signaling and ER stress crosstalk: implication for proteasomal degradation and autophagy
    • Digaleh H., Kiaei M., Khodagholi F. Nrf2 and Nrf1 signaling and ER stress crosstalk: implication for proteasomal degradation and autophagy. Cell. Mol. Life Sci. 2013, 70(24):4681-4694.
    • (2013) Cell. Mol. Life Sci. , vol.70 , Issue.24 , pp. 4681-4694
    • Digaleh, H.1    Kiaei, M.2    Khodagholi, F.3
  • 97
    • 84907539353 scopus 로고    scopus 로고
    • Cellular mechanisms of endoplasmic reticulum stress signaling in health and disease. 1. An overview
    • Dufey E., et al. Cellular mechanisms of endoplasmic reticulum stress signaling in health and disease. 1. An overview. Am. J. Physiol. Cell Physiol. 2014, 307(7):C582-C594.
    • (2014) Am. J. Physiol. Cell Physiol. , vol.307 , Issue.7 , pp. C582-C594
    • Dufey, E.1
  • 98
    • 84861567265 scopus 로고    scopus 로고
    • Redox signaling loops in the unfolded protein response
    • Higa A., Chevet E. Redox signaling loops in the unfolded protein response. Cell. Signal. 2012, 24(8):1548-1555.
    • (2012) Cell. Signal. , vol.24 , Issue.8 , pp. 1548-1555
    • Higa, A.1    Chevet, E.2
  • 99
    • 84903795970 scopus 로고    scopus 로고
    • Endoplasmic reticulum stress and oxidative stress in cell fate decision and human disease
    • Cao S.S., Kaufman R.J. Endoplasmic reticulum stress and oxidative stress in cell fate decision and human disease. Antioxid. Redox Signal. 2014, 21(3):396-413.
    • (2014) Antioxid. Redox Signal. , vol.21 , Issue.3 , pp. 396-413
    • Cao, S.S.1    Kaufman, R.J.2
  • 100
    • 77955359156 scopus 로고    scopus 로고
    • 2 produced during disulphide formation
    • 2 produced during disulphide formation. J. Cell Sci. 2010, 123(Pt 15):2672-2679.
    • (2010) J. Cell Sci. , vol.123 , pp. 2672-2679
    • Tavender, T.J.1    Bulleid, N.J.2
  • 101
    • 33750902737 scopus 로고    scopus 로고
    • The endoplasmic reticulum: folding, calcium homeostasis, signaling, and redox control
    • Gorlach A., Klappa P., Kietzmann T. The endoplasmic reticulum: folding, calcium homeostasis, signaling, and redox control. Antioxid. Redox Signal. 2006, 8(9-10):1391-1418.
    • (2006) Antioxid. Redox Signal. , vol.8 , Issue.9-10 , pp. 1391-1418
    • Gorlach, A.1    Klappa, P.2    Kietzmann, T.3
  • 102
    • 0036124813 scopus 로고    scopus 로고
    • Oxidative stress and the prion protein in transmissible spongiform encephalopathies
    • Milhavet O., Lehmann S. Oxidative stress and the prion protein in transmissible spongiform encephalopathies. Brain Res. Brain Res. Rev. 2002, 38(3):328-339.
    • (2002) Brain Res. Brain Res. Rev. , vol.38 , Issue.3 , pp. 328-339
    • Milhavet, O.1    Lehmann, S.2
  • 103
    • 30944453898 scopus 로고    scopus 로고
    • Neurodegeneration and oxidative stress: prion disease results from loss of antioxidant defence
    • Brown D.R. Neurodegeneration and oxidative stress: prion disease results from loss of antioxidant defence. Folia Neuropathol. 2005, 43(4):229-243.
    • (2005) Folia Neuropathol. , vol.43 , Issue.4 , pp. 229-243
    • Brown, D.R.1
  • 104
    • 33751503526 scopus 로고    scopus 로고
    • 2+, but is a sacrificial quencher of hydroxyl radicals
    • 2+, but is a sacrificial quencher of hydroxyl radicals. Free Radic. Biol. Med. 2007, 42(1):79-89.
    • (2007) Free Radic. Biol. Med. , vol.42 , Issue.1 , pp. 79-89
    • Nadal, R.C.1
  • 105
    • 84864748949 scopus 로고    scopus 로고
    • Modulating protein activity and cellular function by methionine residue oxidation
    • Cui Z.J., Han Z.Q., Li Z.Y. Modulating protein activity and cellular function by methionine residue oxidation. Amino Acids 2012, 43(2):505-517.
    • (2012) Amino Acids , vol.43 , Issue.2 , pp. 505-517
    • Cui, Z.J.1    Han, Z.Q.2    Li, Z.Y.3
  • 106
    • 84887833637 scopus 로고    scopus 로고
    • Impact of methionine oxidation as an initial event on the pathway of human prion protein conversion
    • Elmallah M.I., et al. Impact of methionine oxidation as an initial event on the pathway of human prion protein conversion. Prion 2013, 7(5):404-411.
    • (2013) Prion , vol.7 , Issue.5 , pp. 404-411
    • Elmallah, M.I.1
  • 107
    • 84865234351 scopus 로고    scopus 로고
    • Methionine oxidation perturbs the structural core of the prion protein and suggests a generic misfolding pathway
    • Younan N.D., et al. Methionine oxidation perturbs the structural core of the prion protein and suggests a generic misfolding pathway. J. Biol. Chem. 2012, 287(34):28263-28275.
    • (2012) J. Biol. Chem. , vol.287 , Issue.34 , pp. 28263-28275
    • Younan, N.D.1
  • 108
    • 0025944507 scopus 로고
    • Secondary structure analysis of the scrapie-associated protein PrP 27-30 in water by infrared spectroscopy
    • Caughey B.W., et al. Secondary structure analysis of the scrapie-associated protein PrP 27-30 in water by infrared spectroscopy. Biochemistry 1991, 30(31):7672-7680.
    • (1991) Biochemistry , vol.30 , Issue.31 , pp. 7672-7680
    • Caughey, B.W.1
  • 109
    • 33750442933 scopus 로고    scopus 로고
    • The intriguing prion disorders
    • Abid K., Soto C. The intriguing prion disorders. Cell. Mol. Life Sci 2006, 63(19-20):2342-2351.
    • (2006) Cell. Mol. Life Sci , vol.63 , Issue.19-20 , pp. 2342-2351
    • Abid, K.1    Soto, C.2
  • 110
    • 79959967767 scopus 로고    scopus 로고
    • Human PrP90-231-induced cell death is associated with intracellular accumulation of insoluble and protease-resistant macroaggregates and lysosomal dysfunction
    • Thellung S., et al. Human PrP90-231-induced cell death is associated with intracellular accumulation of insoluble and protease-resistant macroaggregates and lysosomal dysfunction. Cell Death Dis. 2011, 2:e138.
    • (2011) Cell Death Dis. , vol.2 , pp. e138
    • Thellung, S.1
  • 111
    • 40549105157 scopus 로고    scopus 로고
    • Intracellular accumulation of a mild-denatured monomer of the human PrP fragment 90-231, as possible mechanism of its neurotoxic effects
    • Chiovitti K., et al. Intracellular accumulation of a mild-denatured monomer of the human PrP fragment 90-231, as possible mechanism of its neurotoxic effects. J. Neurochem. 2007, 103(6):2597-2609.
    • (2007) J. Neurochem. , vol.103 , Issue.6 , pp. 2597-2609
    • Chiovitti, K.1
  • 112
    • 79960868236 scopus 로고    scopus 로고
    • Mitochondrial beta-amyloid in Alzheimer's disease
    • Borger E., et al. Mitochondrial beta-amyloid in Alzheimer's disease. Biochem. Soc. Trans. 2011, 39(4):868-873.
    • (2011) Biochem. Soc. Trans. , vol.39 , Issue.4 , pp. 868-873
    • Borger, E.1
  • 113
    • 84859421209 scopus 로고    scopus 로고
    • A mitochondrial etiology of Alzheimer and Parkinson disease
    • Coskun P., et al. A mitochondrial etiology of Alzheimer and Parkinson disease. Biochim. Biophys. Acta 2012, 1820(5):553-564.
    • (2012) Biochim. Biophys. Acta , vol.1820 , Issue.5 , pp. 553-564
    • Coskun, P.1
  • 114
    • 77956556520 scopus 로고    scopus 로고
    • Morphological and functional abnormalities in mitochondria associated with synaptic degeneration in prion disease
    • Siskova Z., et al. Morphological and functional abnormalities in mitochondria associated with synaptic degeneration in prion disease. Am. J. Pathol. 2010, 177(3):1411-1421.
    • (2010) Am. J. Pathol. , vol.177 , Issue.3 , pp. 1411-1421
    • Siskova, Z.1
  • 115
    • 18244389436 scopus 로고    scopus 로고
    • The role of cerebral amyloid beta accumulation in common forms of Alzheimer disease
    • Gandy S. The role of cerebral amyloid beta accumulation in common forms of Alzheimer disease. J. Clin. Invest. 2005, 115(5):1121-1129.
    • (2005) J. Clin. Invest. , vol.115 , Issue.5 , pp. 1121-1129
    • Gandy, S.1
  • 116
    • 34249860495 scopus 로고    scopus 로고
    • Small molecule inhibitors of aggregation indicate that amyloid beta oligomerization and fibrillization pathways are independent and distinct
    • Necula M., et al. Small molecule inhibitors of aggregation indicate that amyloid beta oligomerization and fibrillization pathways are independent and distinct. J. Biol. Chem. 2007, 282(14):10311-10324.
    • (2007) J. Biol. Chem. , vol.282 , Issue.14 , pp. 10311-10324
    • Necula, M.1
  • 117
    • 74149091007 scopus 로고    scopus 로고
    • In vivo oxidative stress in brain of Alzheimer disease transgenic mice: requirement for methionine 35 in amyloid beta-peptide of APP
    • Butterfield D.A., et al. In vivo oxidative stress in brain of Alzheimer disease transgenic mice: requirement for methionine 35 in amyloid beta-peptide of APP. Free Radic. Biol. Med. 2010, 48(1):136-144.
    • (2010) Free Radic. Biol. Med. , vol.48 , Issue.1 , pp. 136-144
    • Butterfield, D.A.1
  • 118
    • 38349046973 scopus 로고    scopus 로고
    • Autophagy, amyloidogenesis and Alzheimer disease
    • Nixon R.A. Autophagy, amyloidogenesis and Alzheimer disease. J. Cell Sci. 2007, 120(Pt 23):4081-4091.
    • (2007) J. Cell Sci. , vol.120 , pp. 4081-4091
    • Nixon, R.A.1
  • 119
    • 45749114895 scopus 로고    scopus 로고
    • The autophagy-related protein beclin 1 shows reduced expression in early Alzheimer disease and regulates amyloid beta accumulation in mice
    • Pickford F., et al. The autophagy-related protein beclin 1 shows reduced expression in early Alzheimer disease and regulates amyloid beta accumulation in mice. J. Clin. Invest. 2008, 118(6):2190-2199.
    • (2008) J. Clin. Invest. , vol.118 , Issue.6 , pp. 2190-2199
    • Pickford, F.1
  • 120
    • 84881025556 scopus 로고    scopus 로고
    • Impaired autophagy and APP processing in Alzheimer's disease: the potential role of Beclin 1 interactome
    • Salminen A., et al. Impaired autophagy and APP processing in Alzheimer's disease: the potential role of Beclin 1 interactome. Prog. Neurobiol. 2013, 106-107:33-54.
    • (2013) Prog. Neurobiol. , pp. 33-54
    • Salminen, A.1
  • 121
    • 84937404126 scopus 로고    scopus 로고
    • Promoting autophagic clearance: viable therapeutic targets in Alzheimer's disease
    • Friedman L.G., Qureshi Y.H., Yu W.H. Promoting autophagic clearance: viable therapeutic targets in Alzheimer's disease. Neurotherapeutics 2015, 12(1):94-108.
    • (2015) Neurotherapeutics , vol.12 , Issue.1 , pp. 94-108
    • Friedman, L.G.1    Qureshi, Y.H.2    Yu, W.H.3
  • 122
    • 84867574210 scopus 로고    scopus 로고
    • Luteolin reduces zinc-induced tau phosphorylation at Ser262/356 in an ROS-dependent manner in SH-SY5Y cells
    • Zhou F., et al. Luteolin reduces zinc-induced tau phosphorylation at Ser262/356 in an ROS-dependent manner in SH-SY5Y cells. Biol. Trace Elem. Res. 2012, 149(2):273-279.
    • (2012) Biol. Trace Elem. Res. , vol.149 , Issue.2 , pp. 273-279
    • Zhou, F.1
  • 123
    • 73949142307 scopus 로고    scopus 로고
    • Amyloid-beta and tau synergistically impair the oxidative phosphorylation system in triple transgenic Alzheimer's disease mice
    • Rhein V., et al. Amyloid-beta and tau synergistically impair the oxidative phosphorylation system in triple transgenic Alzheimer's disease mice. Proc. Natl. Acad. Sci. USA 2009, 106(47):20057-20062.
    • (2009) Proc. Natl. Acad. Sci. USA , vol.106 , Issue.47 , pp. 20057-20062
    • Rhein, V.1
  • 124
    • 77954622545 scopus 로고    scopus 로고
    • Tau protein degradation is catalyzed by the ATP/ubiquitin-independent 20S proteasome under normal cell conditions
    • Grune T., et al. Tau protein degradation is catalyzed by the ATP/ubiquitin-independent 20S proteasome under normal cell conditions. Arch. Biochem. Biophys. 2010, 500(2):181-188.
    • (2010) Arch. Biochem. Biophys. , vol.500 , Issue.2 , pp. 181-188
    • Grune, T.1
  • 125
    • 84922604324 scopus 로고    scopus 로고
    • Carboxy terminus heat shock protein 70 interacting protein reduces tau-associated degenerative changes
    • Saidi L.J., et al. Carboxy terminus heat shock protein 70 interacting protein reduces tau-associated degenerative changes. J. Alzheimers Dis. 2015, 44(3):937-947.
    • (2015) J. Alzheimers Dis. , vol.44 , Issue.3 , pp. 937-947
    • Saidi, L.J.1
  • 126
    • 0034131044 scopus 로고    scopus 로고
    • Impaired proteasome function in Alzheimer's disease
    • Keller J.N., Hanni K.B., Markesbery W.R. Impaired proteasome function in Alzheimer's disease. J. Neurochem. 2000, 75(1):436-439.
    • (2000) J. Neurochem. , vol.75 , Issue.1 , pp. 436-439
    • Keller, J.N.1    Hanni, K.B.2    Markesbery, W.R.3
  • 127
    • 0037381710 scopus 로고    scopus 로고
    • Proteasome inhibition by paired helical filament-tau in brains of patients with Alzheimer's disease
    • Keck S., et al. Proteasome inhibition by paired helical filament-tau in brains of patients with Alzheimer's disease. J. Neurochem. 2003, 85(1):115-122.
    • (2003) J. Neurochem. , vol.85 , Issue.1 , pp. 115-122
    • Keck, S.1
  • 128
    • 75149188760 scopus 로고    scopus 로고
    • Synergy and antagonism of macroautophagy and chaperone-mediated autophagy in a cell model of pathological tau aggregation
    • Wang Y., et al. Synergy and antagonism of macroautophagy and chaperone-mediated autophagy in a cell model of pathological tau aggregation. Autophagy 2010, 6(1):182-183.
    • (2010) Autophagy , vol.6 , Issue.1 , pp. 182-183
    • Wang, Y.1
  • 129
    • 84878114130 scopus 로고    scopus 로고
    • Tau degradation: the ubiquitin-proteasome system versus the autophagy-lysosome system
    • Lee M.J., Lee J.H., Rubinsztein D.C. Tau degradation: the ubiquitin-proteasome system versus the autophagy-lysosome system. Prog. Neurobiol. 2013, 105:49-59.
    • (2013) Prog. Neurobiol. , vol.105 , pp. 49-59
    • Lee, M.J.1    Lee, J.H.2    Rubinsztein, D.C.3
  • 130
    • 0033215063 scopus 로고    scopus 로고
    • Synucleins in synaptic plasticity and neurodegenerative disorders
    • Clayton D.F., George J.M. Synucleins in synaptic plasticity and neurodegenerative disorders. J. Neurosci. Res. 1999, 58(1):120-129.
    • (1999) J. Neurosci. Res. , vol.58 , Issue.1 , pp. 120-129
    • Clayton, D.F.1    George, J.M.2
  • 131
    • 0032102455 scopus 로고    scopus 로고
    • The synucleins: a family of proteins involved in synaptic function, plasticity, neurodegeneration and disease
    • Clayton D.F., George J.M. The synucleins: a family of proteins involved in synaptic function, plasticity, neurodegeneration and disease. Trends Neurosci. 1998, 21(6):249-254.
    • (1998) Trends Neurosci. , vol.21 , Issue.6 , pp. 249-254
    • Clayton, D.F.1    George, J.M.2
  • 132
    • 70350550208 scopus 로고    scopus 로고
    • Beclin 1 gene transfer activates autophagy and ameliorates the neurodegenerative pathology in alpha-synuclein models of Parkinson's and Lewy body diseases
    • Spencer B., et al. Beclin 1 gene transfer activates autophagy and ameliorates the neurodegenerative pathology in alpha-synuclein models of Parkinson's and Lewy body diseases. J. Neurosci. 2009, 29(43):13578-13588.
    • (2009) J. Neurosci. , vol.29 , Issue.43 , pp. 13578-13588
    • Spencer, B.1
  • 133
    • 28044461467 scopus 로고    scopus 로고
    • Neural activity controls the synaptic accumulation of alpha-synuclein
    • Fortin D.L., et al. Neural activity controls the synaptic accumulation of alpha-synuclein. J. Neurosci. 2005, 25(47):10913-10921.
    • (2005) J. Neurosci. , vol.25 , Issue.47 , pp. 10913-10921
    • Fortin, D.L.1
  • 134
    • 38849174979 scopus 로고    scopus 로고
    • Dopamine-modified alpha-synuclein blocks chaperone-mediated autophagy
    • Martinez-Vicente M., et al. Dopamine-modified alpha-synuclein blocks chaperone-mediated autophagy. J. Clin. Invest. 2008, 118(2):777-788.
    • (2008) J. Clin. Invest. , vol.118 , Issue.2 , pp. 777-788
    • Martinez-Vicente, M.1
  • 135
    • 0035894855 scopus 로고    scopus 로고
    • Expression of A53T mutant but not wild-type alpha-synuclein in PC12 cells induces alterations of the ubiquitin-dependent degradation system, loss of dopamine release, and autophagic cell death
    • Stefanis L., et al. Expression of A53T mutant but not wild-type alpha-synuclein in PC12 cells induces alterations of the ubiquitin-dependent degradation system, loss of dopamine release, and autophagic cell death. J. Neurosci. 2001, 21(24):9549-9560.
    • (2001) J. Neurosci. , vol.21 , Issue.24 , pp. 9549-9560
    • Stefanis, L.1
  • 136
    • 84866702836 scopus 로고    scopus 로고
    • Alpha-synuclein in Parkinson's disease
    • Stefanis L. Alpha-synuclein in Parkinson's disease. Cold Spring Harb Perspect. Med. 2012, 2(2):a009399.
    • (2012) Cold Spring Harb Perspect. Med. , vol.2 , Issue.2 , pp. a009399
    • Stefanis, L.1
  • 137
    • 9144274018 scopus 로고    scopus 로고
    • Role of individual methionines in the fibrillation of methionine-oxidized alpha-synuclein
    • Hokenson M.J., et al. Role of individual methionines in the fibrillation of methionine-oxidized alpha-synuclein. Biochemistry 2004, 43(15):4621-4633.
    • (2004) Biochemistry , vol.43 , Issue.15 , pp. 4621-4633
    • Hokenson, M.J.1
  • 138
    • 62049085927 scopus 로고    scopus 로고
    • Formation of dopamine-mediated alpha-synuclein-soluble oligomers requires methionine oxidation
    • Leong S.L., et al. Formation of dopamine-mediated alpha-synuclein-soluble oligomers requires methionine oxidation. Free Radic. Biol. Med. 2009, 46(10):1328-1337.
    • (2009) Free Radic. Biol. Med. , vol.46 , Issue.10 , pp. 1328-1337
    • Leong, S.L.1
  • 139
    • 84864842887 scopus 로고    scopus 로고
    • The role of autophagy in Parkinson's disease
    • Lynch-Day M.A., et al. The role of autophagy in Parkinson's disease. Cold Spring Harb Perspect. Med. 2012, 2(4):a009357.
    • (2012) Cold Spring Harb Perspect. Med. , vol.2 , Issue.4 , pp. a009357
    • Lynch-Day, M.A.1
  • 140
    • 77957189194 scopus 로고    scopus 로고
    • Alpha-synuclein impairs macroautophagy: implications for Parkinson's disease
    • Winslow A.R., et al. Alpha-synuclein impairs macroautophagy: implications for Parkinson's disease. J. Cell Biol. 2010, 190(6):1023-1037.
    • (2010) J. Cell Biol. , vol.190 , Issue.6 , pp. 1023-1037
    • Winslow, A.R.1
  • 141
    • 37049004489 scopus 로고    scopus 로고
    • Mitochondria in the aetiology and pathogenesis of Parkinson's disease
    • Schapira A.H. Mitochondria in the aetiology and pathogenesis of Parkinson's disease. Lancet Neurol. 2008, 7(1):97-109.
    • (2008) Lancet Neurol. , vol.7 , Issue.1 , pp. 97-109
    • Schapira, A.H.1
  • 142
    • 84926328165 scopus 로고    scopus 로고
    • The Parkinson's-associated protein DJ-1 regulates the 20S proteasome
    • Moscovitz O., et al. The Parkinson's-associated protein DJ-1 regulates the 20S proteasome. Nat. Commun. 2015, 6:6609.
    • (2015) Nat. Commun. , vol.6 , pp. 6609
    • Moscovitz, O.1
  • 143
    • 34247186472 scopus 로고    scopus 로고
    • Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4
    • Scherz-Shouval R., et al. Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. EMBO J. 2007, 26(7):1749-1760.
    • (2007) EMBO J. , vol.26 , Issue.7 , pp. 1749-1760
    • Scherz-Shouval, R.1
  • 144
    • 77958501463 scopus 로고    scopus 로고
    • Exposure to hydrogen peroxide induces oxidation and activation of AMP-activated protein kinase
    • Zmijewski J.W., et al. Exposure to hydrogen peroxide induces oxidation and activation of AMP-activated protein kinase. J. Biol. Chem. 2010, 285(43):33154-33164.
    • (2010) J. Biol. Chem. , vol.285 , Issue.43 , pp. 33154-33164
    • Zmijewski, J.W.1
  • 145
    • 64449087671 scopus 로고    scopus 로고
    • Hypoxic activation of AMPK is dependent on mitochondrial ROS but independent of an increase in AMP/ATP ratio
    • Emerling B.M., et al. Hypoxic activation of AMPK is dependent on mitochondrial ROS but independent of an increase in AMP/ATP ratio. Free Radic. Biol. Med. 2009, 46(10):1386-1391.
    • (2009) Free Radic. Biol. Med. , vol.46 , Issue.10 , pp. 1386-1391
    • Emerling, B.M.1
  • 146
    • 79551598347 scopus 로고    scopus 로고
    • AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1
    • Kim J., et al. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat. Cell Biol. 2011, 13(2):132-141.
    • (2011) Nat. Cell Biol. , vol.13 , Issue.2 , pp. 132-141
    • Kim, J.1
  • 147
    • 77955448361 scopus 로고    scopus 로고
    • ATM engages the TSC2/mTORC1 signaling node to regulate autophagy
    • Alexander A., Kim J., Walker C.L. ATM engages the TSC2/mTORC1 signaling node to regulate autophagy. Autophagy 2010, 6(5):672-673.
    • (2010) Autophagy , vol.6 , Issue.5 , pp. 672-673
    • Alexander, A.1    Kim, J.2    Walker, C.L.3
  • 148
    • 36849043546 scopus 로고    scopus 로고
    • Thioredoxin and TRAF family proteins regulate reactive oxygen species-dependent activation of ASK1 through reciprocal modulation of the N-terminal homophilic interaction of ASK1
    • Fujino G., et al. Thioredoxin and TRAF family proteins regulate reactive oxygen species-dependent activation of ASK1 through reciprocal modulation of the N-terminal homophilic interaction of ASK1. Mol. Cell. Biol. 2007, 27(23):8152-8163.
    • (2007) Mol. Cell. Biol. , vol.27 , Issue.23 , pp. 8152-8163
    • Fujino, G.1
  • 149
    • 44949237240 scopus 로고    scopus 로고
    • JNK1-mediated phosphorylation of Bcl-2 regulates starvation-induced autophagy
    • Wei Y., et al. JNK1-mediated phosphorylation of Bcl-2 regulates starvation-induced autophagy. Mol. Cell 2008, 30(6):678-688.
    • (2008) Mol. Cell , vol.30 , Issue.6 , pp. 678-688
    • Wei, Y.1
  • 150
    • 84901703706 scopus 로고    scopus 로고
    • Free radicals in cross talk between autophagy and apoptosis
    • Kaminskyy V.O., Zhivotovsky B. Free radicals in cross talk between autophagy and apoptosis. Antioxid. Redox Signal. 2014, 21(1):86-102.
    • (2014) Antioxid. Redox Signal. , vol.21 , Issue.1 , pp. 86-102
    • Kaminskyy, V.O.1    Zhivotovsky, B.2
  • 151
    • 79959886743 scopus 로고    scopus 로고
    • Complex inhibitory effects of nitric oxide on autophagy
    • Sarkar S., et al. Complex inhibitory effects of nitric oxide on autophagy. Mol. Cell 2011, 43(1):19-32.
    • (2011) Mol. Cell , vol.43 , Issue.1 , pp. 19-32
    • Sarkar, S.1
  • 152
    • 84869147050 scopus 로고    scopus 로고
    • Akt-mediated regulation of autophagy and tumorigenesis through Beclin 1 phosphorylation
    • Wang R.C., et al. Akt-mediated regulation of autophagy and tumorigenesis through Beclin 1 phosphorylation. Science 2012, 338(6109):956-959.
    • (2012) Science , vol.338 , Issue.6109 , pp. 956-959
    • Wang, R.C.1
  • 153
    • 79960024480 scopus 로고    scopus 로고
    • On-off system for PI3-kinase-Akt signaling through S-nitrosylation of phosphatase with sequence homology to tensin (PTEN)
    • Numajiri N., et al. On-off system for PI3-kinase-Akt signaling through S-nitrosylation of phosphatase with sequence homology to tensin (PTEN). Proc. Natl. Acad. Sci. USA 2011, 108(25):10349-10354.
    • (2011) Proc. Natl. Acad. Sci. USA , vol.108 , Issue.25 , pp. 10349-10354
    • Numajiri, N.1
  • 154
    • 84920080589 scopus 로고    scopus 로고
    • Regulation of autophagy by protein post-translational modification
    • Wani W.Y., et al. Regulation of autophagy by protein post-translational modification. Lab. Invest. 2015, 95(1):14-25.
    • (2015) Lab. Invest. , vol.95 , Issue.1 , pp. 14-25
    • Wani, W.Y.1
  • 155
    • 84898613353 scopus 로고    scopus 로고
    • Cross-talk between two essential nutrient-sensitive enzymes: O-GlcNAc transferase (OGT) and AMP-activated protein kinase (AMPK)
    • Bullen J.W., et al. Cross-talk between two essential nutrient-sensitive enzymes: O-GlcNAc transferase (OGT) and AMP-activated protein kinase (AMPK). J. Biol. Chem. 2014, 289(15):10592-10606.
    • (2014) J. Biol. Chem. , vol.289 , Issue.15 , pp. 10592-10606
    • Bullen, J.W.1
  • 156
    • 84867034260 scopus 로고    scopus 로고
    • Role of nrf2 in oxidative stress and toxicity
    • Ma Q. Role of nrf2 in oxidative stress and toxicity. Annu. Rev. Pharmacol. Toxicol. 2013, 53:401-426.
    • (2013) Annu. Rev. Pharmacol. Toxicol. , vol.53 , pp. 401-426
    • Ma, Q.1
  • 157
    • 84905837648 scopus 로고    scopus 로고
    • Redox control of microglial function: molecular mechanisms and functional significance
    • Rojo A.I., et al. Redox control of microglial function: molecular mechanisms and functional significance. Antioxid. Redox Signal. 2014, 21(12):1766-1801.
    • (2014) Antioxid. Redox Signal. , vol.21 , Issue.12 , pp. 1766-1801
    • Rojo, A.I.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.