-
1
-
-
58249093939
-
How mitochondria produce reactive oxygen species
-
Murphy M.P. How mitochondria produce reactive oxygen species. Biochem. J. 2009, 417(1):1-13.
-
(2009)
Biochem. J.
, vol.417
, Issue.1
, pp. 1-13
-
-
Murphy, M.P.1
-
2
-
-
4444265582
-
Degradation of misfolded proteins prevents ER-derived oxidative stress and cell death
-
Haynes C.M., Titus E.A., Cooper A.A. Degradation of misfolded proteins prevents ER-derived oxidative stress and cell death. Mol. Cell 2004, 15(5):767-776.
-
(2004)
Mol. Cell
, vol.15
, Issue.5
, pp. 767-776
-
-
Haynes, C.M.1
Titus, E.A.2
Cooper, A.A.3
-
3
-
-
0036288639
-
Peroxisomal localization of inducible nitric oxide synthase in hepatocytes
-
Stolz D.B., et al. Peroxisomal localization of inducible nitric oxide synthase in hepatocytes. Hepatology 2002, 36(1):81-93.
-
(2002)
Hepatology
, vol.36
, Issue.1
, pp. 81-93
-
-
Stolz, D.B.1
-
4
-
-
8644221211
-
Mammalian peroxisomes and reactive oxygen species
-
Schrader M., Fahimi H.D. Mammalian peroxisomes and reactive oxygen species. Histochem. Cell Biol. 2004, 122(4):383-393.
-
(2004)
Histochem. Cell Biol.
, vol.122
, Issue.4
, pp. 383-393
-
-
Schrader, M.1
Fahimi, H.D.2
-
5
-
-
65549167849
-
Stress-induced activation of Nox contributes to cell survival signalling via production of hydrogen peroxide
-
Groeger G., et al. Stress-induced activation of Nox contributes to cell survival signalling via production of hydrogen peroxide. J. Neurochem. 2009, 109(5):1544-1554.
-
(2009)
J. Neurochem.
, vol.109
, Issue.5
, pp. 1544-1554
-
-
Groeger, G.1
-
6
-
-
84873410016
-
Amputation-induced reactive oxygen species are required for successful Xenopus tadpole tail regeneration
-
Love N.R., et al. Amputation-induced reactive oxygen species are required for successful Xenopus tadpole tail regeneration. Nat. Cell Biol. 2013, 15(2):222-228.
-
(2013)
Nat. Cell Biol.
, vol.15
, Issue.2
, pp. 222-228
-
-
Love, N.R.1
-
7
-
-
84866425239
-
Aiding and abetting roles of NOX oxidases in cellular transformation
-
Block K., Gorin Y. Aiding and abetting roles of NOX oxidases in cellular transformation. Nat. Rev. Cancer 2012, 12(9):627-637.
-
(2012)
Nat. Rev. Cancer
, vol.12
, Issue.9
, pp. 627-637
-
-
Block, K.1
Gorin, Y.2
-
8
-
-
84876890840
-
Redox regulation of protein kinases
-
Corcoran A., Cotter T.G. Redox regulation of protein kinases. FEBS J. 2013, 280(9):1944-1965.
-
(2013)
FEBS J.
, vol.280
, Issue.9
, pp. 1944-1965
-
-
Corcoran, A.1
Cotter, T.G.2
-
9
-
-
84901316606
-
Cellular mechanisms and physiological consequences of redox-dependent signalling
-
Holmstrom K.M., Finkel T. Cellular mechanisms and physiological consequences of redox-dependent signalling. Nat. Rev. Mol. Cell Biol. 2014, 15(6):411-421.
-
(2014)
Nat. Rev. Mol. Cell Biol.
, vol.15
, Issue.6
, pp. 411-421
-
-
Holmstrom, K.M.1
Finkel, T.2
-
10
-
-
84899988992
-
Oxidative stress: an essential factor in the pathogenesis of gastrointestinal mucosal diseases
-
Bhattacharyya A., et al. Oxidative stress: an essential factor in the pathogenesis of gastrointestinal mucosal diseases. Physiol. Rev. 2014, 94(2):329-354.
-
(2014)
Physiol. Rev.
, vol.94
, Issue.2
, pp. 329-354
-
-
Bhattacharyya, A.1
-
11
-
-
37249026703
-
Intracellular protein degradation from a vague idea through the lysosome and the ubiquitin-proteasome system and on to human diseases and drug targeting: Nobel Lecture, December 8, 2004
-
Ciechanover A. Intracellular protein degradation from a vague idea through the lysosome and the ubiquitin-proteasome system and on to human diseases and drug targeting: Nobel Lecture, December 8, 2004. Ann. N. Y. Acad. Sci. 2007, 1116:1-28.
-
(2007)
Ann. N. Y. Acad. Sci.
, vol.1116
, pp. 1-28
-
-
Ciechanover, A.1
-
12
-
-
0027771443
-
Structural features of the 26S proteasome complex
-
Peters J.M., et al. Structural features of the 26S proteasome complex. J. Mol. Biol. 1993, 234(4):932-937.
-
(1993)
J. Mol. Biol.
, vol.234
, Issue.4
, pp. 932-937
-
-
Peters, J.M.1
-
13
-
-
0028300177
-
PA28 activator protein forms regulatory caps on proteasome stacked rings
-
Gray C.W., Slaughter C.A., DeMartino G.N. PA28 activator protein forms regulatory caps on proteasome stacked rings. J. Mol. Biol. 1994, 236(1):7-15.
-
(1994)
J. Mol. Biol.
, vol.236
, Issue.1
, pp. 7-15
-
-
Gray, C.W.1
Slaughter, C.A.2
DeMartino, G.N.3
-
14
-
-
0030982143
-
Degradation of oxidized proteins in mammalian cells
-
Grune T., Reinheckel T., Davies K.J. Degradation of oxidized proteins in mammalian cells. FASEB J. 1997, 11(7):526-534.
-
(1997)
FASEB J.
, vol.11
, Issue.7
, pp. 526-534
-
-
Grune, T.1
Reinheckel, T.2
Davies, K.J.3
-
15
-
-
0034798361
-
Protein oxidation and 20S proteasome-dependent proteolysis in mammalian cells
-
Shringarpure R., Grune T., Davies K.J. Protein oxidation and 20S proteasome-dependent proteolysis in mammalian cells. Cell. Mol. Life Sci. 2001, 58(10):1442-1450.
-
(2001)
Cell. Mol. Life Sci.
, vol.58
, Issue.10
, pp. 1442-1450
-
-
Shringarpure, R.1
Grune, T.2
Davies, K.J.3
-
16
-
-
78649848069
-
The immunoproteasome, the 20S proteasome and the PA28alphabeta proteasome regulator are oxidative-stress-adaptive proteolytic complexes
-
Pickering A.M., et al. The immunoproteasome, the 20S proteasome and the PA28alphabeta proteasome regulator are oxidative-stress-adaptive proteolytic complexes. Biochem. J. 2010, 432(3):585-594.
-
(2010)
Biochem. J.
, vol.432
, Issue.3
, pp. 585-594
-
-
Pickering, A.M.1
-
17
-
-
0028905549
-
Oxidative stress and recovery from oxidative stress are associated with altered ubiquitin conjugating and proteolytic activities in bovine lens epithelial cells
-
Shang F., Taylor A. Oxidative stress and recovery from oxidative stress are associated with altered ubiquitin conjugating and proteolytic activities in bovine lens epithelial cells. Biochem. J. 1995, 307(Pt 1):297-303.
-
(1995)
Biochem. J.
, vol.307
, pp. 297-303
-
-
Shang, F.1
Taylor, A.2
-
18
-
-
0032212875
-
Comparative resistance of the 20S and 26S proteasome to oxidative stress
-
Reinheckel T., et al. Comparative resistance of the 20S and 26S proteasome to oxidative stress. Biochem. J. 1998, 335(Pt 3):637-642.
-
(1998)
Biochem. J.
, vol.335
, pp. 637-642
-
-
Reinheckel, T.1
-
19
-
-
0034194227
-
Differential impairment of 20S and 26S proteasome activities in human hematopoietic K562 cells during oxidative stress
-
Reinheckel T., et al. Differential impairment of 20S and 26S proteasome activities in human hematopoietic K562 cells during oxidative stress. Arch. Biochem. Biophys. 2000, 377(1):65-68.
-
(2000)
Arch. Biochem. Biophys.
, vol.377
, Issue.1
, pp. 65-68
-
-
Reinheckel, T.1
-
20
-
-
49049106143
-
The proteasome: a target of oxidative damage in cultured human retina pigment epithelial cells
-
Zhang X., et al. The proteasome: a target of oxidative damage in cultured human retina pigment epithelial cells. Invest. Ophthalmol. Vis. Sci. 2008, 49(8):3622-3630.
-
(2008)
Invest. Ophthalmol. Vis. Sci.
, vol.49
, Issue.8
, pp. 3622-3630
-
-
Zhang, X.1
-
21
-
-
26444577079
-
Selectivity of the ubiquitin pathway for oxidatively modified proteins: relevance to protein precipitation diseases
-
Dudek E.J., et al. Selectivity of the ubiquitin pathway for oxidatively modified proteins: relevance to protein precipitation diseases. FASEB J. 2005, 19(12):1707-1709.
-
(2005)
FASEB J.
, vol.19
, Issue.12
, pp. 1707-1709
-
-
Dudek, E.J.1
-
22
-
-
77956527159
-
Enhancement of proteasome activity by a small-molecule inhibitor of USP14
-
Lee B.H., et al. Enhancement of proteasome activity by a small-molecule inhibitor of USP14. Nature 2010, 467(7312):179-184.
-
(2010)
Nature
, vol.467
, Issue.7312
, pp. 179-184
-
-
Lee, B.H.1
-
23
-
-
79955757695
-
Oxidative stress-mediated regulation of proteasome complexes
-
R110 006924
-
Aiken C.T., et al. Oxidative stress-mediated regulation of proteasome complexes. Mol. Cell Proteom. 2011, 10(5). R110 006924.
-
(2011)
Mol. Cell Proteom.
, vol.10
, Issue.5
-
-
Aiken, C.T.1
-
24
-
-
79957933700
-
Ubiquitin-proteasome pathway and cellular responses to oxidative stress
-
Shang F., Taylor A. Ubiquitin-proteasome pathway and cellular responses to oxidative stress. Free Radic. Biol. Med. 2011, 51(1):5-16.
-
(2011)
Free Radic. Biol. Med.
, vol.51
, Issue.1
, pp. 5-16
-
-
Shang, F.1
Taylor, A.2
-
25
-
-
0029051439
-
Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension
-
Wang G.L., et al. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc. Natl. Acad. Sci. USA 1995, 92(12):5510-5514.
-
(1995)
Proc. Natl. Acad. Sci. USA
, vol.92
, Issue.12
, pp. 5510-5514
-
-
Wang, G.L.1
-
26
-
-
0031038419
-
Complex role of protein phosphorylation in gene activation by hypoxia
-
Salceda S., et al. Complex role of protein phosphorylation in gene activation by hypoxia. Kidney Int. 1997, 51(2):556-559.
-
(1997)
Kidney Int.
, vol.51
, Issue.2
, pp. 556-559
-
-
Salceda, S.1
-
27
-
-
0030724889
-
Regulation of ubiquitin-conjugating enzymes by glutathione following oxidative stress
-
Jahngen-Hodge J., et al. Regulation of ubiquitin-conjugating enzymes by glutathione following oxidative stress. J. Biol. Chem. 1997, 272(45):28218-28226.
-
(1997)
J. Biol. Chem.
, vol.272
, Issue.45
, pp. 28218-28226
-
-
Jahngen-Hodge, J.1
-
28
-
-
3242733689
-
Nitrosative stress linked to sporadic Parkinson's disease: S-nitrosylation of parkin regulates its E3 ubiquitin ligase activity
-
Yao D., et al. Nitrosative stress linked to sporadic Parkinson's disease: S-nitrosylation of parkin regulates its E3 ubiquitin ligase activity. Proc. Natl. Acad. Sci. USA 2004, 101(29):10810-10814.
-
(2004)
Proc. Natl. Acad. Sci. USA
, vol.101
, Issue.29
, pp. 10810-10814
-
-
Yao, D.1
-
29
-
-
0036591860
-
Impairment of proteasome function upon UVA- and UVB-irradiation of human keratinocytes
-
Bulteau A.L., et al. Impairment of proteasome function upon UVA- and UVB-irradiation of human keratinocytes. Free Radic. Biol. Med. 2002, 32(11):1157-1170.
-
(2002)
Free Radic. Biol. Med.
, vol.32
, Issue.11
, pp. 1157-1170
-
-
Bulteau, A.L.1
-
30
-
-
27144441722
-
Oxidative modification of proteasome: identification of an oxidation-sensitive subunit in 26S proteasome
-
Ishii T., et al. Oxidative modification of proteasome: identification of an oxidation-sensitive subunit in 26S proteasome. Biochemistry 2005, 44(42):13893-13901.
-
(2005)
Biochemistry
, vol.44
, Issue.42
, pp. 13893-13901
-
-
Ishii, T.1
-
31
-
-
69249099667
-
S-glutathionylation of the Rpn2 regulatory subunit inhibits 26S proteasomal function
-
Zmijewski J.W., Banerjee S., Abraham E. S-glutathionylation of the Rpn2 regulatory subunit inhibits 26S proteasomal function. J. Biol. Chem. 2009, 284(33):22213-22221.
-
(2009)
J. Biol. Chem.
, vol.284
, Issue.33
, pp. 22213-22221
-
-
Zmijewski, J.W.1
Banerjee, S.2
Abraham, E.3
-
32
-
-
84859867653
-
Redox control of 20S proteasome gating
-
Silva G.M., et al. Redox control of 20S proteasome gating. Antioxid. Redox Signal. 2012, 16(11):1183-1194.
-
(2012)
Antioxid. Redox Signal.
, vol.16
, Issue.11
, pp. 1183-1194
-
-
Silva, G.M.1
-
33
-
-
0033033698
-
Poly-ADP ribose polymerase activates nuclear proteasome to degrade oxidatively damaged histones
-
Ullrich O., et al. Poly-ADP ribose polymerase activates nuclear proteasome to degrade oxidatively damaged histones. Proc. Natl. Acad. Sci. USA 1999, 96(11):6223-6228.
-
(1999)
Proc. Natl. Acad. Sci. USA
, vol.96
, Issue.11
, pp. 6223-6228
-
-
Ullrich, O.1
-
34
-
-
84861231399
-
The diverse roles and clinical relevance of PARPs in DNA damage repair: current state of the art
-
De Vos M., Schreiber V., Dantzer F. The diverse roles and clinical relevance of PARPs in DNA damage repair: current state of the art. Biochem. Pharmacol. 2012, 84(2):137-146.
-
(2012)
Biochem. Pharmacol.
, vol.84
, Issue.2
, pp. 137-146
-
-
De Vos, M.1
Schreiber, V.2
Dantzer, F.3
-
35
-
-
1542344946
-
Phosphorylation of 20S proteasome alpha subunit C8 (alpha7) stabilizes the 26S proteasome and plays a role in the regulation of proteasome complexes by gamma-interferon
-
Bose S., et al. Phosphorylation of 20S proteasome alpha subunit C8 (alpha7) stabilizes the 26S proteasome and plays a role in the regulation of proteasome complexes by gamma-interferon. Biochem. J. 2004, 378(Pt 1):177-184.
-
(2004)
Biochem. J.
, vol.378
, pp. 177-184
-
-
Bose, S.1
-
36
-
-
78449252451
-
ASK1 negatively regulates the 26S proteasome
-
Um J.W., et al. ASK1 negatively regulates the 26S proteasome. J. Biol. Chem. 2010, 285(47):36434-36446.
-
(2010)
J. Biol. Chem.
, vol.285
, Issue.47
, pp. 36434-36446
-
-
Um, J.W.1
-
37
-
-
0042346327
-
Central role of the proteasome in senescence and survival of human fibroblasts: induction of a senescence-like phenotype upon its inhibition and resistance to stress upon its activation
-
Chondrogianni N., et al. Central role of the proteasome in senescence and survival of human fibroblasts: induction of a senescence-like phenotype upon its inhibition and resistance to stress upon its activation. J. Biol. Chem. 2003, 278(30):28026-28037.
-
(2003)
J. Biol. Chem.
, vol.278
, Issue.30
, pp. 28026-28037
-
-
Chondrogianni, N.1
-
38
-
-
28744438867
-
Ump1 extends yeast lifespan and enhances viability during oxidative stress: central role for the proteasome?
-
Chen Q., et al. Ump1 extends yeast lifespan and enhances viability during oxidative stress: central role for the proteasome?. Free Radic. Biol. Med. 2006, 40(1):120-126.
-
(2006)
Free Radic. Biol. Med.
, vol.40
, Issue.1
, pp. 120-126
-
-
Chen, Q.1
-
39
-
-
34250661684
-
Overexpression of hUMP1/POMP proteasome accessory protein enhances proteasome-mediated antioxidant defence
-
Chondrogianni N., Gonos E.S. Overexpression of hUMP1/POMP proteasome accessory protein enhances proteasome-mediated antioxidant defence. Exp. Gerontol. 2007, 42(9):899-903.
-
(2007)
Exp. Gerontol.
, vol.42
, Issue.9
, pp. 899-903
-
-
Chondrogianni, N.1
Gonos, E.S.2
-
40
-
-
29744460964
-
Chemical structure-dependent gene expression of proteasome subunits via regulation of the antioxidant response element
-
Takabe W., et al. Chemical structure-dependent gene expression of proteasome subunits via regulation of the antioxidant response element. Free Radic. Res. 2006, 40(1):21-30.
-
(2006)
Free Radic. Res.
, vol.40
, Issue.1
, pp. 21-30
-
-
Takabe, W.1
-
41
-
-
77950907407
-
Nuclear erythroid factor 2-mediated proteasome activation delays senescence in human fibroblasts
-
Kapeta S., Chondrogianni N., Gonos E.S. Nuclear erythroid factor 2-mediated proteasome activation delays senescence in human fibroblasts. J. Biol. Chem. 2010, 285(11):8171-8184.
-
(2010)
J. Biol. Chem.
, vol.285
, Issue.11
, pp. 8171-8184
-
-
Kapeta, S.1
Chondrogianni, N.2
Gonos, E.S.3
-
42
-
-
8644263976
-
A proteasomal stress response: pre-treatment with proteasome inhibitors increases proteasome activity and reduces neuronal vulnerability to oxidative injury
-
Lee C.S., et al. A proteasomal stress response: pre-treatment with proteasome inhibitors increases proteasome activity and reduces neuronal vulnerability to oxidative injury. J. Neurochem. 2004, 91(4):996-1006.
-
(2004)
J. Neurochem.
, vol.91
, Issue.4
, pp. 996-1006
-
-
Lee, C.S.1
-
43
-
-
0034537290
-
Autophagy as a regulated pathway of cellular degradation
-
Klionsky D.J., Emr S.D. Autophagy as a regulated pathway of cellular degradation. Science 2000, 290(5497):1717-1721.
-
(2000)
Science
, vol.290
, Issue.5497
, pp. 1717-1721
-
-
Klionsky, D.J.1
Emr, S.D.2
-
44
-
-
27644484061
-
Autophagy: molecular machinery for self-eating
-
Yorimitsu T., Klionsky D.J. Autophagy: molecular machinery for self-eating. Cell Death Differ. 2005, 12(Suppl 2):S1542-S1552.
-
(2005)
Cell Death Differ.
, vol.12
, Issue.SUPPL 2
, pp. S1542-S1552
-
-
Yorimitsu, T.1
Klionsky, D.J.2
-
45
-
-
0442323561
-
Autophagy: in sickness and in health
-
Cuervo A.M. Autophagy: in sickness and in health. Trends Cell Biol. 2004, 14(2):70-77.
-
(2004)
Trends Cell Biol.
, vol.14
, Issue.2
, pp. 70-77
-
-
Cuervo, A.M.1
-
46
-
-
79954422997
-
Chaperone-mediated autophagy in protein quality control
-
Arias E., Cuervo A.M. Chaperone-mediated autophagy in protein quality control. Curr. Opin. Cell Biol. 2011, 23(2):184-189.
-
(2011)
Curr. Opin. Cell Biol.
, vol.23
, Issue.2
, pp. 184-189
-
-
Arias, E.1
Cuervo, A.M.2
-
47
-
-
84864318195
-
Chaperone-mediated autophagy: a unique way to enter the lysosome world
-
Kaushik S., Cuervo A.M. Chaperone-mediated autophagy: a unique way to enter the lysosome world. Trends Cell Biol. 2012, 22(8):407-417.
-
(2012)
Trends Cell Biol.
, vol.22
, Issue.8
, pp. 407-417
-
-
Kaushik, S.1
Cuervo, A.M.2
-
48
-
-
84859161154
-
Microautophagy: lesser-known self-eating
-
Li W.W., Li J., Bao J.K. Microautophagy: lesser-known self-eating. Cell. Mol. Life Sci. 2012, 69(7):1125-1136.
-
(2012)
Cell. Mol. Life Sci.
, vol.69
, Issue.7
, pp. 1125-1136
-
-
Li, W.W.1
Li, J.2
Bao, J.K.3
-
49
-
-
79959992219
-
Lysosomal thiol reductase negatively regulates autophagy by altering glutathione synthesis and oxidation
-
Chiang H.S., Maric M. Lysosomal thiol reductase negatively regulates autophagy by altering glutathione synthesis and oxidation. Free Radic. Biol. Med. 2011, 51(3):688-699.
-
(2011)
Free Radic. Biol. Med.
, vol.51
, Issue.3
, pp. 688-699
-
-
Chiang, H.S.1
Maric, M.2
-
50
-
-
84870925187
-
Glutathione participates in the modulation of starvation-induced autophagy in carcinoma cells
-
Desideri E., Filomeni G., Ciriolo M.R. Glutathione participates in the modulation of starvation-induced autophagy in carcinoma cells. Autophagy 2012, 8(12):1769-1781.
-
(2012)
Autophagy
, vol.8
, Issue.12
, pp. 1769-1781
-
-
Desideri, E.1
Filomeni, G.2
Ciriolo, M.R.3
-
51
-
-
0031595780
-
IkappaB is a substrate for a selective pathway of lysosomal proteolysis
-
Cuervo A.M., et al. IkappaB is a substrate for a selective pathway of lysosomal proteolysis. Mol. Biol. Cell 1998, 9(8):1995-2010.
-
(1998)
Mol. Biol. Cell
, vol.9
, Issue.8
, pp. 1995-2010
-
-
Cuervo, A.M.1
-
52
-
-
6344275803
-
Activation of chaperone-mediated autophagy during oxidative stress
-
Kiffin R., et al. Activation of chaperone-mediated autophagy during oxidative stress. Mol. Biol. Cell. 2004, 15(11):4829-4840.
-
(2004)
Mol. Biol. Cell.
, vol.15
, Issue.11
, pp. 4829-4840
-
-
Kiffin, R.1
-
53
-
-
33749185898
-
Autophagy as a cell-repair mechanism: activation of chaperone-mediated autophagy during oxidative stress
-
Kaushik S., Cuervo A.M. Autophagy as a cell-repair mechanism: activation of chaperone-mediated autophagy during oxidative stress. Mol. Asp. Med. 2006, 27(5-6):444-454.
-
(2006)
Mol. Asp. Med.
, vol.27
, Issue.5-6
, pp. 444-454
-
-
Kaushik, S.1
Cuervo, A.M.2
-
54
-
-
33645829816
-
Consequences of the selective blockage of chaperone-mediated autophagy
-
Massey A.C., et al. Consequences of the selective blockage of chaperone-mediated autophagy. Proc. Natl. Acad. Sci. USA 2006, 103(15):5805-5810.
-
(2006)
Proc. Natl. Acad. Sci. USA
, vol.103
, Issue.15
, pp. 5805-5810
-
-
Massey, A.C.1
-
55
-
-
51349095898
-
Restoration of chaperone-mediated autophagy in aging liver improves cellular maintenance and hepatic function
-
Zhang C., Cuervo A.M. Restoration of chaperone-mediated autophagy in aging liver improves cellular maintenance and hepatic function. Nat. Med. 2008, 14(9):959-965.
-
(2008)
Nat. Med.
, vol.14
, Issue.9
, pp. 959-965
-
-
Zhang, C.1
Cuervo, A.M.2
-
56
-
-
84908085343
-
A new pathway for mitochondrial quality control: mitochondrial-derived vesicles
-
Sugiura A., et al. A new pathway for mitochondrial quality control: mitochondrial-derived vesicles. EMBO J. 2014, 33(19):2142-2156.
-
(2014)
EMBO J.
, vol.33
, Issue.19
, pp. 2142-2156
-
-
Sugiura, A.1
-
57
-
-
84856221632
-
A vesicular transport pathway shuttles cargo from mitochondria to lysosomes
-
Soubannier V., et al. A vesicular transport pathway shuttles cargo from mitochondria to lysosomes. Curr. Biol. 2012, 22(2):135-141.
-
(2012)
Curr. Biol.
, vol.22
, Issue.2
, pp. 135-141
-
-
Soubannier, V.1
-
58
-
-
84871537265
-
Reconstitution of mitochondria derived vesicle formation demonstrates selective enrichment of oxidized cargo
-
Soubannier V., et al. Reconstitution of mitochondria derived vesicle formation demonstrates selective enrichment of oxidized cargo. PLoS One 2012, 7(12):e52830.
-
(2012)
PLoS One
, vol.7
, Issue.12
, pp. e52830
-
-
Soubannier, V.1
-
59
-
-
84897863239
-
Parkin and PINK1 function in a vesicular trafficking pathway regulating mitochondrial quality control
-
McLelland G.L., et al. Parkin and PINK1 function in a vesicular trafficking pathway regulating mitochondrial quality control. EMBO J. 2014, 33(4):282-295.
-
(2014)
EMBO J.
, vol.33
, Issue.4
, pp. 282-295
-
-
McLelland, G.L.1
-
60
-
-
84884820652
-
Regulation of autophagy by stress-responsive transcription factors
-
Pietrocola F., et al. Regulation of autophagy by stress-responsive transcription factors. Semin. Cancer Biol. 2013, 23(5):310-322.
-
(2013)
Semin. Cancer Biol.
, vol.23
, Issue.5
, pp. 310-322
-
-
Pietrocola, F.1
-
61
-
-
84883830467
-
Phosphorylation of p62 activates the Keap1-Nrf2 pathway during selective autophagy
-
Ichimura Y., et al. Phosphorylation of p62 activates the Keap1-Nrf2 pathway during selective autophagy. Mol. Cell 2013, 51(5):618-631.
-
(2013)
Mol. Cell
, vol.51
, Issue.5
, pp. 618-631
-
-
Ichimura, Y.1
-
62
-
-
84863425313
-
P62 At the interface of autophagy, oxidative stress signaling, and cancer
-
Nezis I.P., Stenmark H. p62 At the interface of autophagy, oxidative stress signaling, and cancer. Antioxid. Redox Signal. 2012, 17(5):786-793.
-
(2012)
Antioxid. Redox Signal.
, vol.17
, Issue.5
, pp. 786-793
-
-
Nezis, I.P.1
Stenmark, H.2
-
63
-
-
84897093101
-
Nrf2 reduces levels of phosphorylated tau protein by inducing autophagy adaptor protein NDP52
-
Jo C., et al. Nrf2 reduces levels of phosphorylated tau protein by inducing autophagy adaptor protein NDP52. Nat. Commun. 2014, 5:3496.
-
(2014)
Nat. Commun.
, vol.5
, pp. 3496
-
-
Jo, C.1
-
64
-
-
84919784890
-
T-cell populations and cytokine expression are impaired in thymus and spleen of protein malnourished BALB/c mice infected with leishmania infantum
-
Cuervo-Escobar S., et al. T-cell populations and cytokine expression are impaired in thymus and spleen of protein malnourished BALB/c mice infected with leishmania infantum. PLoS One 2014, 9(12):e114584.
-
(2014)
PLoS One
, vol.9
, Issue.12
, pp. e114584
-
-
Cuervo-Escobar, S.1
-
65
-
-
77954955573
-
Trehalose ameliorates dopaminergic and tau pathology in parkin deleted/tau overexpressing mice through autophagy activation
-
Rodriguez-Navarro J.A., et al. Trehalose ameliorates dopaminergic and tau pathology in parkin deleted/tau overexpressing mice through autophagy activation. Neurobiol. Dis. 2010, 39(3):423-438.
-
(2010)
Neurobiol. Dis.
, vol.39
, Issue.3
, pp. 423-438
-
-
Rodriguez-Navarro, J.A.1
-
66
-
-
70350575440
-
Modulation of intracellular ROS levels by TIGAR controls autophagy
-
Bensaad K., Cheung E.C., Vousden K.H. Modulation of intracellular ROS levels by TIGAR controls autophagy. EMBO J. 2009, 28(19):3015-3026.
-
(2009)
EMBO J.
, vol.28
, Issue.19
, pp. 3015-3026
-
-
Bensaad, K.1
Cheung, E.C.2
Vousden, K.H.3
-
67
-
-
67650376373
-
Oxidized proteins: mechanisms of removal and consequences of accumulation
-
Dunlop R.A., Brunk U.T., Rodgers K.J. Oxidized proteins: mechanisms of removal and consequences of accumulation. IUBMB Life 2009, 61(5):522-527.
-
(2009)
IUBMB Life
, vol.61
, Issue.5
, pp. 522-527
-
-
Dunlop, R.A.1
Brunk, U.T.2
Rodgers, K.J.3
-
68
-
-
77449157041
-
Crosstalk between Hsp70 molecular chaperone, lysosomes and proteasomes in autophagy-mediated proteolysis in human retinal pigment epithelial cells
-
Ryhanen T., et al. Crosstalk between Hsp70 molecular chaperone, lysosomes and proteasomes in autophagy-mediated proteolysis in human retinal pigment epithelial cells. J. Cell. Mol. Med. 2009, 13(9B):3616-3631.
-
(2009)
J. Cell. Mol. Med.
, vol.13
, Issue.9 B
, pp. 3616-3631
-
-
Ryhanen, T.1
-
70
-
-
84878775231
-
Lipofuscin: formation, effects and role of macroautophagy
-
Hohn A., Grune T. Lipofuscin: formation, effects and role of macroautophagy. Redox Biol. 2013, 1(1):140-144.
-
(2013)
Redox Biol.
, vol.1
, Issue.1
, pp. 140-144
-
-
Hohn, A.1
Grune, T.2
-
71
-
-
0035607509
-
The influence of oxidation of membrane thiol groups on lysosomal proton permeability
-
Wan F.Y., Wang Y.N., Zhang G.J. The influence of oxidation of membrane thiol groups on lysosomal proton permeability. Biochem. J. 2001, 360(Pt 2):355-362.
-
(2001)
Biochem. J.
, vol.360
, pp. 355-362
-
-
Wan, F.Y.1
Wang, Y.N.2
Zhang, G.J.3
-
72
-
-
0032821609
-
Ceroid/lipofuscin-loaded human fibroblasts show increased susceptibility to oxidative stress
-
Terman A., Abrahamsson N., Brunk U.T. Ceroid/lipofuscin-loaded human fibroblasts show increased susceptibility to oxidative stress. Exp. Gerontol. 1999, 34(6):755-770.
-
(1999)
Exp. Gerontol.
, vol.34
, Issue.6
, pp. 755-770
-
-
Terman, A.1
Abrahamsson, N.2
Brunk, U.T.3
-
73
-
-
0033188153
-
Beta-cells, oxidative stress, lysosomal stability, and apoptotic/necrotic cell death
-
Olejnicka B.T., et al. Beta-cells, oxidative stress, lysosomal stability, and apoptotic/necrotic cell death. Antioxid. Redox Signal. 1999, 1(3):305-315.
-
(1999)
Antioxid. Redox Signal.
, vol.1
, Issue.3
, pp. 305-315
-
-
Olejnicka, B.T.1
-
74
-
-
0036710928
-
Lipofuscin: mechanisms of age-related accumulation and influence on cell function
-
Brunk U.T., Terman A. Lipofuscin: mechanisms of age-related accumulation and influence on cell function. Free Radic. Biol. Med. 2002, 33(5):611-619.
-
(2002)
Free Radic. Biol. Med.
, vol.33
, Issue.5
, pp. 611-619
-
-
Brunk, U.T.1
Terman, A.2
-
75
-
-
0033436344
-
Lysosomal release of cathepsin D precedes relocation of cytochrome c and loss of mitochondrial transmembrane potential during apoptosis induced by oxidative stress
-
Roberg K., Johansson U., Ollinger K. Lysosomal release of cathepsin D precedes relocation of cytochrome c and loss of mitochondrial transmembrane potential during apoptosis induced by oxidative stress. Free Radic. Biol. Med. 1999, 27(11-12):1228-1237.
-
(1999)
Free Radic. Biol. Med.
, vol.27
, Issue.11-12
, pp. 1228-1237
-
-
Roberg, K.1
Johansson, U.2
Ollinger, K.3
-
76
-
-
0033950037
-
Lysosomal destabilization during macrophage damage induced by cholesterol oxidation products
-
Yuan X.M., et al. Lysosomal destabilization during macrophage damage induced by cholesterol oxidation products. Free Radic. Biol. Med. 2000, 28(2):208-218.
-
(2000)
Free Radic. Biol. Med.
, vol.28
, Issue.2
, pp. 208-218
-
-
Yuan, X.M.1
-
77
-
-
0035191580
-
Lysosomal involvement in hepatocyte cytotoxicity induced by Cu(2+) but not Cd(2+)
-
Pourahmad J., Ross S., O'Brien P.J. Lysosomal involvement in hepatocyte cytotoxicity induced by Cu(2+) but not Cd(2+). Free Radic. Biol. Med. 2001, 30(1):89-97.
-
(2001)
Free Radic. Biol. Med.
, vol.30
, Issue.1
, pp. 89-97
-
-
Pourahmad, J.1
Ross, S.2
O'Brien, P.J.3
-
78
-
-
33645521571
-
Autophagic programmed cell death by selective catalase degradation
-
Yu L., et al. Autophagic programmed cell death by selective catalase degradation. Proc. Natl. Acad. Sci. USA 2006, 103(13):4952-4957.
-
(2006)
Proc. Natl. Acad. Sci. USA
, vol.103
, Issue.13
, pp. 4952-4957
-
-
Yu, L.1
-
79
-
-
34249815482
-
Autophagy, ageing and apoptosis: the role of oxidative stress and lysosomal iron
-
Kurz T., Terman A., Brunk U.T. Autophagy, ageing and apoptosis: the role of oxidative stress and lysosomal iron. Arch. Biochem. Biophys. 2007, 462(2):220-230.
-
(2007)
Arch. Biochem. Biophys.
, vol.462
, Issue.2
, pp. 220-230
-
-
Kurz, T.1
Terman, A.2
Brunk, U.T.3
-
80
-
-
84886749523
-
IRE1: ER stress sensor and cell fate executor
-
Chen Y., Brandizzi F. IRE1: ER stress sensor and cell fate executor. Trends Cell Biol. 2013, 23(11):547-555.
-
(2013)
Trends Cell Biol.
, vol.23
, Issue.11
, pp. 547-555
-
-
Chen, Y.1
Brandizzi, F.2
-
81
-
-
84908078105
-
The unfolded protein response triggers selective mRNA release from the endoplasmic reticulum
-
Reid D.W., et al. The unfolded protein response triggers selective mRNA release from the endoplasmic reticulum. Cell 2014, 158(6):1362-1374.
-
(2014)
Cell
, vol.158
, Issue.6
, pp. 1362-1374
-
-
Reid, D.W.1
-
82
-
-
84863740827
-
The impact of the unfolded protein response on human disease
-
Wang S., Kaufman R.J. The impact of the unfolded protein response on human disease. J. Cell Biol. 2012, 197(7):857-867.
-
(2012)
J. Cell Biol.
, vol.197
, Issue.7
, pp. 857-867
-
-
Wang, S.1
Kaufman, R.J.2
-
83
-
-
84865245211
-
Unfolded protein response
-
Cao S.S., Kaufman R.J. Unfolded protein response. Curr. Biol. 2012, 22(16):R622-R626.
-
(2012)
Curr. Biol.
, vol.22
, Issue.16
, pp. R622-R626
-
-
Cao, S.S.1
Kaufman, R.J.2
-
84
-
-
84890411602
-
Stressed to death - mechanisms of ER stress-induced cell death
-
Sovolyova N., et al. Stressed to death - mechanisms of ER stress-induced cell death. Biol. Chem. 2014, 395(1):1-13.
-
(2014)
Biol. Chem.
, vol.395
, Issue.1
, pp. 1-13
-
-
Sovolyova, N.1
-
85
-
-
7944232052
-
Nitric oxide induces coupling of mitochondrial signalling with the endoplasmic reticulum stress response
-
Xu W., et al. Nitric oxide induces coupling of mitochondrial signalling with the endoplasmic reticulum stress response. Nat. Cell Biol. 2004, 6(11):1129-1134.
-
(2004)
Nat. Cell Biol.
, vol.6
, Issue.11
, pp. 1129-1134
-
-
Xu, W.1
-
86
-
-
35848957485
-
Endoplasmic reticulum stress and oxidative stress: a vicious cycle or a double-edged sword?
-
Malhotra J.D., Kaufman R.J. Endoplasmic reticulum stress and oxidative stress: a vicious cycle or a double-edged sword?. Antioxid. Redox Signal. 2007, 9(12):2277-2293.
-
(2007)
Antioxid. Redox Signal.
, vol.9
, Issue.12
, pp. 2277-2293
-
-
Malhotra, J.D.1
Kaufman, R.J.2
-
87
-
-
0033815971
-
ATF6 activated by proteolysis binds in the presence of NF-Y (CBF) directly to the cis-acting element responsible for the mammalian unfolded protein response
-
Yoshida H., et al. ATF6 activated by proteolysis binds in the presence of NF-Y (CBF) directly to the cis-acting element responsible for the mammalian unfolded protein response. Mol. Cell. Biol. 2000, 20(18):6755-6767.
-
(2000)
Mol. Cell. Biol.
, vol.20
, Issue.18
, pp. 6755-6767
-
-
Yoshida, H.1
-
88
-
-
84884541569
-
Endoplasmic reticulum stress in human skeletal muscle: any contribution to sarcopenia?
-
Deldicque L. Endoplasmic reticulum stress in human skeletal muscle: any contribution to sarcopenia?. Front. Physiol. 2013, 4:236.
-
(2013)
Front. Physiol.
, vol.4
, pp. 236
-
-
Deldicque, L.1
-
89
-
-
33846223428
-
Role of disulfide bridges formed in the luminal domain of ATF6 in sensing endoplasmic reticulum stress
-
Nadanaka S., et al. Role of disulfide bridges formed in the luminal domain of ATF6 in sensing endoplasmic reticulum stress. Mol. Cell. Biol. 2007, 27(3):1027-1043.
-
(2007)
Mol. Cell. Biol.
, vol.27
, Issue.3
, pp. 1027-1043
-
-
Nadanaka, S.1
-
90
-
-
10644233167
-
CHOP induces death by promoting protein synthesis and oxidation in the stressed endoplasmic reticulum
-
Marciniak S.J., et al. CHOP induces death by promoting protein synthesis and oxidation in the stressed endoplasmic reticulum. Genes Dev. 2004, 18(24):3066-3077.
-
(2004)
Genes Dev.
, vol.18
, Issue.24
, pp. 3066-3077
-
-
Marciniak, S.J.1
-
91
-
-
84862996844
-
CHOP potentially co-operates with FOXO3a in neuronal cells to regulate PUMA and BIM expression in response to ER stress
-
Ghosh A.P., et al. CHOP potentially co-operates with FOXO3a in neuronal cells to regulate PUMA and BIM expression in response to ER stress. PLoS One 2012, 7(6):e39586.
-
(2012)
PLoS One
, vol.7
, Issue.6
, pp. e39586
-
-
Ghosh, A.P.1
-
92
-
-
77954366843
-
Molecular symbiosis of CHOP and C/EBP beta isoform LIP contributes to endoplasmic reticulum stress-induced apoptosis
-
Chiribau C.B., et al. Molecular symbiosis of CHOP and C/EBP beta isoform LIP contributes to endoplasmic reticulum stress-induced apoptosis. Mol. Cell. Biol. 2010, 30(14):3722-3731.
-
(2010)
Mol. Cell. Biol.
, vol.30
, Issue.14
, pp. 3722-3731
-
-
Chiribau, C.B.1
-
93
-
-
0141752795
-
Nrf2 is a direct PERK substrate and effector of PERK-dependent cell survival
-
Cullinan S.B., et al. Nrf2 is a direct PERK substrate and effector of PERK-dependent cell survival. Mol. Cell. Biol. 2003, 23(20):7198-7209.
-
(2003)
Mol. Cell. Biol.
, vol.23
, Issue.20
, pp. 7198-7209
-
-
Cullinan, S.B.1
-
94
-
-
2442542312
-
PERK-dependent activation of Nrf2 contributes to redox homeostasis and cell survival following endoplasmic reticulum stress
-
Cullinan S.B., Diehl J.A. PERK-dependent activation of Nrf2 contributes to redox homeostasis and cell survival following endoplasmic reticulum stress. J. Biol. Chem. 2004, 279(19):20108-20117.
-
(2004)
J. Biol. Chem.
, vol.279
, Issue.19
, pp. 20108-20117
-
-
Cullinan, S.B.1
Diehl, J.A.2
-
95
-
-
14044270949
-
Genes regulated in neurons undergoing transcription-dependent apoptosis belong to signaling pathways rather than the apoptotic machinery
-
Desagher S., et al. Genes regulated in neurons undergoing transcription-dependent apoptosis belong to signaling pathways rather than the apoptotic machinery. J. Biol. Chem. 2005, 280(7):5693-5702.
-
(2005)
J. Biol. Chem.
, vol.280
, Issue.7
, pp. 5693-5702
-
-
Desagher, S.1
-
96
-
-
84889889353
-
Nrf2 and Nrf1 signaling and ER stress crosstalk: implication for proteasomal degradation and autophagy
-
Digaleh H., Kiaei M., Khodagholi F. Nrf2 and Nrf1 signaling and ER stress crosstalk: implication for proteasomal degradation and autophagy. Cell. Mol. Life Sci. 2013, 70(24):4681-4694.
-
(2013)
Cell. Mol. Life Sci.
, vol.70
, Issue.24
, pp. 4681-4694
-
-
Digaleh, H.1
Kiaei, M.2
Khodagholi, F.3
-
97
-
-
84907539353
-
Cellular mechanisms of endoplasmic reticulum stress signaling in health and disease. 1. An overview
-
Dufey E., et al. Cellular mechanisms of endoplasmic reticulum stress signaling in health and disease. 1. An overview. Am. J. Physiol. Cell Physiol. 2014, 307(7):C582-C594.
-
(2014)
Am. J. Physiol. Cell Physiol.
, vol.307
, Issue.7
, pp. C582-C594
-
-
Dufey, E.1
-
98
-
-
84861567265
-
Redox signaling loops in the unfolded protein response
-
Higa A., Chevet E. Redox signaling loops in the unfolded protein response. Cell. Signal. 2012, 24(8):1548-1555.
-
(2012)
Cell. Signal.
, vol.24
, Issue.8
, pp. 1548-1555
-
-
Higa, A.1
Chevet, E.2
-
99
-
-
84903795970
-
Endoplasmic reticulum stress and oxidative stress in cell fate decision and human disease
-
Cao S.S., Kaufman R.J. Endoplasmic reticulum stress and oxidative stress in cell fate decision and human disease. Antioxid. Redox Signal. 2014, 21(3):396-413.
-
(2014)
Antioxid. Redox Signal.
, vol.21
, Issue.3
, pp. 396-413
-
-
Cao, S.S.1
Kaufman, R.J.2
-
100
-
-
77955359156
-
2 produced during disulphide formation
-
2 produced during disulphide formation. J. Cell Sci. 2010, 123(Pt 15):2672-2679.
-
(2010)
J. Cell Sci.
, vol.123
, pp. 2672-2679
-
-
Tavender, T.J.1
Bulleid, N.J.2
-
101
-
-
33750902737
-
The endoplasmic reticulum: folding, calcium homeostasis, signaling, and redox control
-
Gorlach A., Klappa P., Kietzmann T. The endoplasmic reticulum: folding, calcium homeostasis, signaling, and redox control. Antioxid. Redox Signal. 2006, 8(9-10):1391-1418.
-
(2006)
Antioxid. Redox Signal.
, vol.8
, Issue.9-10
, pp. 1391-1418
-
-
Gorlach, A.1
Klappa, P.2
Kietzmann, T.3
-
102
-
-
0036124813
-
Oxidative stress and the prion protein in transmissible spongiform encephalopathies
-
Milhavet O., Lehmann S. Oxidative stress and the prion protein in transmissible spongiform encephalopathies. Brain Res. Brain Res. Rev. 2002, 38(3):328-339.
-
(2002)
Brain Res. Brain Res. Rev.
, vol.38
, Issue.3
, pp. 328-339
-
-
Milhavet, O.1
Lehmann, S.2
-
103
-
-
30944453898
-
Neurodegeneration and oxidative stress: prion disease results from loss of antioxidant defence
-
Brown D.R. Neurodegeneration and oxidative stress: prion disease results from loss of antioxidant defence. Folia Neuropathol. 2005, 43(4):229-243.
-
(2005)
Folia Neuropathol.
, vol.43
, Issue.4
, pp. 229-243
-
-
Brown, D.R.1
-
104
-
-
33751503526
-
2+, but is a sacrificial quencher of hydroxyl radicals
-
2+, but is a sacrificial quencher of hydroxyl radicals. Free Radic. Biol. Med. 2007, 42(1):79-89.
-
(2007)
Free Radic. Biol. Med.
, vol.42
, Issue.1
, pp. 79-89
-
-
Nadal, R.C.1
-
105
-
-
84864748949
-
Modulating protein activity and cellular function by methionine residue oxidation
-
Cui Z.J., Han Z.Q., Li Z.Y. Modulating protein activity and cellular function by methionine residue oxidation. Amino Acids 2012, 43(2):505-517.
-
(2012)
Amino Acids
, vol.43
, Issue.2
, pp. 505-517
-
-
Cui, Z.J.1
Han, Z.Q.2
Li, Z.Y.3
-
106
-
-
84887833637
-
Impact of methionine oxidation as an initial event on the pathway of human prion protein conversion
-
Elmallah M.I., et al. Impact of methionine oxidation as an initial event on the pathway of human prion protein conversion. Prion 2013, 7(5):404-411.
-
(2013)
Prion
, vol.7
, Issue.5
, pp. 404-411
-
-
Elmallah, M.I.1
-
107
-
-
84865234351
-
Methionine oxidation perturbs the structural core of the prion protein and suggests a generic misfolding pathway
-
Younan N.D., et al. Methionine oxidation perturbs the structural core of the prion protein and suggests a generic misfolding pathway. J. Biol. Chem. 2012, 287(34):28263-28275.
-
(2012)
J. Biol. Chem.
, vol.287
, Issue.34
, pp. 28263-28275
-
-
Younan, N.D.1
-
108
-
-
0025944507
-
Secondary structure analysis of the scrapie-associated protein PrP 27-30 in water by infrared spectroscopy
-
Caughey B.W., et al. Secondary structure analysis of the scrapie-associated protein PrP 27-30 in water by infrared spectroscopy. Biochemistry 1991, 30(31):7672-7680.
-
(1991)
Biochemistry
, vol.30
, Issue.31
, pp. 7672-7680
-
-
Caughey, B.W.1
-
109
-
-
33750442933
-
The intriguing prion disorders
-
Abid K., Soto C. The intriguing prion disorders. Cell. Mol. Life Sci 2006, 63(19-20):2342-2351.
-
(2006)
Cell. Mol. Life Sci
, vol.63
, Issue.19-20
, pp. 2342-2351
-
-
Abid, K.1
Soto, C.2
-
110
-
-
79959967767
-
Human PrP90-231-induced cell death is associated with intracellular accumulation of insoluble and protease-resistant macroaggregates and lysosomal dysfunction
-
Thellung S., et al. Human PrP90-231-induced cell death is associated with intracellular accumulation of insoluble and protease-resistant macroaggregates and lysosomal dysfunction. Cell Death Dis. 2011, 2:e138.
-
(2011)
Cell Death Dis.
, vol.2
, pp. e138
-
-
Thellung, S.1
-
111
-
-
40549105157
-
Intracellular accumulation of a mild-denatured monomer of the human PrP fragment 90-231, as possible mechanism of its neurotoxic effects
-
Chiovitti K., et al. Intracellular accumulation of a mild-denatured monomer of the human PrP fragment 90-231, as possible mechanism of its neurotoxic effects. J. Neurochem. 2007, 103(6):2597-2609.
-
(2007)
J. Neurochem.
, vol.103
, Issue.6
, pp. 2597-2609
-
-
Chiovitti, K.1
-
112
-
-
79960868236
-
Mitochondrial beta-amyloid in Alzheimer's disease
-
Borger E., et al. Mitochondrial beta-amyloid in Alzheimer's disease. Biochem. Soc. Trans. 2011, 39(4):868-873.
-
(2011)
Biochem. Soc. Trans.
, vol.39
, Issue.4
, pp. 868-873
-
-
Borger, E.1
-
113
-
-
84859421209
-
A mitochondrial etiology of Alzheimer and Parkinson disease
-
Coskun P., et al. A mitochondrial etiology of Alzheimer and Parkinson disease. Biochim. Biophys. Acta 2012, 1820(5):553-564.
-
(2012)
Biochim. Biophys. Acta
, vol.1820
, Issue.5
, pp. 553-564
-
-
Coskun, P.1
-
114
-
-
77956556520
-
Morphological and functional abnormalities in mitochondria associated with synaptic degeneration in prion disease
-
Siskova Z., et al. Morphological and functional abnormalities in mitochondria associated with synaptic degeneration in prion disease. Am. J. Pathol. 2010, 177(3):1411-1421.
-
(2010)
Am. J. Pathol.
, vol.177
, Issue.3
, pp. 1411-1421
-
-
Siskova, Z.1
-
115
-
-
18244389436
-
The role of cerebral amyloid beta accumulation in common forms of Alzheimer disease
-
Gandy S. The role of cerebral amyloid beta accumulation in common forms of Alzheimer disease. J. Clin. Invest. 2005, 115(5):1121-1129.
-
(2005)
J. Clin. Invest.
, vol.115
, Issue.5
, pp. 1121-1129
-
-
Gandy, S.1
-
116
-
-
34249860495
-
Small molecule inhibitors of aggregation indicate that amyloid beta oligomerization and fibrillization pathways are independent and distinct
-
Necula M., et al. Small molecule inhibitors of aggregation indicate that amyloid beta oligomerization and fibrillization pathways are independent and distinct. J. Biol. Chem. 2007, 282(14):10311-10324.
-
(2007)
J. Biol. Chem.
, vol.282
, Issue.14
, pp. 10311-10324
-
-
Necula, M.1
-
117
-
-
74149091007
-
In vivo oxidative stress in brain of Alzheimer disease transgenic mice: requirement for methionine 35 in amyloid beta-peptide of APP
-
Butterfield D.A., et al. In vivo oxidative stress in brain of Alzheimer disease transgenic mice: requirement for methionine 35 in amyloid beta-peptide of APP. Free Radic. Biol. Med. 2010, 48(1):136-144.
-
(2010)
Free Radic. Biol. Med.
, vol.48
, Issue.1
, pp. 136-144
-
-
Butterfield, D.A.1
-
118
-
-
38349046973
-
Autophagy, amyloidogenesis and Alzheimer disease
-
Nixon R.A. Autophagy, amyloidogenesis and Alzheimer disease. J. Cell Sci. 2007, 120(Pt 23):4081-4091.
-
(2007)
J. Cell Sci.
, vol.120
, pp. 4081-4091
-
-
Nixon, R.A.1
-
119
-
-
45749114895
-
The autophagy-related protein beclin 1 shows reduced expression in early Alzheimer disease and regulates amyloid beta accumulation in mice
-
Pickford F., et al. The autophagy-related protein beclin 1 shows reduced expression in early Alzheimer disease and regulates amyloid beta accumulation in mice. J. Clin. Invest. 2008, 118(6):2190-2199.
-
(2008)
J. Clin. Invest.
, vol.118
, Issue.6
, pp. 2190-2199
-
-
Pickford, F.1
-
120
-
-
84881025556
-
Impaired autophagy and APP processing in Alzheimer's disease: the potential role of Beclin 1 interactome
-
Salminen A., et al. Impaired autophagy and APP processing in Alzheimer's disease: the potential role of Beclin 1 interactome. Prog. Neurobiol. 2013, 106-107:33-54.
-
(2013)
Prog. Neurobiol.
, pp. 33-54
-
-
Salminen, A.1
-
121
-
-
84937404126
-
Promoting autophagic clearance: viable therapeutic targets in Alzheimer's disease
-
Friedman L.G., Qureshi Y.H., Yu W.H. Promoting autophagic clearance: viable therapeutic targets in Alzheimer's disease. Neurotherapeutics 2015, 12(1):94-108.
-
(2015)
Neurotherapeutics
, vol.12
, Issue.1
, pp. 94-108
-
-
Friedman, L.G.1
Qureshi, Y.H.2
Yu, W.H.3
-
122
-
-
84867574210
-
Luteolin reduces zinc-induced tau phosphorylation at Ser262/356 in an ROS-dependent manner in SH-SY5Y cells
-
Zhou F., et al. Luteolin reduces zinc-induced tau phosphorylation at Ser262/356 in an ROS-dependent manner in SH-SY5Y cells. Biol. Trace Elem. Res. 2012, 149(2):273-279.
-
(2012)
Biol. Trace Elem. Res.
, vol.149
, Issue.2
, pp. 273-279
-
-
Zhou, F.1
-
123
-
-
73949142307
-
Amyloid-beta and tau synergistically impair the oxidative phosphorylation system in triple transgenic Alzheimer's disease mice
-
Rhein V., et al. Amyloid-beta and tau synergistically impair the oxidative phosphorylation system in triple transgenic Alzheimer's disease mice. Proc. Natl. Acad. Sci. USA 2009, 106(47):20057-20062.
-
(2009)
Proc. Natl. Acad. Sci. USA
, vol.106
, Issue.47
, pp. 20057-20062
-
-
Rhein, V.1
-
124
-
-
77954622545
-
Tau protein degradation is catalyzed by the ATP/ubiquitin-independent 20S proteasome under normal cell conditions
-
Grune T., et al. Tau protein degradation is catalyzed by the ATP/ubiquitin-independent 20S proteasome under normal cell conditions. Arch. Biochem. Biophys. 2010, 500(2):181-188.
-
(2010)
Arch. Biochem. Biophys.
, vol.500
, Issue.2
, pp. 181-188
-
-
Grune, T.1
-
125
-
-
84922604324
-
Carboxy terminus heat shock protein 70 interacting protein reduces tau-associated degenerative changes
-
Saidi L.J., et al. Carboxy terminus heat shock protein 70 interacting protein reduces tau-associated degenerative changes. J. Alzheimers Dis. 2015, 44(3):937-947.
-
(2015)
J. Alzheimers Dis.
, vol.44
, Issue.3
, pp. 937-947
-
-
Saidi, L.J.1
-
126
-
-
0034131044
-
Impaired proteasome function in Alzheimer's disease
-
Keller J.N., Hanni K.B., Markesbery W.R. Impaired proteasome function in Alzheimer's disease. J. Neurochem. 2000, 75(1):436-439.
-
(2000)
J. Neurochem.
, vol.75
, Issue.1
, pp. 436-439
-
-
Keller, J.N.1
Hanni, K.B.2
Markesbery, W.R.3
-
127
-
-
0037381710
-
Proteasome inhibition by paired helical filament-tau in brains of patients with Alzheimer's disease
-
Keck S., et al. Proteasome inhibition by paired helical filament-tau in brains of patients with Alzheimer's disease. J. Neurochem. 2003, 85(1):115-122.
-
(2003)
J. Neurochem.
, vol.85
, Issue.1
, pp. 115-122
-
-
Keck, S.1
-
128
-
-
75149188760
-
Synergy and antagonism of macroautophagy and chaperone-mediated autophagy in a cell model of pathological tau aggregation
-
Wang Y., et al. Synergy and antagonism of macroautophagy and chaperone-mediated autophagy in a cell model of pathological tau aggregation. Autophagy 2010, 6(1):182-183.
-
(2010)
Autophagy
, vol.6
, Issue.1
, pp. 182-183
-
-
Wang, Y.1
-
129
-
-
84878114130
-
Tau degradation: the ubiquitin-proteasome system versus the autophagy-lysosome system
-
Lee M.J., Lee J.H., Rubinsztein D.C. Tau degradation: the ubiquitin-proteasome system versus the autophagy-lysosome system. Prog. Neurobiol. 2013, 105:49-59.
-
(2013)
Prog. Neurobiol.
, vol.105
, pp. 49-59
-
-
Lee, M.J.1
Lee, J.H.2
Rubinsztein, D.C.3
-
130
-
-
0033215063
-
Synucleins in synaptic plasticity and neurodegenerative disorders
-
Clayton D.F., George J.M. Synucleins in synaptic plasticity and neurodegenerative disorders. J. Neurosci. Res. 1999, 58(1):120-129.
-
(1999)
J. Neurosci. Res.
, vol.58
, Issue.1
, pp. 120-129
-
-
Clayton, D.F.1
George, J.M.2
-
131
-
-
0032102455
-
The synucleins: a family of proteins involved in synaptic function, plasticity, neurodegeneration and disease
-
Clayton D.F., George J.M. The synucleins: a family of proteins involved in synaptic function, plasticity, neurodegeneration and disease. Trends Neurosci. 1998, 21(6):249-254.
-
(1998)
Trends Neurosci.
, vol.21
, Issue.6
, pp. 249-254
-
-
Clayton, D.F.1
George, J.M.2
-
132
-
-
70350550208
-
Beclin 1 gene transfer activates autophagy and ameliorates the neurodegenerative pathology in alpha-synuclein models of Parkinson's and Lewy body diseases
-
Spencer B., et al. Beclin 1 gene transfer activates autophagy and ameliorates the neurodegenerative pathology in alpha-synuclein models of Parkinson's and Lewy body diseases. J. Neurosci. 2009, 29(43):13578-13588.
-
(2009)
J. Neurosci.
, vol.29
, Issue.43
, pp. 13578-13588
-
-
Spencer, B.1
-
133
-
-
28044461467
-
Neural activity controls the synaptic accumulation of alpha-synuclein
-
Fortin D.L., et al. Neural activity controls the synaptic accumulation of alpha-synuclein. J. Neurosci. 2005, 25(47):10913-10921.
-
(2005)
J. Neurosci.
, vol.25
, Issue.47
, pp. 10913-10921
-
-
Fortin, D.L.1
-
134
-
-
38849174979
-
Dopamine-modified alpha-synuclein blocks chaperone-mediated autophagy
-
Martinez-Vicente M., et al. Dopamine-modified alpha-synuclein blocks chaperone-mediated autophagy. J. Clin. Invest. 2008, 118(2):777-788.
-
(2008)
J. Clin. Invest.
, vol.118
, Issue.2
, pp. 777-788
-
-
Martinez-Vicente, M.1
-
135
-
-
0035894855
-
Expression of A53T mutant but not wild-type alpha-synuclein in PC12 cells induces alterations of the ubiquitin-dependent degradation system, loss of dopamine release, and autophagic cell death
-
Stefanis L., et al. Expression of A53T mutant but not wild-type alpha-synuclein in PC12 cells induces alterations of the ubiquitin-dependent degradation system, loss of dopamine release, and autophagic cell death. J. Neurosci. 2001, 21(24):9549-9560.
-
(2001)
J. Neurosci.
, vol.21
, Issue.24
, pp. 9549-9560
-
-
Stefanis, L.1
-
136
-
-
84866702836
-
Alpha-synuclein in Parkinson's disease
-
Stefanis L. Alpha-synuclein in Parkinson's disease. Cold Spring Harb Perspect. Med. 2012, 2(2):a009399.
-
(2012)
Cold Spring Harb Perspect. Med.
, vol.2
, Issue.2
, pp. a009399
-
-
Stefanis, L.1
-
137
-
-
9144274018
-
Role of individual methionines in the fibrillation of methionine-oxidized alpha-synuclein
-
Hokenson M.J., et al. Role of individual methionines in the fibrillation of methionine-oxidized alpha-synuclein. Biochemistry 2004, 43(15):4621-4633.
-
(2004)
Biochemistry
, vol.43
, Issue.15
, pp. 4621-4633
-
-
Hokenson, M.J.1
-
138
-
-
62049085927
-
Formation of dopamine-mediated alpha-synuclein-soluble oligomers requires methionine oxidation
-
Leong S.L., et al. Formation of dopamine-mediated alpha-synuclein-soluble oligomers requires methionine oxidation. Free Radic. Biol. Med. 2009, 46(10):1328-1337.
-
(2009)
Free Radic. Biol. Med.
, vol.46
, Issue.10
, pp. 1328-1337
-
-
Leong, S.L.1
-
139
-
-
84864842887
-
The role of autophagy in Parkinson's disease
-
Lynch-Day M.A., et al. The role of autophagy in Parkinson's disease. Cold Spring Harb Perspect. Med. 2012, 2(4):a009357.
-
(2012)
Cold Spring Harb Perspect. Med.
, vol.2
, Issue.4
, pp. a009357
-
-
Lynch-Day, M.A.1
-
140
-
-
77957189194
-
Alpha-synuclein impairs macroautophagy: implications for Parkinson's disease
-
Winslow A.R., et al. Alpha-synuclein impairs macroautophagy: implications for Parkinson's disease. J. Cell Biol. 2010, 190(6):1023-1037.
-
(2010)
J. Cell Biol.
, vol.190
, Issue.6
, pp. 1023-1037
-
-
Winslow, A.R.1
-
141
-
-
37049004489
-
Mitochondria in the aetiology and pathogenesis of Parkinson's disease
-
Schapira A.H. Mitochondria in the aetiology and pathogenesis of Parkinson's disease. Lancet Neurol. 2008, 7(1):97-109.
-
(2008)
Lancet Neurol.
, vol.7
, Issue.1
, pp. 97-109
-
-
Schapira, A.H.1
-
142
-
-
84926328165
-
The Parkinson's-associated protein DJ-1 regulates the 20S proteasome
-
Moscovitz O., et al. The Parkinson's-associated protein DJ-1 regulates the 20S proteasome. Nat. Commun. 2015, 6:6609.
-
(2015)
Nat. Commun.
, vol.6
, pp. 6609
-
-
Moscovitz, O.1
-
143
-
-
34247186472
-
Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4
-
Scherz-Shouval R., et al. Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. EMBO J. 2007, 26(7):1749-1760.
-
(2007)
EMBO J.
, vol.26
, Issue.7
, pp. 1749-1760
-
-
Scherz-Shouval, R.1
-
144
-
-
77958501463
-
Exposure to hydrogen peroxide induces oxidation and activation of AMP-activated protein kinase
-
Zmijewski J.W., et al. Exposure to hydrogen peroxide induces oxidation and activation of AMP-activated protein kinase. J. Biol. Chem. 2010, 285(43):33154-33164.
-
(2010)
J. Biol. Chem.
, vol.285
, Issue.43
, pp. 33154-33164
-
-
Zmijewski, J.W.1
-
145
-
-
64449087671
-
Hypoxic activation of AMPK is dependent on mitochondrial ROS but independent of an increase in AMP/ATP ratio
-
Emerling B.M., et al. Hypoxic activation of AMPK is dependent on mitochondrial ROS but independent of an increase in AMP/ATP ratio. Free Radic. Biol. Med. 2009, 46(10):1386-1391.
-
(2009)
Free Radic. Biol. Med.
, vol.46
, Issue.10
, pp. 1386-1391
-
-
Emerling, B.M.1
-
146
-
-
79551598347
-
AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1
-
Kim J., et al. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat. Cell Biol. 2011, 13(2):132-141.
-
(2011)
Nat. Cell Biol.
, vol.13
, Issue.2
, pp. 132-141
-
-
Kim, J.1
-
147
-
-
77955448361
-
ATM engages the TSC2/mTORC1 signaling node to regulate autophagy
-
Alexander A., Kim J., Walker C.L. ATM engages the TSC2/mTORC1 signaling node to regulate autophagy. Autophagy 2010, 6(5):672-673.
-
(2010)
Autophagy
, vol.6
, Issue.5
, pp. 672-673
-
-
Alexander, A.1
Kim, J.2
Walker, C.L.3
-
148
-
-
36849043546
-
Thioredoxin and TRAF family proteins regulate reactive oxygen species-dependent activation of ASK1 through reciprocal modulation of the N-terminal homophilic interaction of ASK1
-
Fujino G., et al. Thioredoxin and TRAF family proteins regulate reactive oxygen species-dependent activation of ASK1 through reciprocal modulation of the N-terminal homophilic interaction of ASK1. Mol. Cell. Biol. 2007, 27(23):8152-8163.
-
(2007)
Mol. Cell. Biol.
, vol.27
, Issue.23
, pp. 8152-8163
-
-
Fujino, G.1
-
149
-
-
44949237240
-
JNK1-mediated phosphorylation of Bcl-2 regulates starvation-induced autophagy
-
Wei Y., et al. JNK1-mediated phosphorylation of Bcl-2 regulates starvation-induced autophagy. Mol. Cell 2008, 30(6):678-688.
-
(2008)
Mol. Cell
, vol.30
, Issue.6
, pp. 678-688
-
-
Wei, Y.1
-
150
-
-
84901703706
-
Free radicals in cross talk between autophagy and apoptosis
-
Kaminskyy V.O., Zhivotovsky B. Free radicals in cross talk between autophagy and apoptosis. Antioxid. Redox Signal. 2014, 21(1):86-102.
-
(2014)
Antioxid. Redox Signal.
, vol.21
, Issue.1
, pp. 86-102
-
-
Kaminskyy, V.O.1
Zhivotovsky, B.2
-
151
-
-
79959886743
-
Complex inhibitory effects of nitric oxide on autophagy
-
Sarkar S., et al. Complex inhibitory effects of nitric oxide on autophagy. Mol. Cell 2011, 43(1):19-32.
-
(2011)
Mol. Cell
, vol.43
, Issue.1
, pp. 19-32
-
-
Sarkar, S.1
-
152
-
-
84869147050
-
Akt-mediated regulation of autophagy and tumorigenesis through Beclin 1 phosphorylation
-
Wang R.C., et al. Akt-mediated regulation of autophagy and tumorigenesis through Beclin 1 phosphorylation. Science 2012, 338(6109):956-959.
-
(2012)
Science
, vol.338
, Issue.6109
, pp. 956-959
-
-
Wang, R.C.1
-
153
-
-
79960024480
-
On-off system for PI3-kinase-Akt signaling through S-nitrosylation of phosphatase with sequence homology to tensin (PTEN)
-
Numajiri N., et al. On-off system for PI3-kinase-Akt signaling through S-nitrosylation of phosphatase with sequence homology to tensin (PTEN). Proc. Natl. Acad. Sci. USA 2011, 108(25):10349-10354.
-
(2011)
Proc. Natl. Acad. Sci. USA
, vol.108
, Issue.25
, pp. 10349-10354
-
-
Numajiri, N.1
-
154
-
-
84920080589
-
Regulation of autophagy by protein post-translational modification
-
Wani W.Y., et al. Regulation of autophagy by protein post-translational modification. Lab. Invest. 2015, 95(1):14-25.
-
(2015)
Lab. Invest.
, vol.95
, Issue.1
, pp. 14-25
-
-
Wani, W.Y.1
-
155
-
-
84898613353
-
Cross-talk between two essential nutrient-sensitive enzymes: O-GlcNAc transferase (OGT) and AMP-activated protein kinase (AMPK)
-
Bullen J.W., et al. Cross-talk between two essential nutrient-sensitive enzymes: O-GlcNAc transferase (OGT) and AMP-activated protein kinase (AMPK). J. Biol. Chem. 2014, 289(15):10592-10606.
-
(2014)
J. Biol. Chem.
, vol.289
, Issue.15
, pp. 10592-10606
-
-
Bullen, J.W.1
-
156
-
-
84867034260
-
Role of nrf2 in oxidative stress and toxicity
-
Ma Q. Role of nrf2 in oxidative stress and toxicity. Annu. Rev. Pharmacol. Toxicol. 2013, 53:401-426.
-
(2013)
Annu. Rev. Pharmacol. Toxicol.
, vol.53
, pp. 401-426
-
-
Ma, Q.1
-
157
-
-
84905837648
-
Redox control of microglial function: molecular mechanisms and functional significance
-
Rojo A.I., et al. Redox control of microglial function: molecular mechanisms and functional significance. Antioxid. Redox Signal. 2014, 21(12):1766-1801.
-
(2014)
Antioxid. Redox Signal.
, vol.21
, Issue.12
, pp. 1766-1801
-
-
Rojo, A.I.1
|