메뉴 건너뛰기




Volumn 12, Issue , 2017, Pages 246-263

Adipose tissue NAD+-homeostasis, sirtuins and poly(ADP-ribose) polymerases - important players in mitochondrial metabolism and metabolic health

Author keywords

Adipose tissue; Mitochondria; NAD+; Obesity; Poly(ADP ribose) polymerases; Sirtuins

Indexed keywords

ADIPOCYTOKINE; NICOTINAMIDE ADENINE DINUCLEOTIDE; NICOTINAMIDE ADENINE DINUCLEOTIDE ADENOSINE DIPHOSPHATE RIBOSYLTRANSFERASE; REDUCED NICOTINAMIDE ADENINE DINUCLEOTIDE; SIRTUIN;

EID: 85014449357     PISSN: 22132317     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.redox.2017.02.011     Document Type: Review
Times cited : (79)

References (159)
  • 1
    • 36849085935 scopus 로고    scopus 로고
    • Essential role of mitochondrial function in adiponectin synthesis in adipocytes
    • [1] Koh, E.H., Park, J.-Y., Park, H.-S., et al. Essential role of mitochondrial function in adiponectin synthesis in adipocytes. Diabetes 56 (2007), 2973–2981.
    • (2007) Diabetes , vol.56 , pp. 2973-2981
    • Koh, E.H.1    Park, J.-Y.2    Park, H.-S.3
  • 2
    • 84874109949 scopus 로고    scopus 로고
    • Mitochondrial dysfunction leads to impairment of insulin sensitivity and adiponectin secretion in adipocytes
    • [2] Wang, C.-H., Wang, C.-C., Huang, H.-C., Wei, Y.-H., Mitochondrial dysfunction leads to impairment of insulin sensitivity and adiponectin secretion in adipocytes. FEBS J. 280 (2013), 1039–1050.
    • (2013) FEBS J. , vol.280 , pp. 1039-1050
    • Wang, C.-H.1    Wang, C.-C.2    Huang, H.-C.3    Wei, Y.-H.4
  • 3
    • 0015139897 scopus 로고
    • Adipose tissue fat cell size and number in relation to metabolism in randomly selected middle-aged men and women
    • [3] Björntorp, P., Bengtsson, C., Blohmé, G., et al. Adipose tissue fat cell size and number in relation to metabolism in randomly selected middle-aged men and women. Metabolism 20 (1971), 927–935.
    • (1971) Metabolism , vol.20 , pp. 927-935
    • Björntorp, P.1    Bengtsson, C.2    Blohmé, G.3
  • 4
    • 84910143325 scopus 로고    scopus 로고
    • Adipocyte morphology and implications for metabolic derangements in acquired obesity
    • [4] Heinonen, S., Saarinen, L., Naukkarinen, J., et al. Adipocyte morphology and implications for metabolic derangements in acquired obesity. Int. J. Obes. 38 (2014), 1423–1431.
    • (2014) Int. J. Obes. , vol.38 , pp. 1423-1431
    • Heinonen, S.1    Saarinen, L.2    Naukkarinen, J.3
  • 5
    • 12444296524 scopus 로고    scopus 로고
    • Failure of fat cell proliferation, mitochondrial function and fat oxidation results in ectopic fat storage, insulin resistance and type II diabetes mellitus
    • [5] Heilbronn, L., Smith, S.R., Ravussin, E., Failure of fat cell proliferation, mitochondrial function and fat oxidation results in ectopic fat storage, insulin resistance and type II diabetes mellitus. Int. J. Obes. Relat. Metab. Disord. 28 (2004), S12–S21.
    • (2004) Int. J. Obes. Relat. Metab. Disord. , vol.28 , pp. S12-S21
    • Heilbronn, L.1    Smith, S.R.2    Ravussin, E.3
  • 6
    • 76049099665 scopus 로고    scopus 로고
    • Adipose tissue expandability, lipotoxicity and the metabolic syndrome – an allostatic perspective
    • [6] Virtue, S., Vidal-Puig, A., Adipose tissue expandability, lipotoxicity and the metabolic syndrome – an allostatic perspective. Biochim. Et. Biophys. Acta (BBA) - Mol. Cell Biol. Lipids 1801 (2010), 338–349.
    • (2010) Biochim. Et. Biophys. Acta (BBA) - Mol. Cell Biol. Lipids , vol.1801 , pp. 338-349
    • Virtue, S.1    Vidal-Puig, A.2
  • 7
    • 41549125912 scopus 로고    scopus 로고
    • Global transcript profiles of fat in monozygotic twins discordant for BMI: pathways behind acquired obesity
    • [7] Pietiläinen, K.H., Naukkarinen, J., Rissanen, A., et al. Global transcript profiles of fat in monozygotic twins discordant for BMI: pathways behind acquired obesity. PLoS Med., 5, 2008, e51.
    • (2008) PLoS Med. , vol.5 , pp. e51
    • Pietiläinen, K.H.1    Naukkarinen, J.2    Rissanen, A.3
  • 8
    • 84929992390 scopus 로고    scopus 로고
    • Altered metabolic and stemness capacity of adipose tissue-derived stem cells from obese mouse and human
    • [8] Pérez, L.M., Bernal, A., de Lucas, B., et al. Altered metabolic and stemness capacity of adipose tissue-derived stem cells from obese mouse and human. PloS One, 10, 2015, e0123397.
    • (2015) PloS One , vol.10 , pp. e0123397
    • Pérez, L.M.1    Bernal, A.2    de Lucas, B.3
  • 9
    • 80053904684 scopus 로고    scopus 로고
    • Mitochondrial complex III ROS regulate adipocyte Differentiation
    • [9] V. Tormos Kathryn, E. Anso, B.R.Hamanaka, et al. Mitochondrial complex III ROS regulate adipocyte Differentiation, Cell Metab. 14: pp. 537–544.
    • Cell Metab. , vol.14 , pp. 537-544
    • Tormos Kathryn, V.1    Anso, E.2    Hamanaka, B.R.3
  • 10
    • 84890898823 scopus 로고    scopus 로고
    • Characterising metabolically healthy obesity in weight-discordant monozygotic twins
    • [10] Naukkarinen, J., Heinonen, S., Hakkarainen, A., et al. Characterising metabolically healthy obesity in weight-discordant monozygotic twins. Diabetologia 57 (2014), 167–176.
    • (2014) Diabetologia , vol.57 , pp. 167-176
    • Naukkarinen, J.1    Heinonen, S.2    Hakkarainen, A.3
  • 11
    • 84945296282 scopus 로고    scopus 로고
    • Impaired mitochondrial biogenesis in adipose tissue in acquired obesity
    • [11] Heinonen, S., Buzkova, J., Muniandy, M., et al. Impaired mitochondrial biogenesis in adipose tissue in acquired obesity. Diabetes, 64, 2015, 3135.
    • (2015) Diabetes , vol.64 , pp. 3135
    • Heinonen, S.1    Buzkova, J.2    Muniandy, M.3
  • 13
    • 79953761260 scopus 로고    scopus 로고
    • PARP-2 regulates SIRT1 expression and whole-body energy expenditure
    • [13] Bai, P., Canto, C., Brunyanszki, A., et al. PARP-2 regulates SIRT1 expression and whole-body energy expenditure. Cell Metab. 13 (2011), 450–460.
    • (2011) Cell Metab. , vol.13 , pp. 450-460
    • Bai, P.1    Canto, C.2    Brunyanszki, A.3
  • 15
    • 46349103594 scopus 로고    scopus 로고
    • A mitochondrial protein compendium elucidates complex I disease biology
    • [15] Pagliarini, D.J., Calvo, S.E., Chang, B., et al. A mitochondrial protein compendium elucidates complex I disease biology. Cell 134 (2008), 112–123.
    • (2008) Cell , vol.134 , pp. 112-123
    • Pagliarini, D.J.1    Calvo, S.E.2    Chang, B.3
  • 16
    • 84958850926 scopus 로고    scopus 로고
    • Mitochondrial dynamics and metabolic regulation
    • [16] Wai, T., Langer, T., Mitochondrial dynamics and metabolic regulation. Trends Endocrinol. Metab. 27 (2016), 105–117.
    • (2016) Trends Endocrinol. Metab. , vol.27 , pp. 105-117
    • Wai, T.1    Langer, T.2
  • 17
    • 84955677104 scopus 로고    scopus 로고
    • Structure and function of ER membrane contact sites with other organelles
    • [17] Phillips, M.J., Voeltz, G.K., Structure and function of ER membrane contact sites with other organelles. Nat. Rev. Mol. Cell Biol. 17 (2016), 69–82.
    • (2016) Nat. Rev. Mol. Cell Biol. , vol.17 , pp. 69-82
    • Phillips, M.J.1    Voeltz, G.K.2
  • 18
    • 67349276169 scopus 로고    scopus 로고
    • AMPK regulates energy expenditure by modulating NAD(+) metabolism and SIRT1 activity
    • [18] Cantó, C., Gerhart-Hines, Z., Feige, J.N., et al. AMPK regulates energy expenditure by modulating NAD(+) metabolism and SIRT1 activity. Nature 458 (2009), 1056–1060.
    • (2009) Nature , vol.458 , pp. 1056-1060
    • Cantó, C.1    Gerhart-Hines, Z.2    Feige, J.N.3
  • 19
    • 34547545892 scopus 로고    scopus 로고
    • AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1α
    • [19] Jäger, S., Handschin, C., St.-Pierre, J., Spiegelman, B.M., AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1α. Proc. Natl. Acad. Sci. 104 (2007), 12017–12022.
    • (2007) Proc. Natl. Acad. Sci. , vol.104 , pp. 12017-12022
    • Jäger, S.1    Handschin, C.2    St.-Pierre, J.3    Spiegelman, B.M.4
  • 20
    • 0032549811 scopus 로고    scopus 로고
    • A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis
    • [20] Puigserver, P., Wu, Z., Park, C.W., Graves, R., Wright, M., Spiegelman, B.M., A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 92 (1998), 829–839.
    • (1998) Cell , vol.92 , pp. 829-839
    • Puigserver, P.1    Wu, Z.2    Park, C.W.3    Graves, R.4    Wright, M.5    Spiegelman, B.M.6
  • 21
    • 81055125669 scopus 로고    scopus 로고
    • NCoR1 is a conserved physiological modulator of muscle mass and oxidative function
    • [21] Yamamoto, H., Williams, E.G., Mouchiroud, L., et al. NCoR1 is a conserved physiological modulator of muscle mass and oxidative function. Cell 147 (2011), 827–839.
    • (2011) Cell , vol.147 , pp. 827-839
    • Yamamoto, H.1    Williams, E.G.2    Mouchiroud, L.3
  • 22
    • 84871902783 scopus 로고    scopus 로고
    • The corepressor NCoR1 antagonizes PGC-1α and estrogen-related receptor α in the regulation of skeletal muscle function and oxidative metabolism
    • [22] Pérez-Schindler, J., Summermatter, S., Salatino, S., et al. The corepressor NCoR1 antagonizes PGC-1α and estrogen-related receptor α in the regulation of skeletal muscle function and oxidative metabolism. Mol. Cell. Biol. 32 (2012), 4913–4924.
    • (2012) Mol. Cell. Biol. , vol.32 , pp. 4913-4924
    • Pérez-Schindler, J.1    Summermatter, S.2    Salatino, S.3
  • 23
    • 81055144760 scopus 로고    scopus 로고
    • Adipocyte NCoR knockout decreases PPARγ phosphorylation and enhances PPARγ activity and insulin sensitivity
    • [23] Li, P., Fan, W., Xu, J., et al. Adipocyte NCoR knockout decreases PPARγ phosphorylation and enhances PPARγ activity and insulin sensitivity. Cell 147 (2011), 815–826.
    • (2011) Cell , vol.147 , pp. 815-826
    • Li, P.1    Fan, W.2    Xu, J.3
  • 24
    • 84879777259 scopus 로고    scopus 로고
    • Mitochondrial biogenesis through activation of nuclear signaling proteins
    • [24] Dominy, J.E., Puigserver, P., Mitochondrial biogenesis through activation of nuclear signaling proteins. Cold Spring Harb. Perspect. Biol., 5, 2013, a015008.
    • (2013) Cold Spring Harb. Perspect. Biol. , vol.5 , pp. a015008
    • Dominy, J.E.1    Puigserver, P.2
  • 25
    • 84930040430 scopus 로고    scopus 로고
    • New roles for mitochondrial proteases in health, ageing and disease
    • [25] Quiros, P.M., Langer, T., Lopez-Otin, C., New roles for mitochondrial proteases in health, ageing and disease. Nat. Rev. Mol. Cell Biol. 16 (2015), 345–359.
    • (2015) Nat. Rev. Mol. Cell Biol. , vol.16 , pp. 345-359
    • Quiros, P.M.1    Langer, T.2    Lopez-Otin, C.3
  • 26
    • 79960716413 scopus 로고    scopus 로고
    • Regulating mitochondrial outer membrane proteins by ubiquitination and proteasomal degradation
    • [26] Karbowski, M., Youle, R.J., Regulating mitochondrial outer membrane proteins by ubiquitination and proteasomal degradation. Curr. Opin. Cell Biol. 23 (2011), 476–482.
    • (2011) Curr. Opin. Cell Biol. , vol.23 , pp. 476-482
    • Karbowski, M.1    Youle, R.J.2
  • 27
    • 84896499806 scopus 로고    scopus 로고
    • The mitochondrial unfolded protein response, a conserved stress response pathway with implications in health and disease
    • [27] Jovaisaite, V., Mouchiroud, L., Auwerx, J., The mitochondrial unfolded protein response, a conserved stress response pathway with implications in health and disease. J. Exp. Biol. 217 (2014), 137–143.
    • (2014) J. Exp. Biol. , vol.217 , pp. 137-143
    • Jovaisaite, V.1    Mouchiroud, L.2    Auwerx, J.3
  • 28
    • 84908085343 scopus 로고    scopus 로고
    • A new pathway for mitochondrial quality control: mitochondrial-derived vesicles
    • [28] Sugiura, A., McLelland, G.-L., Fon, E.A., McBride, H.M., A new pathway for mitochondrial quality control: mitochondrial-derived vesicles. Embo J. 33 (2014), 2142–2156.
    • (2014) Embo J. , vol.33 , pp. 2142-2156
    • Sugiura, A.1    McLelland, G.-L.2    Fon, E.A.3    McBride, H.M.4
  • 30
    • 84937522438 scopus 로고    scopus 로고
    • NAD(+) metabolism and the control of energy homeostasis: a balancing act between mitochondria and the nucleus
    • [30] Canto, C., Menzies, K.J., Auwerx, J., NAD(+) metabolism and the control of energy homeostasis: a balancing act between mitochondria and the nucleus. Cell Metab. 22 (2015), 31–53.
    • (2015) Cell Metab. , vol.22 , pp. 31-53
    • Canto, C.1    Menzies, K.J.2    Auwerx, J.3
  • 31
    • 84884356128 scopus 로고    scopus 로고
    • A quick look at biochemistry: carbohydrate metabolism
    • [31] Dashty, M., A quick look at biochemistry: carbohydrate metabolism. Clin. Biochem. 46 (2013), 1339–1352.
    • (2013) Clin. Biochem. , vol.46 , pp. 1339-1352
    • Dashty, M.1
  • 32
    • 30444437034 scopus 로고    scopus 로고
    • Neuronal and astrocytic shuttle mechanisms for cytosolic-mitochondrial transfer of reducing equivalents: current evidence and pharmacological tools
    • [32] McKenna, M.C., Waagepetersen, H.S., Schousboe, A., Sonnewald, U., Neuronal and astrocytic shuttle mechanisms for cytosolic-mitochondrial transfer of reducing equivalents: current evidence and pharmacological tools. Biochem. Pharmacol. 71 (2006), 399–407.
    • (2006) Biochem. Pharmacol. , vol.71 , pp. 399-407
    • McKenna, M.C.1    Waagepetersen, H.S.2    Schousboe, A.3    Sonnewald, U.4
  • 33
    • 0036154857 scopus 로고    scopus 로고
    • Control of mitochondrial beta-oxidation flux
    • [33] Eaton, S., Control of mitochondrial beta-oxidation flux. Prog. Lipid Res. 41 (2002), 197–239.
    • (2002) Prog. Lipid Res. , vol.41 , pp. 197-239
    • Eaton, S.1
  • 34
    • 84865462435 scopus 로고    scopus 로고
    • Pyridine nucleotide regulation of cardiac intermediary metabolism
    • [34] Ussher, J.R., Jaswal, J.S., Lopaschuk, G.D., Pyridine nucleotide regulation of cardiac intermediary metabolism. Circ. Res. 111 (2012), 628–641.
    • (2012) Circ. Res. , vol.111 , pp. 628-641
    • Ussher, J.R.1    Jaswal, J.S.2    Lopaschuk, G.D.3
  • 35
    • 84927173996 scopus 로고    scopus 로고
    • Branched-chain amino acids in metabolic signalling and insulin resistance
    • [35] Lynch, C.J., Adams, S.H., Branched-chain amino acids in metabolic signalling and insulin resistance. Nat. Rev. Endocrinol. 10 (2014), 723–736.
    • (2014) Nat. Rev. Endocrinol. , vol.10 , pp. 723-736
    • Lynch, C.J.1    Adams, S.H.2
  • 36
    • 85014461617 scopus 로고    scopus 로고
    • Mitochondria-related transcriptional signature is downregulated in adipocytes in obesity: a study of young healthy MZ twins
    • [36] Heinonen, S., Muniandy, M., Buzkova, J., et al. Mitochondria-related transcriptional signature is downregulated in adipocytes in obesity: a study of young healthy MZ twins. Diabetologia, 2016, 1–13.
    • (2016) Diabetologia , pp. 1-13
    • Heinonen, S.1    Muniandy, M.2    Buzkova, J.3
  • 37
    • 17844385363 scopus 로고    scopus 로고
    • Pioglitazone induces mitochondrial biogenesis in human subcutaneous adipose tissue in vivo
    • [37] Bogacka, I., Xie, H., Bray, G.A., Smith, S.R., Pioglitazone induces mitochondrial biogenesis in human subcutaneous adipose tissue in vivo. Diabetes 54 (2005), 1392–1399.
    • (2005) Diabetes , vol.54 , pp. 1392-1399
    • Bogacka, I.1    Xie, H.2    Bray, G.A.3    Smith, S.R.4
  • 38
    • 33644821858 scopus 로고    scopus 로고
    • Mitochondria are impaired in the adipocytes of type 2 diabetic mice
    • [38] Choo, H.-J., Kim, J.-H., Kwon, O.-B., et al. Mitochondria are impaired in the adipocytes of type 2 diabetic mice. Diabetologia 49 (2006), 784–791.
    • (2006) Diabetologia , vol.49 , pp. 784-791
    • Choo, H.-J.1    Kim, J.-H.2    Kwon, O.-B.3
  • 39
    • 35848966984 scopus 로고    scopus 로고
    • Strong association between mitochondrial DNA copy number and lipogenesis in human white adipose tissue
    • [39] Kaaman, M., Sparks, L.M., van Harmelen, V., et al. Strong association between mitochondrial DNA copy number and lipogenesis in human white adipose tissue. Diabetologia 50 (2007), 2526–2533.
    • (2007) Diabetologia , vol.50 , pp. 2526-2533
    • Kaaman, M.1    Sparks, L.M.2    van Harmelen, V.3
  • 41
    • 34347391646 scopus 로고    scopus 로고
    • Adipose mitochondrial biogenesis is suppressed in db/db and high-fat diet–fed mice and improved by rosiglitazone
    • [41] Rong, J.X., Qiu, Y., Hansen, M.K., et al. Adipose mitochondrial biogenesis is suppressed in db/db and high-fat diet–fed mice and improved by rosiglitazone. Diabetes 56 (2007), 1751–1760.
    • (2007) Diabetes , vol.56 , pp. 1751-1760
    • Rong, J.X.1    Qiu, Y.2    Hansen, M.K.3
  • 42
    • 84987597411 scopus 로고    scopus 로고
    • A PPARγ-Bnip3 axis couples adipose mitochondrial fusion-fission balance to systemic insulin sensitivity
    • [42] Tol, M.J., Ottenhoff, R., van Eijk, M., et al. A PPARγ-Bnip3 axis couples adipose mitochondrial fusion-fission balance to systemic insulin sensitivity. Diabetes 65 (2016), 2591–2605.
    • (2016) Diabetes , vol.65 , pp. 2591-2605
    • Tol, M.J.1    Ottenhoff, R.2    van Eijk, M.3
  • 43
    • 85047290241 scopus 로고    scopus 로고
    • Obesity is associated with low NAD+/SIRT pathway expression in adipose tissue of BMI-discordant monozygotic twins
    • [43] Jukarainen, S., Heinonen, S., Rämö, J.T., et al. Obesity is associated with low NAD+/SIRT pathway expression in adipose tissue of BMI-discordant monozygotic twins. J. Clin. Endocrinol. Metab. 101 (2016), 275–283.
    • (2016) J. Clin. Endocrinol. Metab. , vol.101 , pp. 275-283
    • Jukarainen, S.1    Heinonen, S.2    Rämö, J.T.3
  • 44
    • 84983666614 scopus 로고    scopus 로고
    • Common dysregulated pathways in obese adipose tissue and atherosclerosis
    • [44] Moreno-Viedma, V., Amor, M., Sarabi, A., et al. Common dysregulated pathways in obese adipose tissue and atherosclerosis. Cardiovasc. Diabetol., 15, 2016, 120.
    • (2016) Cardiovasc. Diabetol. , vol.15 , pp. 120
    • Moreno-Viedma, V.1    Amor, M.2    Sarabi, A.3
  • 45
    • 37149027613 scopus 로고    scopus 로고
    • Obesity-related elevations in plasma leucine are associated with alterations in enzymes involved in branched-chain amino acid metabolism
    • [45] She, P., Van Horn, C., Reid, T., Hutson, S.M., Cooney, R.N., Lynch, C.J., Obesity-related elevations in plasma leucine are associated with alterations in enzymes involved in branched-chain amino acid metabolism. Am. J. Physiol. Endocrinol. Metab. 293 (2007), E1552–E1563.
    • (2007) Am. J. Physiol. Endocrinol. Metab. , vol.293 , pp. E1552-E1563
    • She, P.1    Van Horn, C.2    Reid, T.3    Hutson, S.M.4    Cooney, R.N.5    Lynch, C.J.6
  • 46
    • 33748305621 scopus 로고    scopus 로고
    • Downregulation of electron transport chain genes in visceral adipose tissue in type 2 diabetes independent of obesity and possibly involving tumor necrosis factor-α
    • [46] Dahlman, I., Forsgren, M., Sjögren, A., et al. Downregulation of electron transport chain genes in visceral adipose tissue in type 2 diabetes independent of obesity and possibly involving tumor necrosis factor-α. Diabetes 55 (2006), 1792–1799.
    • (2006) Diabetes , vol.55 , pp. 1792-1799
    • Dahlman, I.1    Forsgren, M.2    Sjögren, A.3
  • 47
    • 84929444208 scopus 로고    scopus 로고
    • Important mitochondrial proteins in human omental adipose tissue show reduced expression in obesity
    • [47] Lindinger, P.W., Christe, M., Eberle, A.N., et al. Important mitochondrial proteins in human omental adipose tissue show reduced expression in obesity. J. Proteom. 124 (2015), 79–87.
    • (2015) J. Proteom. , vol.124 , pp. 79-87
    • Lindinger, P.W.1    Christe, M.2    Eberle, A.N.3
  • 48
    • 77956300476 scopus 로고    scopus 로고
    • Characterization of the human adipocyte proteome and reproducibility of protein abundance by one-dimensional gel electrophoresis and HPLC-ESI-MS/MS
    • [48] Xie, X., Yi, Z., Bowen, B., et al. Characterization of the human adipocyte proteome and reproducibility of protein abundance by one-dimensional gel electrophoresis and HPLC-ESI-MS/MS. J. Proteome Res. 9 (2010), 4521–4534.
    • (2010) J. Proteome Res. , vol.9 , pp. 4521-4534
    • Xie, X.1    Yi, Z.2    Bowen, B.3
  • 49
    • 84929659559 scopus 로고    scopus 로고
    • Obesity affects mitochondrial citrate synthase in human omental adipose tissue
    • [49] Christe, M., Hirzel, E., Lindinger, A., et al. Obesity affects mitochondrial citrate synthase in human omental adipose tissue. ISRN Obes., 2013, 2013, 826027.
    • (2013) ISRN Obes. , vol.2013 , pp. 826027
    • Christe, M.1    Hirzel, E.2    Lindinger, A.3
  • 50
    • 84939439760 scopus 로고    scopus 로고
    • Inverse relationship between body mass index and mitochondrial oxidative phosphorylation capacity in human subcutaneous adipocytes
    • [50] Fischer, B., Schöttl, T., Schempp, C., et al. Inverse relationship between body mass index and mitochondrial oxidative phosphorylation capacity in human subcutaneous adipocytes. Am. J. Physiol. - Endocrinol. Metab. 309 (2015), E380–E387.
    • (2015) Am. J. Physiol. - Endocrinol. Metab. , vol.309 , pp. E380-E387
    • Fischer, B.1    Schöttl, T.2    Schempp, C.3
  • 51
    • 84893740957 scopus 로고    scopus 로고
    • Adipocyte mitochondrial function is reduced in human obesity independent of fat cell size
    • [51] Yin, X., Lanza, I.R., Swain, J.M., Sarr, M.G., Nair, K.S., Jensen, M.D., Adipocyte mitochondrial function is reduced in human obesity independent of fat cell size. J. Clin. Endocrinol. Metab. 99 (2014), E209–E216.
    • (2014) J. Clin. Endocrinol. Metab. , vol.99 , pp. E209-E216
    • Yin, X.1    Lanza, I.R.2    Swain, J.M.3    Sarr, M.G.4    Nair, K.S.5    Jensen, M.D.6
  • 52
    • 81155131768 scopus 로고    scopus 로고
    • Mitochondrial bioenergetics is not impaired in nonobese subjects with type 2 diabetes mellitus
    • [52] Chattopadhyay, M., GuhaThakurta, I., Behera, P., et al. Mitochondrial bioenergetics is not impaired in nonobese subjects with type 2 diabetes mellitus. Metab. - Clin. Exp. 60 (2011), 1702–1710.
    • (2011) Metab. - Clin. Exp. , vol.60 , pp. 1702-1710
    • Chattopadhyay, M.1    GuhaThakurta, I.2    Behera, P.3
  • 53
    • 84940438529 scopus 로고    scopus 로고
    • Limited OXPHOS capacity in white adipocytes is a hallmark of obesity in laboratory mice irrespective of the glucose tolerance status
    • [53] Schöttl, T., Kappler, L., Fromme, T., Klingenspor, M., Limited OXPHOS capacity in white adipocytes is a hallmark of obesity in laboratory mice irrespective of the glucose tolerance status. Mol. Metab. 4 (2015), 631–642.
    • (2015) Mol. Metab. , vol.4 , pp. 631-642
    • Schöttl, T.1    Kappler, L.2    Fromme, T.3    Klingenspor, M.4
  • 54
    • 85047689659 scopus 로고    scopus 로고
    • Mitochondrial remodeling in adipose tissue associated with obesity and treatment with rosiglitazone
    • [54] Wilson-Fritch, L., Nicoloro, S., Chouinard, M., et al. Mitochondrial remodeling in adipose tissue associated with obesity and treatment with rosiglitazone. J. Clin. Investig. 114 (2004), 1281–1289.
    • (2004) J. Clin. Investig. , vol.114 , pp. 1281-1289
    • Wilson-Fritch, L.1    Nicoloro, S.2    Chouinard, M.3
  • 56
    • 64349123664 scopus 로고    scopus 로고
    • Functional brown adipose tissue in healthy adults
    • [56] Virtanen, K.A., Lidell, M.E., Orava, J., et al. Functional brown adipose tissue in healthy adults. New Engl. J. Med. 360 (2009), 1518–1525.
    • (2009) New Engl. J. Med. , vol.360 , pp. 1518-1525
    • Virtanen, K.A.1    Lidell, M.E.2    Orava, J.3
  • 57
    • 83355163350 scopus 로고    scopus 로고
    • Peroxisome proliferator-activated receptor alpha (PPARalpha) induces PPARgamma coactivator 1alpha (PGC-1alpha) gene expression and contributes to thermogenic activation of brown fat: involvement of PRDM16
    • [57] Hondares, E., Rosell, M., Diaz-Delfin, J., et al. Peroxisome proliferator-activated receptor alpha (PPARalpha) induces PPARgamma coactivator 1alpha (PGC-1alpha) gene expression and contributes to thermogenic activation of brown fat: involvement of PRDM16. J. Biol. Chem. 286 (2011), 43112–43122.
    • (2011) J. Biol. Chem. , vol.286 , pp. 43112-43122
    • Hondares, E.1    Rosell, M.2    Diaz-Delfin, J.3
  • 58
    • 34347326271 scopus 로고    scopus 로고
    • Transcriptional control of brown fat determination by PRDM16
    • [58] Seale, P., Kajimura, S., Yang, W., et al. Transcriptional control of brown fat determination by PRDM16. Cell Metab. 6 (2007), 38–54.
    • (2007) Cell Metab. , vol.6 , pp. 38-54
    • Seale, P.1    Kajimura, S.2    Yang, W.3
  • 59
    • 33646124709 scopus 로고    scopus 로고
    • Complementary action of the PGC-1 coactivators in mitochondrial biogenesis and brown fat differentiation
    • [59] Uldry, M., Yang, W., St-Pierre, J., Lin, J., Seale, P., Spiegelman, B.M., Complementary action of the PGC-1 coactivators in mitochondrial biogenesis and brown fat differentiation. Cell Metab. 3 (2006), 333–341.
    • (2006) Cell Metab. , vol.3 , pp. 333-341
    • Uldry, M.1    Yang, W.2    St-Pierre, J.3    Lin, J.4    Seale, P.5    Spiegelman, B.M.6
  • 60
    • 0019429949 scopus 로고
    • GDP binding to brown-adipose-tissue mitochondria of diabetic-obese (db/db) mice. Decreased binding in both the obese and pre-obese states
    • [60] Goodbody, A.E., Trayhurn, P., GDP binding to brown-adipose-tissue mitochondria of diabetic-obese (db/db) mice. Decreased binding in both the obese and pre-obese states. Biochem. J. 194 (1981), 1019–1022.
    • (1981) Biochem. J. , vol.194 , pp. 1019-1022
    • Goodbody, A.E.1    Trayhurn, P.2
  • 61
    • 0017823678 scopus 로고
    • A mitochondrial defect in brown adipose tissue of the obese (ob/ob) mouse: reduced binding of purine nucleotides and a failure to respond to cold by an increase in binding
    • [61] Himms-Hagen, J., Desautels, M., A mitochondrial defect in brown adipose tissue of the obese (ob/ob) mouse: reduced binding of purine nucleotides and a failure to respond to cold by an increase in binding. Biochem. Biophys. Res. Commun. 83 (1978), 628–634.
    • (1978) Biochem. Biophys. Res. Commun. , vol.83 , pp. 628-634
    • Himms-Hagen, J.1    Desautels, M.2
  • 62
    • 84899755491 scopus 로고    scopus 로고
    • Vascular rarefaction mediates whitening of brown fat in obesity
    • [62] Shimizu, I., Aprahamian, T., Kikuchi, R., et al. Vascular rarefaction mediates whitening of brown fat in obesity. J. Clin. Invest. 124 (2014), 2099–2112.
    • (2014) J. Clin. Invest. , vol.124 , pp. 2099-2112
    • Shimizu, I.1    Aprahamian, T.2    Kikuchi, R.3
  • 64
    • 84907693957 scopus 로고    scopus 로고
    • Adipose tissue mitochondrial dysfunction triggers a lipodystrophic syndrome with insulin resistance, hepatosteatosis, and cardiovascular complications
    • [64] Vernochet, C., Damilano, F., Mourier, A., et al. Adipose tissue mitochondrial dysfunction triggers a lipodystrophic syndrome with insulin resistance, hepatosteatosis, and cardiovascular complications. FASEB J.: Off. Publ. Fed. Am. Soc. Exp. Biol. 28 (2014), 4408–4419.
    • (2014) FASEB J.: Off. Publ. Fed. Am. Soc. Exp. Biol. , vol.28 , pp. 4408-4419
    • Vernochet, C.1    Damilano, F.2    Mourier, A.3
  • 65
    • 82455212299 scopus 로고    scopus 로고
    • Nicotinamide mononucleotide protects against pro-inflammatory cytokine-mediated impairment of mouse islet function
    • [65] Caton, P.W., Kieswich, J., Yaqoob, M.M., Holness, M.J., Sugden, M.C., Nicotinamide mononucleotide protects against pro-inflammatory cytokine-mediated impairment of mouse islet function. Diabetologia 54 (2011), 3083–3092.
    • (2011) Diabetologia , vol.54 , pp. 3083-3092
    • Caton, P.W.1    Kieswich, J.2    Yaqoob, M.M.3    Holness, M.J.4    Sugden, M.C.5
  • 66
    • 48349089690 scopus 로고    scopus 로고
    • Retinol-binding protein 4 and nicotinamide phosphoribosyltransferase/visfatin in rat obesity models
    • [66] Mercader, J., Granados, N., Caimari, A., Oliver, P., Bonet, M.L., Palou, A., Retinol-binding protein 4 and nicotinamide phosphoribosyltransferase/visfatin in rat obesity models. Horm. Metab. Res. 40 (2008), 467–472.
    • (2008) Horm. Metab. Res. , vol.40 , pp. 467-472
    • Mercader, J.1    Granados, N.2    Caimari, A.3    Oliver, P.4    Bonet, M.L.5    Palou, A.6
  • 67
    • 80053920774 scopus 로고    scopus 로고
    • Nicotinamide mononucleotide, a key NAD(+) intermediate, treats the pathophysiology of diet- and age-induced diabetes in mice
    • [67] Yoshino, J., Mills, K.F., Yoon, M.J., Imai, S., Nicotinamide mononucleotide, a key NAD(+) intermediate, treats the pathophysiology of diet- and age-induced diabetes in mice. Cell Metab. 14 (2011), 528–536.
    • (2011) Cell Metab. , vol.14 , pp. 528-536
    • Yoshino, J.1    Mills, K.F.2    Yoon, M.J.3    Imai, S.4
  • 68
    • 33747745349 scopus 로고    scopus 로고
    • Reduced plasma visfatin/pre-B cell colony-enhancing factor in obesity is not related to insulin resistance in humans
    • [68] Pagano, C., Pilon, C., Olivieri, M., et al. Reduced plasma visfatin/pre-B cell colony-enhancing factor in obesity is not related to insulin resistance in humans. J. Clin. Endocrinol. Metab. 91 (2006), 3165–3170.
    • (2006) J. Clin. Endocrinol. Metab. , vol.91 , pp. 3165-3170
    • Pagano, C.1    Pilon, C.2    Olivieri, M.3
  • 69
    • 84960856109 scopus 로고    scopus 로고
    • Weight loss is associated with increased NAD+/SIRT1 expression but reduced PARP activity in white adipose tissue
    • [69] Rappou, E., Jukarainen, S., Rinnankoski-Tuikka, R., et al. Weight loss is associated with increased NAD+/SIRT1 expression but reduced PARP activity in white adipose tissue. J. Clin. Endocrinol. Metab. 101 (2016), 1263–1273.
    • (2016) J. Clin. Endocrinol. Metab. , vol.101 , pp. 1263-1273
    • Rappou, E.1    Jukarainen, S.2    Rinnankoski-Tuikka, R.3
  • 70
    • 84928174797 scopus 로고    scopus 로고
    • SIRT1-mediated eNAMPT secretion from adipose tissue regulates hypothalamic NAD+ and function in mice
    • [70] Yoon, M.J., Yoshida, M., Johnson, S., et al. SIRT1-mediated eNAMPT secretion from adipose tissue regulates hypothalamic NAD+ and function in mice. Cell Metab. 21 (2015), 706–717.
    • (2015) Cell Metab. , vol.21 , pp. 706-717
    • Yoon, M.J.1    Yoshida, M.2    Johnson, S.3
  • 71
    • 84862022077 scopus 로고    scopus 로고
    • The NAD(+) precursor nicotinamide riboside enhances oxidative metabolism and protects against high-fat diet-induced obesity
    • [71] Canto, C., Houtkooper, R.H., Pirinen, E., et al. The NAD(+) precursor nicotinamide riboside enhances oxidative metabolism and protects against high-fat diet-induced obesity. Cell Metab. 15 (2012), 838–847.
    • (2012) Cell Metab. , vol.15 , pp. 838-847
    • Canto, C.1    Houtkooper, R.H.2    Pirinen, E.3
  • 72
    • 84942250684 scopus 로고    scopus 로고
    • The human NAD metabolome: functions, metabolism and compartmentalization
    • [72] Nikiforov, A., Kulikova, V., Ziegler, M., The human NAD metabolome: functions, metabolism and compartmentalization. Crit. Rev. Biochem. Mol. Biol. 50 (2015), 284–297.
    • (2015) Crit. Rev. Biochem. Mol. Biol. , vol.50 , pp. 284-297
    • Nikiforov, A.1    Kulikova, V.2    Ziegler, M.3
  • 73
    • 84865411082 scopus 로고    scopus 로고
    • The dynamic regulation of NAD metabolism in mitochondria
    • [73] Stein, L.R., Imai, S., The dynamic regulation of NAD metabolism in mitochondria. Trends Endocrinol. Metab. 23 (2012), 420–428.
    • (2012) Trends Endocrinol. Metab. , vol.23 , pp. 420-428
    • Stein, L.R.1    Imai, S.2
  • 74
    • 77953631698 scopus 로고    scopus 로고
    • The secret life of NAD+: an old metabolite controlling new metabolic signaling pathways
    • [74] Houtkooper, R.H., Canto, C., Wanders, R.J., Auwerx, J., The secret life of NAD+: an old metabolite controlling new metabolic signaling pathways. Endocr. Rev. 31 (2010), 194–223.
    • (2010) Endocr. Rev. , vol.31 , pp. 194-223
    • Houtkooper, R.H.1    Canto, C.2    Wanders, R.J.3    Auwerx, J.4
  • 75
    • 84991294515 scopus 로고    scopus 로고
    • NRK1 controls nicotinamide mononucleotide and nicotinamide riboside metabolism in mammalian cells
    • [75] Ratajczak, J., Joffraud, M., Trammell, S.A., et al. NRK1 controls nicotinamide mononucleotide and nicotinamide riboside metabolism in mammalian cells. Nat. Commun., 7, 2016, 13103.
    • (2016) Nat. Commun. , vol.7 , pp. 13103
    • Ratajczak, J.1    Joffraud, M.2    Trammell, S.A.3
  • 76
    • 35549002189 scopus 로고    scopus 로고
    • Nampt/PBEF/Visfatin regulates insulin secretion in beta cells as a systemic NAD biosynthetic enzyme
    • [76] Revollo, J.R., Korner, A., Mills, K.F., et al. Nampt/PBEF/Visfatin regulates insulin secretion in beta cells as a systemic NAD biosynthetic enzyme. Cell Metab. 6 (2007), 363–375.
    • (2007) Cell Metab. , vol.6 , pp. 363-375
    • Revollo, J.R.1    Korner, A.2    Mills, K.F.3
  • 77
    • 84880879892 scopus 로고    scopus 로고
    • NAD(+) metabolism: a therapeutic target for age-related metabolic disease
    • [77] Mouchiroud, L., Houtkooper, R.H., Auwerx, J., NAD(+) metabolism: a therapeutic target for age-related metabolic disease. Crit. Rev. Biochem. Mol. Biol. 48 (2013), 397–408.
    • (2013) Crit. Rev. Biochem. Mol. Biol. , vol.48 , pp. 397-408
    • Mouchiroud, L.1    Houtkooper, R.H.2    Auwerx, J.3
  • 78
    • 84865731753 scopus 로고    scopus 로고
    • The role of PARP-1 and PARP-2 enzymes in metabolic regulation and disease
    • [78] Bai, P., Cantó, C., The role of PARP-1 and PARP-2 enzymes in metabolic regulation and disease. Cell Metab. 16 (2012), 290–295.
    • (2012) Cell Metab. , vol.16 , pp. 290-295
    • Bai, P.1    Cantó, C.2
  • 79
    • 84923080018 scopus 로고    scopus 로고
    • Poly(ADP-ribose) polymerases as modulators of mitochondrial activity
    • [79] Bai, P., Nagy, L., Fodor, T., Liaudet, L., Pacher, P., Poly(ADP-ribose) polymerases as modulators of mitochondrial activity. Trends Endocrinol. Metab. 26 (2015), 75–83.
    • (2015) Trends Endocrinol. Metab. , vol.26 , pp. 75-83
    • Bai, P.1    Nagy, L.2    Fodor, T.3    Liaudet, L.4    Pacher, P.5
  • 80
    • 79953752384 scopus 로고    scopus 로고
    • PARP-1 inhibition increases mitochondrial metabolism through SIRT1 activation
    • [80] Bai, P., Canto, C., Oudart, H., et al. PARP-1 inhibition increases mitochondrial metabolism through SIRT1 activation. Cell Metab. 13 (2011), 461–468.
    • (2011) Cell Metab. , vol.13 , pp. 461-468
    • Bai, P.1    Canto, C.2    Oudart, H.3
  • 81
    • 84902270555 scopus 로고    scopus 로고
    • Pharmacological inhibition of poly(ADP-ribose) polymerases improves fitness and mitochondrial function in skeletal muscle
    • [81] Pirinen, E., Canto, C., Jo, Y.S., et al. Pharmacological inhibition of poly(ADP-ribose) polymerases improves fitness and mitochondrial function in skeletal muscle. Cell Metab. 19 (2014), 1034–1041.
    • (2014) Cell Metab. , vol.19 , pp. 1034-1041
    • Pirinen, E.1    Canto, C.2    Jo, Y.S.3
  • 82
    • 67651210858 scopus 로고    scopus 로고
    • SIRT1 promotes cell survival under stress by deacetylation-dependent deactivation of poly(ADP-ribose) polymerase 1
    • [82] Rajamohan, S.B., Pillai, V.B., Gupta, M., et al. SIRT1 promotes cell survival under stress by deacetylation-dependent deactivation of poly(ADP-ribose) polymerase 1. Mol. Cell. Biol. 29 (2009), 4116–4129.
    • (2009) Mol. Cell. Biol. , vol.29 , pp. 4116-4129
    • Rajamohan, S.B.1    Pillai, V.B.2    Gupta, M.3
  • 83
    • 65549103855 scopus 로고    scopus 로고
    • Circadian clock feedback cycle through NAMPT-mediated NAD+ biosynthesis
    • [83] Ramsey, K.M., Yoshino, J., Brace, C.S., et al. Circadian clock feedback cycle through NAMPT-mediated NAD+ biosynthesis. Science 324 (2009), 651–654.
    • (2009) Science , vol.324 , pp. 651-654
    • Ramsey, K.M.1    Yoshino, J.2    Brace, C.S.3
  • 85
    • 46249100836 scopus 로고    scopus 로고
    • Tissue-specific regulation of SIRT1 by calorie restriction
    • [85] Chen, D., Bruno, J., Easlon, E., et al. Tissue-specific regulation of SIRT1 by calorie restriction. Genes Dev. 22 (2008), 1753–1757.
    • (2008) Genes Dev. , vol.22 , pp. 1753-1757
    • Chen, D.1    Bruno, J.2    Easlon, E.3
  • 86
    • 84890493585 scopus 로고    scopus 로고
    • Nicotinamide phosphoribosyltransferase is required for the calorie restriction-mediated improvements in oxidative stress, mitochondrial biogenesis, and metabolic adaptation
    • [86] Song, J., Ke, S.F., Zhou, C.C., et al. Nicotinamide phosphoribosyltransferase is required for the calorie restriction-mediated improvements in oxidative stress, mitochondrial biogenesis, and metabolic adaptation. J. Gerontol. A Biol. Sci. Med. Sci. 69 (2014), 44–57.
    • (2014) J. Gerontol. A Biol. Sci. Med. Sci. , vol.69 , pp. 44-57
    • Song, J.1    Ke, S.F.2    Zhou, C.C.3
  • 87
    • 80055051189 scopus 로고    scopus 로고
    • Metformin opposes impaired AMPK and SIRT1 function and deleterious changes in core clock protein expression in white adipose tissue of genetically-obese db/db mice
    • [87] Caton, P.W., Kieswich, J., Yaqoob, M.M., Holness, M.J., Sugden, M.C., Metformin opposes impaired AMPK and SIRT1 function and deleterious changes in core clock protein expression in white adipose tissue of genetically-obese db/db mice. Diabetes Obes. Metab. 13 (2011), 1097–1104.
    • (2011) Diabetes Obes. Metab. , vol.13 , pp. 1097-1104
    • Caton, P.W.1    Kieswich, J.2    Yaqoob, M.M.3    Holness, M.J.4    Sugden, M.C.5
  • 88
    • 84886717487 scopus 로고    scopus 로고
    • Therapeutic applications of PARP inhibitors: anticancer therapy and beyond
    • [88] Curtin, N.J., Szabo, C., Therapeutic applications of PARP inhibitors: anticancer therapy and beyond. Mol. Asp. Med. 34 (2013), 1217–1256.
    • (2013) Mol. Asp. Med. , vol.34 , pp. 1217-1256
    • Curtin, N.J.1    Szabo, C.2
  • 89
    • 54849425547 scopus 로고    scopus 로고
    • Specific SIRT1 activation mimics low energy levels and protects against diet-induced metabolic disorders by enhancing fat oxidation
    • [89] Feige, J.N., Lagouge, M., Canto, C., et al. Specific SIRT1 activation mimics low energy levels and protects against diet-induced metabolic disorders by enhancing fat oxidation. Cell Metab. 8 (2008), 347–358.
    • (2008) Cell Metab. , vol.8 , pp. 347-358
    • Feige, J.N.1    Lagouge, M.2    Canto, C.3
  • 90
    • 33845399894 scopus 로고    scopus 로고
    • Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha
    • [90] Lagouge, M., Argmann, C., Gerhart-Hines, Z., et al. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell 127 (2006), 1109–1122.
    • (2006) Cell , vol.127 , pp. 1109-1122
    • Lagouge, M.1    Argmann, C.2    Gerhart-Hines, Z.3
  • 91
    • 25144517287 scopus 로고    scopus 로고
    • Effect of PPAR-alpha and -gamma agonist on the expression of visfatin, adiponectin, and TNF-alpha in visceral fat of OLETF rats
    • [91] Choi, K.C., Ryu, O.H., Lee, K.W., et al. Effect of PPAR-alpha and -gamma agonist on the expression of visfatin, adiponectin, and TNF-alpha in visceral fat of OLETF rats. Biochem. Biophys. Res. Commun. 336 (2005), 747–753.
    • (2005) Biochem. Biophys. Res. Commun. , vol.336 , pp. 747-753
    • Choi, K.C.1    Ryu, O.H.2    Lee, K.W.3
  • 92
    • 34147167024 scopus 로고    scopus 로고
    • Effect of PPAR-delta agonist on the expression of visfatin, adiponectin, and resistin in rat adipose tissue and 3T3-L1 adipocytes
    • [92] Choi, K.C., Lee, S.Y., Yoo, H.J., et al. Effect of PPAR-delta agonist on the expression of visfatin, adiponectin, and resistin in rat adipose tissue and 3T3-L1 adipocytes. Biochem. Biophys. Res. Commun. 357 (2007), 62–67.
    • (2007) Biochem. Biophys. Res. Commun. , vol.357 , pp. 62-67
    • Choi, K.C.1    Lee, S.Y.2    Yoo, H.J.3
  • 93
    • 84997606246 scopus 로고    scopus 로고
    • NAMPT-mediated NAD(+) biosynthesis in adipocytes regulates adipose tissue function and multi-organ insulin sensitivity in mice
    • [93] Stromsdorfer, K.L., Yamaguchi, S., Yoon, M.J., et al. NAMPT-mediated NAD(+) biosynthesis in adipocytes regulates adipose tissue function and multi-organ insulin sensitivity in mice. Cell Rep. 16 (2016), 1851–1860.
    • (2016) Cell Rep. , vol.16 , pp. 1851-1860
    • Stromsdorfer, K.L.1    Yamaguchi, S.2    Yoon, M.J.3
  • 94
    • 11844296800 scopus 로고    scopus 로고
    • Efficacy and safety of high-density lipoprotein cholesterol-increasing compounds: a meta-analysis of randomized controlled trials
    • [94] Birjmohun, R.S., Hutten, B.A., Kastelein, J.J., Stroes, E.S., Efficacy and safety of high-density lipoprotein cholesterol-increasing compounds: a meta-analysis of randomized controlled trials. J. Am. Coll. Cardiol. 45 (2005), 185–197.
    • (2005) J. Am. Coll. Cardiol. , vol.45 , pp. 185-197
    • Birjmohun, R.S.1    Hutten, B.A.2    Kastelein, J.J.3    Stroes, E.S.4
  • 95
    • 36049038217 scopus 로고    scopus 로고
    • The enzyme CD38 (a NAD glycohydrolase, EC 3.2.2.5) is necessary for the development of diet-induced obesity
    • [95] Barbosa, M.T., Soares, S.M., Novak, C.M., et al. The enzyme CD38 (a NAD glycohydrolase, EC 3.2.2.5) is necessary for the development of diet-induced obesity. FASEB J.: Off. Publ. Fed. Am. Soc. Exp. Biol. 21 (2007), 3629–3639.
    • (2007) FASEB J.: Off. Publ. Fed. Am. Soc. Exp. Biol. , vol.21 , pp. 3629-3639
    • Barbosa, M.T.1    Soares, S.M.2    Novak, C.M.3
  • 96
    • 85008145303 scopus 로고    scopus 로고
    • Inhibiting poly ADP-ribosylation increases fatty acid oxidation and protects against fatty liver disease
    • [96] Gariani, K., Ryu, D., Menzies, K.J., et al. Inhibiting poly ADP-ribosylation increases fatty acid oxidation and protects against fatty liver disease. J. Hepatol. 66 (2016), 132–141.
    • (2016) J. Hepatol. , vol.66 , pp. 132-141
    • Gariani, K.1    Ryu, D.2    Menzies, K.J.3
  • 97
    • 84928492175 scopus 로고    scopus 로고
    • Discovery, synthesis, and biological evaluation of thiazoloquin(az)olin(on)es as potent CD38 inhibitors
    • [97] Haffner, C.D., Becherer, J.D., Boros, E.E., et al. Discovery, synthesis, and biological evaluation of thiazoloquin(az)olin(on)es as potent CD38 inhibitors. J. Med. Chem. 58 (2015), 3548–3571.
    • (2015) J. Med. Chem. , vol.58 , pp. 3548-3571
    • Haffner, C.D.1    Becherer, J.D.2    Boros, E.E.3
  • 98
    • 84984824826 scopus 로고    scopus 로고
    • Tissue-specific regulation of sirtuin and nicotinamide adenine dinucleotide biosynthetic pathways identified in C57Bl/6 mice in response to high-fat feeding
    • [98] Drew, J.E., Farquharson, A.J., Horgan, G.W., Williams, L.M., Tissue-specific regulation of sirtuin and nicotinamide adenine dinucleotide biosynthetic pathways identified in C57Bl/6 mice in response to high-fat feeding. J. Nutr. Biochem. 37 (2016), 20–29.
    • (2016) J. Nutr. Biochem. , vol.37 , pp. 20-29
    • Drew, J.E.1    Farquharson, A.J.2    Horgan, G.W.3    Williams, L.M.4
  • 99
    • 84980349950 scopus 로고    scopus 로고
    • Sirt1 decreased adipose inflammation by interacting with Akt2 and inhibiting mTOR/S6K1 pathway in mice
    • [99] Liu, Z., Gan, L., Liu, G., et al. Sirt1 decreased adipose inflammation by interacting with Akt2 and inhibiting mTOR/S6K1 pathway in mice. J. Lipid Res. 57 (2016), 1373–1381.
    • (2016) J. Lipid Res. , vol.57 , pp. 1373-1381
    • Liu, Z.1    Gan, L.2    Liu, G.3
  • 100
    • 26844558334 scopus 로고    scopus 로고
    • Calorie restriction promotes mitochondrial biogenesis by inducing the expression of eNOS
    • [100] Nisoli, E., Tonello, C., Cardile, A., et al. Calorie restriction promotes mitochondrial biogenesis by inducing the expression of eNOS. Science 310 (2005), 314–317.
    • (2005) Science , vol.310 , pp. 314-317
    • Nisoli, E.1    Tonello, C.2    Cardile, A.3
  • 101
    • 84864678390 scopus 로고    scopus 로고
    • High-fat diet triggers inflammation-induced cleavage of SIRT1 in adipose tissue to promote metabolic dysfunction
    • [101] Chalkiadaki, A., Guarente, L., High-fat diet triggers inflammation-induced cleavage of SIRT1 in adipose tissue to promote metabolic dysfunction. Cell Metab. 16 (2012), 180–188.
    • (2012) Cell Metab. , vol.16 , pp. 180-188
    • Chalkiadaki, A.1    Guarente, L.2
  • 102
    • 84856628731 scopus 로고    scopus 로고
    • Dietary obesity-associated Hif1α activation in adipocytes restricts fatty acid oxidation and energy expenditure via suppression of the Sirt2-NAD(+) system
    • [102] Krishnan, J., Danzer, C., Simka, T., et al. Dietary obesity-associated Hif1α activation in adipocytes restricts fatty acid oxidation and energy expenditure via suppression of the Sirt2-NAD(+) system. Genes Dev. 26 (2012), 259–270.
    • (2012) Genes Dev. , vol.26 , pp. 259-270
    • Krishnan, J.1    Danzer, C.2    Simka, T.3
  • 103
    • 3142740860 scopus 로고    scopus 로고
    • Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase
    • [103] Cohen, H.Y., Miller, C., Bitterman, K.J., et al. Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science 305 (2004), 390–392.
    • (2004) Science , vol.305 , pp. 390-392
    • Cohen, H.Y.1    Miller, C.2    Bitterman, K.J.3
  • 104
    • 84878891625 scopus 로고    scopus 로고
    • SIRT4 coordinates the balance between lipid synthesis and catabolism by repressing malonyl CoA decarboxylase
    • [104] Laurent, G., German, N.J., Saha, A.K., et al. SIRT4 coordinates the balance between lipid synthesis and catabolism by repressing malonyl CoA decarboxylase. Mol. Cell 50 (2013), 686–698.
    • (2013) Mol. Cell , vol.50 , pp. 686-698
    • Laurent, G.1    German, N.J.2    Saha, A.K.3
  • 105
    • 64049089450 scopus 로고    scopus 로고
    • SIRT2 suppresses adipocyte differentiation by deacetylating FOXO1 and enhancing FOXO1's repressive interaction with PPARγ
    • [105] Wang, F., Tong, Q., SIRT2 suppresses adipocyte differentiation by deacetylating FOXO1 and enhancing FOXO1's repressive interaction with PPARγ. Mol. Biol. Cell 20 (2009), 801–808.
    • (2009) Mol. Biol. Cell , vol.20 , pp. 801-808
    • Wang, F.1    Tong, Q.2
  • 106
    • 84655167647 scopus 로고    scopus 로고
    • Association of sirtuin 1 (SIRT1) gene SNPs and transcript expression levels with severe obesity
    • [106] Clark, S.J., Falchi, M., Olsson, B., et al. Association of sirtuin 1 (SIRT1) gene SNPs and transcript expression levels with severe obesity. Obesity 20 (2012), 178–185.
    • (2012) Obesity , vol.20 , pp. 178-185
    • Clark, S.J.1    Falchi, M.2    Olsson, B.3
  • 107
    • 82255164629 scopus 로고    scopus 로고
    • SirT1 regulates adipose tissue inflammation
    • [107] Gillum, M.P., Kotas, M.E., Erion, D.M., et al. SirT1 regulates adipose tissue inflammation. Diabetes 60 (2011), 3235–3245.
    • (2011) Diabetes , vol.60 , pp. 3235-3245
    • Gillum, M.P.1    Kotas, M.E.2    Erion, D.M.3
  • 108
    • 84984619696 scopus 로고    scopus 로고
    • SIRT1 and SIRT7 expression in adipose tissues of obese and normal-weight individuals is regulated by microRNAs but not by methylation status
    • [108] Kurylowicz, A., Owczarz, M., Polosak, J., et al. SIRT1 and SIRT7 expression in adipose tissues of obese and normal-weight individuals is regulated by microRNAs but not by methylation status. Int. J. Obes. 40 (2016), 1635–1642.
    • (2016) Int. J. Obes. , vol.40 , pp. 1635-1642
    • Kurylowicz, A.1    Owczarz, M.2    Polosak, J.3
  • 109
    • 49549105992 scopus 로고    scopus 로고
    • Low Sirt1 expression, which is upregulated by fasting, in human adipose tissue from obese women
    • [109] Pedersen, S.B., Olholm, J., Paulsen, S.K., Bennetzen, M.F., Richelsen, B., Low Sirt1 expression, which is upregulated by fasting, in human adipose tissue from obese women. Int. J. Obes. 32 (2008), 1250–1255.
    • (2008) Int. J. Obes. , vol.32 , pp. 1250-1255
    • Pedersen, S.B.1    Olholm, J.2    Paulsen, S.K.3    Bennetzen, M.F.4    Richelsen, B.5
  • 110
    • 84885384180 scopus 로고    scopus 로고
    • Association between low SIRT1 expression in visceral and subcutaneous adipose tissues and metabolic abnormalities in women with obesity and type 2 diabetes
    • [110] Song, Y.S., Lee, S.K., Jang, Y.J., et al. Association between low SIRT1 expression in visceral and subcutaneous adipose tissues and metabolic abnormalities in women with obesity and type 2 diabetes. Diabetes Res. Clin. Pract. 101 (2013), 341–348.
    • (2013) Diabetes Res. Clin. Pract. , vol.101 , pp. 341-348
    • Song, Y.S.1    Lee, S.K.2    Jang, Y.J.3
  • 111
    • 84888002955 scopus 로고    scopus 로고
    • Adipose tissue and liver expression of SIRT1, 3, and 6 increase after extensive weight loss in morbid obesity
    • [111] Moschen, A.R., Wieser, V., Gerner, R.R., et al. Adipose tissue and liver expression of SIRT1, 3, and 6 increase after extensive weight loss in morbid obesity. J. Hepatol. 59 (2013), 1315–1322.
    • (2013) J. Hepatol. , vol.59 , pp. 1315-1322
    • Moschen, A.R.1    Wieser, V.2    Gerner, R.R.3
  • 113
    • 0037304599 scopus 로고    scopus 로고
    • Mitochondrial biogenesis and remodeling during adipogenesis and in response to the insulin sensitizer rosiglitazone
    • [113] Wilson-Fritch, L., Burkart, A., Bell, G., et al. Mitochondrial biogenesis and remodeling during adipogenesis and in response to the insulin sensitizer rosiglitazone. Mol. Cell. Biol. 23 (2003), 1085–1094.
    • (2003) Mol. Cell. Biol. , vol.23 , pp. 1085-1094
    • Wilson-Fritch, L.1    Burkart, A.2    Bell, G.3
  • 114
    • 3042681042 scopus 로고    scopus 로고
    • Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-[gamma]
    • [114] Picard, F., Kurtev, M., Chung, N., et al. Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-[gamma]. Nature 429 (2004), 771–776.
    • (2004) Nature , vol.429 , pp. 771-776
    • Picard, F.1    Kurtev, M.2    Chung, N.3
  • 115
    • 84933678205 scopus 로고    scopus 로고
    • Adipocyte SIRT1 knockout promotes PPARγ activity, adipogenesis and insulin sensitivity in chronic-HFD and obesity
    • [115] Mayoral, R., Osborn, O., McNelis, J., et al. Adipocyte SIRT1 knockout promotes PPARγ activity, adipogenesis and insulin sensitivity in chronic-HFD and obesity. Mol. Metab. 4 (2015), 378–391.
    • (2015) Mol. Metab. , vol.4 , pp. 378-391
    • Mayoral, R.1    Osborn, O.2    McNelis, J.3
  • 116
    • 84859400813 scopus 로고    scopus 로고
    • Angiogenic deficiency and adipose tissue dysfunction are associated with macrophage malfunction in SIRT1(−/−) mice
    • [116] Xu, F., Burk, D., Gao, Z., et al. Angiogenic deficiency and adipose tissue dysfunction are associated with macrophage malfunction in SIRT1(−/−) mice. Endocrinology 153 (2012), 1706–1716.
    • (2012) Endocrinology , vol.153 , pp. 1706-1716
    • Xu, F.1    Burk, D.2    Gao, Z.3
  • 118
    • 84874680366 scopus 로고    scopus 로고
    • SIRT1 regulates differentiation of mesenchymal stem cells by deacetylating β-catenin
    • [118] Simic, P., Zainabadi, K., Bell, E., et al. SIRT1 regulates differentiation of mesenchymal stem cells by deacetylating β-catenin. EMBO Mol. Med. 5 (2013), 430–440.
    • (2013) EMBO Mol. Med. , vol.5 , pp. 430-440
    • Simic, P.1    Zainabadi, K.2    Bell, E.3
  • 119
    • 34547397081 scopus 로고    scopus 로고
    • SIRT2 regulates adipocyte differentiation through FoxO1 acetylation/deacetylation
    • [119] Jing, E., Gesta, S., Kahn, C.R., SIRT2 regulates adipocyte differentiation through FoxO1 acetylation/deacetylation. Cell Metab. 6 (2007), 105–114.
    • (2007) Cell Metab. , vol.6 , pp. 105-114
    • Jing, E.1    Gesta, S.2    Kahn, C.R.3
  • 120
    • 84941180494 scopus 로고    scopus 로고
    • MiR-93 controls adiposity via inhibition of Sirt7 and Tbx3
    • [120] Cioffi, M., Vallespinos-Serrano, M., Trabulo Sara, M., et al. MiR-93 controls adiposity via inhibition of Sirt7 and Tbx3. Cell Rep. 12 (2015), 1594–1605.
    • (2015) Cell Rep. , vol.12 , pp. 1594-1605
    • Cioffi, M.1    Vallespinos-Serrano, M.2    Trabulo Sara, M.3
  • 121
    • 84893362423 scopus 로고    scopus 로고
    • Sirt7 promotes adipogenesis by binding to and inhibiting Sirt1
    • [121] Bober, E., Fang, J., Smolka, C., et al. Sirt7 promotes adipogenesis by binding to and inhibiting Sirt1. BMC Proc., 6, 2012, P57.
    • (2012) BMC Proc. , vol.6 , pp. P57
    • Bober, E.1    Fang, J.2    Smolka, C.3
  • 122
    • 84855242257 scopus 로고    scopus 로고
    • Poly(ADP-Ribose)polymerase-1 (PARP1) controls adipogenic gene expression and adipocyte function
    • [122] Erener, S., Hesse, M., Kostadinova, R., Hottiger, M.O., Poly(ADP-Ribose)polymerase-1 (PARP1) controls adipogenic gene expression and adipocyte function. Mol. Endocrinol. 26 (2012), 79–86.
    • (2012) Mol. Endocrinol. , vol.26 , pp. 79-86
    • Erener, S.1    Hesse, M.2    Kostadinova, R.3    Hottiger, M.O.4
  • 123
    • 84861775176 scopus 로고    scopus 로고
    • ARTD1 deletion causes increased hepatic lipid accumulation in mice fed a high-fat diet and impairs adipocyte function and differentiation
    • [123] Erener, S., Mirsaidi, A., Hesse, M., et al. ARTD1 deletion causes increased hepatic lipid accumulation in mice fed a high-fat diet and impairs adipocyte function and differentiation. FASEB J. 26 (2012), 2631–2638.
    • (2012) FASEB J. , vol.26 , pp. 2631-2638
    • Erener, S.1    Mirsaidi, A.2    Hesse, M.3
  • 124
    • 84941124962 scopus 로고    scopus 로고
    • ARTD1-induced poly-ADP-ribose formation enhances PPARγ ligand binding and co-factor exchange
    • [124] Lehmann, M., Pirinen, E., Mirsaidi, A., et al. ARTD1-induced poly-ADP-ribose formation enhances PPARγ ligand binding and co-factor exchange. Nucleic Acids Res. 43 (2015), 129–142.
    • (2015) Nucleic Acids Res. , vol.43 , pp. 129-142
    • Lehmann, M.1    Pirinen, E.2    Mirsaidi, A.3
  • 125
    • 38049129655 scopus 로고    scopus 로고
    • Peroxisome proliferator-activated receptor (PPAR)-2 controls adipocyte differentiation and adipose tissue function through the regulation of the activity of the retinoid X receptor/PPARγ heterodimer
    • [125] Bai, P., Houten, S.M., Huber, A., et al. Peroxisome proliferator-activated receptor (PPAR)-2 controls adipocyte differentiation and adipose tissue function through the regulation of the activity of the retinoid X receptor/PPARγ heterodimer. J. Biol. Chem. 282 (2007), 37738–37746.
    • (2007) J. Biol. Chem. , vol.282 , pp. 37738-37746
    • Bai, P.1    Houten, S.M.2    Huber, A.3
  • 126
    • 84878326433 scopus 로고    scopus 로고
    • Selective overexpression of human SIRT1 in adipose tissue enhances energy homeostasis and prevents the deterioration of insulin sensitivity with ageing in mice
    • [126] Xu, C., Bai, B., Fan, P., et al. Selective overexpression of human SIRT1 in adipose tissue enhances energy homeostasis and prevents the deterioration of insulin sensitivity with ageing in mice. Am. J. Transl. Res. 5 (2013), 412–426.
    • (2013) Am. J. Transl. Res. , vol.5 , pp. 412-426
    • Xu, C.1    Bai, B.2    Fan, P.3
  • 127
    • 84921829213 scopus 로고    scopus 로고
    • SIRT1 enhances glucose tolerance by potentiating brown adipose tissue function
    • [127] Boutant, M., Joffraud, M., Kulkarni, S.S., et al. SIRT1 enhances glucose tolerance by potentiating brown adipose tissue function. Mol. Metab. 4 (2015), 118–131.
    • (2015) Mol. Metab. , vol.4 , pp. 118-131
    • Boutant, M.1    Joffraud, M.2    Kulkarni, S.S.3
  • 128
    • 80051826470 scopus 로고    scopus 로고
    • SIRT1 controls lipolysis in adipocytes via FOXO1-mediated expression of ATGL
    • [128] Chakrabarti, P., English, T., Karki, S., et al. SIRT1 controls lipolysis in adipocytes via FOXO1-mediated expression of ATGL. J. Lipid Res. 52 (2011), 1693–1701.
    • (2011) J. Lipid Res. , vol.52 , pp. 1693-1701
    • Chakrabarti, P.1    English, T.2    Karki, S.3
  • 129
    • 77954614584 scopus 로고    scopus 로고
    • Resveratrol regulates human adipocyte number and function in a Sirt1-dependent manner
    • [129] Fischer-Posovszky, P., Kukulus, V., Tews, D., et al. Resveratrol regulates human adipocyte number and function in a Sirt1-dependent manner. Am. J. Clin. Nutr. 92 (2010), 5–15.
    • (2010) Am. J. Clin. Nutr. , vol.92 , pp. 5-15
    • Fischer-Posovszky, P.1    Kukulus, V.2    Tews, D.3
  • 130
    • 84861819258 scopus 로고    scopus 로고
    • Malonyl-CoA: the regulator of fatty acid synthesis and oxidation
    • [130] Foster, D.W., Malonyl-CoA: the regulator of fatty acid synthesis and oxidation. J. Clin. Invest. 122 (2012), 1958–1959.
    • (2012) J. Clin. Invest. , vol.122 , pp. 1958-1959
    • Foster, D.W.1
  • 131
    • 77953244349 scopus 로고    scopus 로고
    • SIRT6 protects against pathological damage caused by diet-induced obesity
    • [131] Kanfi, Y., Peshti, V., Gil, R., et al. SIRT6 protects against pathological damage caused by diet-induced obesity. Aging Cell 9 (2010), 162–173.
    • (2010) Aging Cell , vol.9 , pp. 162-173
    • Kanfi, Y.1    Peshti, V.2    Gil, R.3
  • 132
    • 84975691334 scopus 로고    scopus 로고
    • SIRT1 gain of function does not mimic or enhance the adaptations to intermittent fasting
    • [132] Boutant, M., Kulkarni Sameer, S., Joffraud, M., et al. SIRT1 gain of function does not mimic or enhance the adaptations to intermittent fasting. Cell Rep. 14 (2016), 2068–2075.
    • (2016) Cell Rep. , vol.14 , pp. 2068-2075
    • Boutant, M.1    Kulkarni Sameer, S.2    Joffraud, M.3
  • 133
    • 84866771337 scopus 로고    scopus 로고
    • SIRT1 regulates TNF-α-induced expression of CD40 in 3T3-L1 adipocytes via NF-κB pathway
    • [133] Lin, Q.-Q., Yan, C.-F., Lin, R., et al. SIRT1 regulates TNF-α-induced expression of CD40 in 3T3-L1 adipocytes via NF-κB pathway. Cytokine 60 (2012), 447–455.
    • (2012) Cytokine , vol.60 , pp. 447-455
    • Lin, Q.-Q.1    Yan, C.-F.2    Lin, R.3
  • 134
    • 77954515012 scopus 로고    scopus 로고
    • Lack of SIRT1 (mammalian sirtuin 1) activity leads to liver steatosis in the SIRT1+/− mice: a role of lipid mobilization and inflammation
    • [134] Xu, F., Gao, Z., Zhang, J., et al. Lack of SIRT1 (mammalian sirtuin 1) activity leads to liver steatosis in the SIRT1+/− mice: a role of lipid mobilization and inflammation. Endocrinology 151 (2010), 2504–2514.
    • (2010) Endocrinology , vol.151 , pp. 2504-2514
    • Xu, F.1    Gao, Z.2    Zhang, J.3
  • 135
    • 84897484512 scopus 로고    scopus 로고
    • SIRT7 controls hepatic lipid metabolism by regulating the ubiquitin-proteasome pathway
    • [135] Yoshizawa, T., Karim, M.F., Sato, Y., et al. SIRT7 controls hepatic lipid metabolism by regulating the ubiquitin-proteasome pathway. Cell Metab. 19 (2014), 712–721.
    • (2014) Cell Metab. , vol.19 , pp. 712-721
    • Yoshizawa, T.1    Karim, M.F.2    Sato, Y.3
  • 136
    • 33845985335 scopus 로고    scopus 로고
    • SIRT1 regulates adiponectin gene expression through Foxo1-C/enhancer-binding protein α transcriptional complex
    • [136] Qiao, L., Shao, J., SIRT1 regulates adiponectin gene expression through Foxo1-C/enhancer-binding protein α transcriptional complex. J. Biol. Chem. 281 (2006), 39915–39924.
    • (2006) J. Biol. Chem. , vol.281 , pp. 39915-39924
    • Qiao, L.1    Shao, J.2
  • 137
    • 34347338702 scopus 로고    scopus 로고
    • Adiponectin secretion is regulated by SIRT1 and the endoplasmic reticulum oxidoreductase Ero1-Lα
    • [137] Qiang, L., Wang, H., Farmer, S.R., Adiponectin secretion is regulated by SIRT1 and the endoplasmic reticulum oxidoreductase Ero1-Lα. Mol. Cell. Biol. 27 (2007), 4698–4707.
    • (2007) Mol. Cell. Biol. , vol.27 , pp. 4698-4707
    • Qiang, L.1    Wang, H.2    Farmer, S.R.3
  • 138
    • 84959332840 scopus 로고    scopus 로고
    • Diet-induced obesity and insulin resistance are associated with brown fat degeneration in SIRT1-deficient mice
    • [138] Xu, F., Zheng, X., Lin, B., et al. Diet-induced obesity and insulin resistance are associated with brown fat degeneration in SIRT1-deficient mice. Obesity 24 (2016), 634–642.
    • (2016) Obesity , vol.24 , pp. 634-642
    • Xu, F.1    Zheng, X.2    Lin, B.3
  • 139
    • 52749091816 scopus 로고    scopus 로고
    • SirT1 gain-of-function increases energy efficiency and prevents diabetes in mice
    • [139] Banks, A.S., Kon, N., Knight, C., et al. SirT1 gain-of-function increases energy efficiency and prevents diabetes in mice. Cell Metab. 8 (2008), 333–341.
    • (2008) Cell Metab. , vol.8 , pp. 333-341
    • Banks, A.S.1    Kon, N.2    Knight, C.3
  • 140
    • 36248975293 scopus 로고    scopus 로고
    • SIRT1 transgenic mice show phenotypes resembling calorie restriction
    • [140] Bordone, L., Cohen, D., Robinson, A., et al. SIRT1 transgenic mice show phenotypes resembling calorie restriction. Aging Cell 6 (2007), 759–767.
    • (2007) Aging Cell , vol.6 , pp. 759-767
    • Bordone, L.1    Cohen, D.2    Robinson, A.3
  • 141
    • 17144424946 scopus 로고    scopus 로고
    • SIRT3, a mitochondrial sirtuin deacetylase, regulates mitochondrial function and thermogenesis in brown adipocytes
    • [141] Shi, T., Wang, F., Stieren, E., Tong, Q., SIRT3, a mitochondrial sirtuin deacetylase, regulates mitochondrial function and thermogenesis in brown adipocytes. J. Biol. Chem. 280 (2005), 13560–13567.
    • (2005) J. Biol. Chem. , vol.280 , pp. 13560-13567
    • Shi, T.1    Wang, F.2    Stieren, E.3    Tong, Q.4
  • 142
    • 77950806433 scopus 로고    scopus 로고
    • SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation
    • [142] Hirschey, M.D., Shimazu, T., Goetzman, E., et al. SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation. Nature 464 (2010), 121–125.
    • (2010) Nature , vol.464 , pp. 121-125
    • Hirschey, M.D.1    Shimazu, T.2    Goetzman, E.3
  • 143
    • 80053564714 scopus 로고    scopus 로고
    • CREB and ChREBP oppositely regulate SIRT1 expression in response to energy availability
    • [143] Noriega, L.G., Feige, J.N., Canto, C., et al. CREB and ChREBP oppositely regulate SIRT1 expression in response to energy availability. EMBO Rep. 12 (2011), 1069–1076.
    • (2011) EMBO Rep. , vol.12 , pp. 1069-1076
    • Noriega, L.G.1    Feige, J.N.2    Canto, C.3
  • 144
    • 84255198350 scopus 로고    scopus 로고
    • The cAMP/PKA pathway rapidly activates SIRT1 to promote fatty acid oxidation independently of changes in NAD(+)
    • [144] Gerhart-Hines, Z., Dominy, J.E. Jr., Blattler, S.M., et al. The cAMP/PKA pathway rapidly activates SIRT1 to promote fatty acid oxidation independently of changes in NAD(+). Mol. Cell 44 (2011), 851–863.
    • (2011) Mol. Cell , vol.44 , pp. 851-863
    • Gerhart-Hines, Z.1    Dominy, J.E.2    Blattler, S.M.3
  • 145
    • 79955768567 scopus 로고    scopus 로고
    • Peroxisome proliferator-activated receptor-gamma coactivator-1alpha controls transcription of the Sirt3 gene, an essential component of the thermogenic brown adipocyte phenotype
    • [145] Giralt, A., Hondares, E., Villena, J.A., et al. Peroxisome proliferator-activated receptor-gamma coactivator-1alpha controls transcription of the Sirt3 gene, an essential component of the thermogenic brown adipocyte phenotype. J. Biol. Chem. 286 (2011), 16958–16966.
    • (2011) J. Biol. Chem. , vol.286 , pp. 16958-16966
    • Giralt, A.1    Hondares, E.2    Villena, J.A.3
  • 146
    • 79955768567 scopus 로고    scopus 로고
    • Peroxisome proliferator-activated receptor-γ coactivator-1α controls transcription of the Sirt3 gene, an essential component of the thermogenic brown adipocyte phenotype
    • [146] Giralt, A., Hondares, E., Villena, J.A., et al. Peroxisome proliferator-activated receptor-γ coactivator-1α controls transcription of the Sirt3 gene, an essential component of the thermogenic brown adipocyte phenotype. J. Biol. Chem. 286 (2011), 16958–16966.
    • (2011) J. Biol. Chem. , vol.286 , pp. 16958-16966
    • Giralt, A.1    Hondares, E.2    Villena, J.A.3
  • 147
    • 0042357130 scopus 로고    scopus 로고
    • Acquirement of brown fat cell features by human white adipocytes
    • [147] Tiraby, C., Tavernier, G., Lefort, C., et al. Acquirement of brown fat cell features by human white adipocytes. J. Biol. Chem. 278 (2003), 33370–33376.
    • (2003) J. Biol. Chem. , vol.278 , pp. 33370-33376
    • Tiraby, C.1    Tavernier, G.2    Lefort, C.3
  • 148
    • 84864615516 scopus 로고    scopus 로고
    • Brown remodeling of white adipose tissue by SirT1-dependent deacetylation of Pparγ
    • [148] Qiang, L., Wang, L., Kon, N., et al. Brown remodeling of white adipose tissue by SirT1-dependent deacetylation of Pparγ. Cell 150 (2012), 620–632.
    • (2012) Cell , vol.150 , pp. 620-632
    • Qiang, L.1    Wang, L.2    Kon, N.3
  • 149
    • 35348980724 scopus 로고    scopus 로고
    • SIRT1 controls endothelial angiogenic functions during vascular growth
    • [149] Potente, M., Ghaeni, L., Baldessari, D., et al. SIRT1 controls endothelial angiogenic functions during vascular growth. Genes Dev. 21 (2007), 2644–2658.
    • (2007) Genes Dev. , vol.21 , pp. 2644-2658
    • Potente, M.1    Ghaeni, L.2    Baldessari, D.3
  • 150
    • 80051716282 scopus 로고    scopus 로고
    • Succinate dehydrogenase is a direct target of sirtuin 3 deacetylase activity
    • [150] Finley, L.W., Haas, W., Desquiret-Dumas, V., et al. Succinate dehydrogenase is a direct target of sirtuin 3 deacetylase activity. PloS One, 6, 2011, e23295.
    • (2011) PloS One , vol.6 , pp. e23295
    • Finley, L.W.1    Haas, W.2    Desquiret-Dumas, V.3
  • 151
    • 84860809347 scopus 로고    scopus 로고
    • SIRT3, a pivotal actor in mitochondrial functions: metabolism, cell death and aging
    • [151] Giralt, A., Villarroya, F., SIRT3, a pivotal actor in mitochondrial functions: metabolism, cell death and aging. Biochem. J. 444 (2012), 1–10.
    • (2012) Biochem. J. , vol.444 , pp. 1-10
    • Giralt, A.1    Villarroya, F.2
  • 152
    • 79751503329 scopus 로고    scopus 로고
    • Brown adipose tissue activity controls triglyceride clearance
    • [152] Bartelt, A., Bruns, O.T., Reimer, R., et al. Brown adipose tissue activity controls triglyceride clearance. Nat. Med. 17 (2011), 200–205.
    • (2011) Nat. Med. , vol.17 , pp. 200-205
    • Bartelt, A.1    Bruns, O.T.2    Reimer, R.3
  • 153
    • 0347989317 scopus 로고    scopus 로고
    • Brown adipose tissue: function and physiological significance
    • [153] Cannon, B., Nedergaard, J., Brown adipose tissue: function and physiological significance. Physiol. Rev. 84 (2004), 277–359.
    • (2004) Physiol. Rev. , vol.84 , pp. 277-359
    • Cannon, B.1    Nedergaard, J.2
  • 155
    • 74549142287 scopus 로고    scopus 로고
    • The histone deacetylase Sirt6 regulates glucose homeostasis via Hif1α
    • [155] Zhong, L., D'Urso, A., Toiber, D., et al. The histone deacetylase Sirt6 regulates glucose homeostasis via Hif1α. Cell 140 (2010), 280–293.
    • (2010) Cell , vol.140 , pp. 280-293
    • Zhong, L.1    D'Urso, A.2    Toiber, D.3
  • 156
    • 67650488877 scopus 로고    scopus 로고
    • SirT1 knockdown in liver decreases basal hepatic glucose production and increases hepatic insulin responsiveness in diabetic rats
    • [156] Erion, D.M., Yonemitsu, S., Nie, Y., et al. SirT1 knockdown in liver decreases basal hepatic glucose production and increases hepatic insulin responsiveness in diabetic rats. Proc. Natl. Acad. Sci. USA 27 (2009), 11288–11293.
    • (2009) Proc. Natl. Acad. Sci. USA , vol.27 , pp. 11288-11293
    • Erion, D.M.1    Yonemitsu, S.2    Nie, Y.3
  • 157
    • 37549002891 scopus 로고    scopus 로고
    • Mammalian Sir2 homolog SIRT3 regulates global mitochondrial lysine acetylation
    • [157] Lombard, D.B., Alt, F.W., Cheng, H.L., et al. Mammalian Sir2 homolog SIRT3 regulates global mitochondrial lysine acetylation. Mol. Cell. Biol. 24 (2007), 8807–8814.
    • (2007) Mol. Cell. Biol. , vol.24 , pp. 8807-8814
    • Lombard, D.B.1    Alt, F.W.2    Cheng, H.L.3
  • 158
    • 31044445366 scopus 로고    scopus 로고
    • Genomic instability and aging-like phenotype in the absence of mammalian SIRT6
    • [158] Mostoslavsky, R., Chua, K.F., Lombard, D.B., et al. Genomic instability and aging-like phenotype in the absence of mammalian SIRT6. Cell 124 (2006), 315–329.
    • (2006) Cell , vol.124 , pp. 315-329
    • Mostoslavsky, R.1    Chua, K.F.2    Lombard, D.B.3
  • 159
    • 77952577473 scopus 로고    scopus 로고
    • PARP1 deficiency exacerbates diet-induced obesity in mice
    • [159] Devalaraja-Narashimha, K., Padanilam, B.J., PARP1 deficiency exacerbates diet-induced obesity in mice. J. Endocrinol. 205 (2010), 243–252.
    • (2010) J. Endocrinol. , vol.205 , pp. 243-252
    • Devalaraja-Narashimha, K.1    Padanilam, B.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.