-
1
-
-
84962076500
-
Brown and beige fat: Molecular parts of a thermogenic machine
-
Cohen P, Spiegelman BM. Brown and beige fat: molecular parts of a thermogenic machine. Diabetes 2015;64:2346-2351
-
(2015)
Diabetes
, vol.64
, pp. 2346-2351
-
-
Cohen, P.1
Spiegelman, B.M.2
-
3
-
-
85047689659
-
Mitochondrial remodeling in adipose tissue associated with obesity and treatment with rosiglitazone
-
Wilson-Fritch L, Nicoloro S, Chouinard M, et al. Mitochondrial remodeling in adipose tissue associated with obesity and treatment with rosiglitazone. J Clin Invest 2004;114:1281-1289
-
(2004)
J Clin Invest
, vol.114
, pp. 1281-1289
-
-
Wilson-Fritch, L.1
Nicoloro, S.2
Chouinard, M.3
-
4
-
-
34347391646
-
Adipose mitochondrial biogenesis is suppressed in db/db and high-fat diet-fed mice and improved by rosiglitazone
-
Rong JX, Qiu Y, Hansen MK, et al. Adipose mitochondrial biogenesis is suppressed in db/db and high-fat diet-fed mice and improved by rosiglitazone. Diabetes 2007;56:1751-1760
-
(2007)
Diabetes
, vol.56
, pp. 1751-1760
-
-
Rong, J.X.1
Qiu, Y.2
Hansen, M.K.3
-
5
-
-
17844385363
-
Pioglitazone induces mitochondrial biogenesis in human subcutaneous adipose tissue in vivo
-
Bogacka I, Xie H, Bray GA, Smith SR. Pioglitazone induces mitochondrial biogenesis in human subcutaneous adipose tissue in vivo. Diabetes 2005;54: 1392-1399
-
(2005)
Diabetes
, vol.54
, pp. 1392-1399
-
-
Bogacka, I.1
Xie, H.2
Bray, G.A.3
Smith, S.R.4
-
6
-
-
33644821858
-
Mitochondria are impaired in the adipocytes of type 2 diabetic mice
-
Choo HJ, Kim JH, Kwon OB, et al. Mitochondria are impaired in the adipocytes of type 2 diabetic mice. Diabetologia 2006;49:784-791
-
(2006)
Diabetologia
, vol.49
, pp. 784-791
-
-
Choo, H.J.1
Kim, J.H.2
Kwon, O.B.3
-
7
-
-
0028641559
-
Stimulation of adipogenesis in fibroblasts by PPAR gamma 2, a lipid-activated transcription factor
-
Tontonoz P, Hu E, Spiegelman BM. Stimulation of adipogenesis in fibroblasts by PPAR gamma 2, a lipid-activated transcription factor. Cell 1994;79: 1147-1156
-
(1994)
Cell
, vol.79
, pp. 1147-1156
-
-
Tontonoz, P.1
Hu, E.2
Spiegelman, B.M.3
-
8
-
-
57649155209
-
Paradoxical effect of mitochondrial respiratory chain impairment on insulin signaling and glucose transport in adipose cells
-
Shi X, Burkart A, Nicoloro SM, Czech MP, Straubhaar J, Corvera S. Paradoxical effect of mitochondrial respiratory chain impairment on insulin signaling and glucose transport in adipose cells. J Biol Chem 2008;283:30658-30667
-
(2008)
J Biol Chem
, vol.283
, pp. 30658-30667
-
-
Shi, X.1
Burkart, A.2
Nicoloro, S.M.3
Czech, M.P.4
Straubhaar, J.5
Corvera, S.6
-
9
-
-
0037304599
-
Mitochondrial biogenesis and remodeling during adipogenesis and in response to the insulin sensitizer rosiglitazone
-
Wilson-Fritch L, Burkart A, Bell G, et al. Mitochondrial biogenesis and remodeling during adipogenesis and in response to the insulin sensitizer rosiglitazone. Mol Cell Biol 2003;23:1085-1094
-
(2003)
Mol Cell Biol
, vol.23
, pp. 1085-1094
-
-
Wilson-Fritch, L.1
Burkart, A.2
Bell, G.3
-
10
-
-
71949083755
-
Possible role of mitochondrial remodelling on cellular triacylglycerol accumulation
-
Kita T, Nishida H, Shibata H, Niimi S, Higuti T, Arakaki N. Possible role of mitochondrial remodelling on cellular triacylglycerol accumulation. J Biochem 2009;146:787-796
-
(2009)
J Biochem
, vol.146
, pp. 787-796
-
-
Kita, T.1
Nishida, H.2
Shibata, H.3
Niimi, S.4
Higuti, T.5
Arakaki, N.6
-
11
-
-
84856368290
-
Dynamic regulation of mitochondrial network and oxidative functions during 3T3-L1 fat cell differentiation
-
Ducluzeau PH, Priou M, Weitheimer M, et al. Dynamic regulation of mitochondrial network and oxidative functions during 3T3-L1 fat cell differentiation. J Physiol Biochem 2011;67:285-296
-
(2011)
J Physiol Biochem
, vol.67
, pp. 285-296
-
-
Ducluzeau, P.H.1
Priou, M.2
Weitheimer, M.3
-
12
-
-
84875906572
-
Mitochondrial dynamics in the regulation of nutrient utilization and energy expenditure
-
Liesa M, Shirihai OS. Mitochondrial dynamics in the regulation of nutrient utilization and energy expenditure. Cell Metab 2013;17:491-506
-
(2013)
Cell Metab
, vol.17
, pp. 491-506
-
-
Liesa, M.1
Shirihai, O.S.2
-
13
-
-
0036788293
-
Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes
-
Kelley DE, He J, Menshikova EV, Ritov VB. Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes. Diabetes 2002;51:2944-2950
-
(2002)
Diabetes
, vol.51
, pp. 2944-2950
-
-
Kelley, D.E.1
He, J.2
Menshikova, E.V.3
Ritov, V.B.4
-
14
-
-
0037593949
-
Mitofusin-2 determines mitochondrial network architecture and mitochondrial metabolism. A novel regulatory mechanism altered in obesity
-
Bach D, Pich S, Soriano FX, et al. Mitofusin-2 determines mitochondrial network architecture and mitochondrial metabolism. A novel regulatory mechanism altered in obesity. J Biol Chem 2003;278:17190-17197
-
(2003)
J Biol Chem
, vol.278
, pp. 17190-17197
-
-
Bach, D.1
Pich, S.2
Soriano, F.X.3
-
15
-
-
84863011641
-
Mitochondrial fission contributes to mitochondrial dysfunction and insulin resistance in skeletal muscle
-
Jheng HF, Tsai PJ, Guo SM, et al. Mitochondrial fission contributes to mitochondrial dysfunction and insulin resistance in skeletal muscle. Mol Cell Biol 2012;32:309-319
-
(2012)
Mol Cell Biol
, vol.32
, pp. 309-319
-
-
Jheng, H.F.1
Tsai, P.J.2
Guo, S.M.3
-
16
-
-
67549101188
-
Role of BNIP3 and NIX in cell death, autophagy, and mitophagy
-
Zhang J, Ney PA. Role of BNIP3 and NIX in cell death, autophagy, and mitophagy. Cell Death Differ 2009;16:939-946
-
(2009)
Cell Death Differ
, vol.16
, pp. 939-946
-
-
Zhang, J.1
Ney, P.A.2
-
17
-
-
77953123212
-
The BH3-only Bnip3 binds to the dynamin Opa1 to promote mitochondrial fragmentation and apoptosis by distinct mechanisms
-
Landes T, Emorine LJ, Courilleau D, Rojo M, Belenguer P, Arnauné-Pelloquin L. The BH3-only Bnip3 binds to the dynamin Opa1 to promote mitochondrial fragmentation and apoptosis by distinct mechanisms. EMBO Rep 2010;11: 459-465
-
(2010)
EMBO Rep
, vol.11
, pp. 459-465
-
-
Landes, T.1
Emorine, L.J.2
Courilleau, D.3
Rojo, M.4
Belenguer, P.5
Arnauné-Pelloquin, L.6
-
18
-
-
80355127945
-
Mitochondrial autophagy by Bnip3 involves Drp1-mediated mitochondrial fission and recruitment of Parkin in cardiac myocytes
-
Lee Y, Lee HY, Hanna RA, Gustafsson AB. Mitochondrial autophagy by Bnip3 involves Drp1-mediated mitochondrial fission and recruitment of Parkin in cardiac myocytes. Am J Physiol Heart Circ Physiol 2011;301:H1924-H1931
-
(2011)
Am J Physiol Heart Circ Physiol
, vol.301
, pp. H1924-H1931
-
-
Lee, Y.1
Lee, H.Y.2
Hanna, R.A.3
Gustafsson, A.B.4
-
19
-
-
66349121718
-
Hypoxia-induced autophagy is mediated through hypoxia-inducible factor induction of BNIP3 and BNIP3L via their BH3 domains
-
Bellot G, Garcia-Medina R, Gounon P, et al. Hypoxia-induced autophagy is mediated through hypoxia-inducible factor induction of BNIP3 and BNIP3L via their BH3 domains. Mol Cell Biol 2009;29:2570-2581
-
(2009)
Mol Cell Biol
, vol.29
, pp. 2570-2581
-
-
Bellot, G.1
Garcia-Medina, R.2
Gounon, P.3
-
20
-
-
43649104579
-
Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia
-
Zhang H, Bosch-Marce M, Shimoda LA, et al. Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia. J Biol Chem 2008;283: 10892-10903
-
(2008)
J Biol Chem
, vol.283
, pp. 10892-10903
-
-
Zhang, H.1
Bosch-Marce, M.2
Shimoda, L.A.3
-
21
-
-
84861733247
-
Microtubule-associated protein 1 light chain 3 (LC3) interacts with Bnip3 protein to selectively remove endoplasmic reticulum and mitochondria via autophagy
-
Hanna RA, Quinsay MN, Orogo AM, Giang K, Rikka S, Gustafsson AB. Microtubule-associated protein 1 light chain 3 (LC3) interacts with Bnip3 protein to selectively remove endoplasmic reticulum and mitochondria via autophagy. J Biol Chem 2012;287:19094-19104
-
(2012)
J Biol Chem
, vol.287
, pp. 19094-19104
-
-
Hanna, R.A.1
Quinsay, M.N.2
Orogo, A.M.3
Giang, K.4
Rikka, S.5
Gustafsson, A.B.6
-
22
-
-
84872291490
-
Modulation of serines 17 and 24 in the LC3-interacting region of Bnip3 determines pro-survival mitophagy versus apoptosis
-
Zhu Y, Massen S, Terenzio M, et al. Modulation of serines 17 and 24 in the LC3-interacting region of Bnip3 determines pro-survival mitophagy versus apoptosis. J Biol Chem 2013;288:1099-1113
-
(2013)
J Biol Chem
, vol.288
, pp. 1099-1113
-
-
Zhu, Y.1
Massen, S.2
Terenzio, M.3
-
23
-
-
74049153002
-
Nix is a selective autophagy receptor for mitochondrial clearance
-
Novak I, Kirkin V, McEwan DG, et al. Nix is a selective autophagy receptor for mitochondrial clearance. EMBO Rep 2010;11:45-51
-
(2010)
EMBO Rep
, vol.11
, pp. 45-51
-
-
Novak, I.1
Kirkin, V.2
McEwan, D.G.3
-
25
-
-
33746681910
-
Tissue-specific expression and regulation of sexually dimorphic genes in mice
-
Yang X, Schadt EE, Wang S, et al. Tissue-specific expression and regulation of sexually dimorphic genes in mice. Genome Res 2006;16:995-1004
-
(2006)
Genome Res
, vol.16
, pp. 995-1004
-
-
Yang, X.1
Schadt, E.E.2
Wang, S.3
-
26
-
-
0242490780
-
Cytoscape: A software environment for integrated models of biomolecular interaction networks
-
Shannon P, Markiel A, Ozier O, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 2003;13: 2498-2504
-
(2003)
Genome Res
, vol.13
, pp. 2498-2504
-
-
Shannon, P.1
Markiel, A.2
Ozier, O.3
-
27
-
-
55749101777
-
Genome-wide profiling of PPARgamma:RXR and RNA polymerase II occupancy reveals temporal activation of distinct metabolic pathways and changes in RXR dimer composition during adipogenesis
-
Nielsen R, Pedersen TA, Hagenbeek D, et al. Genome-wide profiling of PPARgamma:RXR and RNA polymerase II occupancy reveals temporal activation of distinct metabolic pathways and changes in RXR dimer composition during adipogenesis. Genes Dev 2008;22:2953-2967
-
(2008)
Genes Dev
, vol.22
, pp. 2953-2967
-
-
Nielsen, R.1
Pedersen, T.A.2
Hagenbeek, D.3
-
28
-
-
84907483796
-
Lysosomal stress in obese adipose tissue macrophages contributes to MITF-dependent Gpnmb induction
-
Gabriel TL, Tol MJ, Ottenhof R, et al. Lysosomal stress in obese adipose tissue macrophages contributes to MITF-dependent Gpnmb induction. Diabetes 2014;63:3310-3323
-
(2014)
Diabetes
, vol.63
, pp. 3310-3323
-
-
Gabriel, T.L.1
Tol, M.J.2
Ottenhof, R.3
-
29
-
-
79952303452
-
The pINDUCER lentiviral toolkit for inducible RNA interference in vitro and in vivo
-
Meerbrey KL, Hu G, Kessler JD, et al. The pINDUCER lentiviral toolkit for inducible RNA interference in vitro and in vivo. Proc Natl Acad Sci U S A 2011; 108:3665-3670
-
(2011)
Proc Natl Acad Sci U S A
, vol.108
, pp. 3665-3670
-
-
Meerbrey, K.L.1
Hu, G.2
Kessler, J.D.3
-
30
-
-
0025934532
-
Evidence that erythroid-type glucose transporter intrinsic activity is modulated by cadmium treatment of mouse 3T3-L1 cells
-
Harrison SA, Buxton JM, Clancy BM, Czech MP. Evidence that erythroid-type glucose transporter intrinsic activity is modulated by cadmium treatment of mouse 3T3-L1 cells. J Biol Chem 1991;266:19438-19449
-
(1991)
J Biol Chem
, vol.266
, pp. 19438-19449
-
-
Harrison, S.A.1
Buxton, J.M.2
Clancy, B.M.3
Czech, M.P.4
-
31
-
-
0034961514
-
Insulin-responsive compartments containing GLUT4 in 3T3-L1 and CHO cells: Regulation by amino acid concentrations
-
Bogan JS, McKee AE, Lodish HF. Insulin-responsive compartments containing GLUT4 in 3T3-L1 and CHO cells: regulation by amino acid concentrations. Mol Cell Biol 2001;21:4785-4806
-
(2001)
Mol Cell Biol
, vol.21
, pp. 4785-4806
-
-
Bogan, J.S.1
McKee, A.E.2
Lodish, H.F.3
-
32
-
-
34948816749
-
Inhibition of ischemic cardiomyocyte apoptosis through targeted ablation of Bnip3 restrains postinfarction remodeling in mice
-
Diwan A, Krenz M, Syed FM, et al. Inhibition of ischemic cardiomyocyte apoptosis through targeted ablation of Bnip3 restrains postinfarction remodeling in mice. J Clin Invest 2007;117:2825-2833
-
(2007)
J Clin Invest
, vol.117
, pp. 2825-2833
-
-
Diwan, A.1
Krenz, M.2
Syed, F.M.3
-
33
-
-
84887896439
-
Impaired amino acid metabolism contributes to fasting-induced hypoglycemia in fatty acid oxidation defects
-
Houten SM, Herrema H, Te Brinke H, et al. Impaired amino acid metabolism contributes to fasting-induced hypoglycemia in fatty acid oxidation defects. Hum Mol Genet 2013;22:5249-5261
-
(2013)
Hum Mol Genet
, vol.22
, pp. 5249-5261
-
-
Houten, S.M.1
Herrema, H.2
Te Brinke, H.3
-
35
-
-
33845511362
-
Response to myocardial ischemia/reperfusion injury involves Bnip3 and autophagy
-
Hamacher-Brady A, Brady NR, Logue SE, et al. Response to myocardial ischemia/reperfusion injury involves Bnip3 and autophagy. Cell Death Differ 2007;14:146-157
-
(2007)
Cell Death Differ
, vol.14
, pp. 146-157
-
-
Hamacher-Brady, A.1
Brady, N.R.2
Logue, S.E.3
-
36
-
-
38949119423
-
Hypoxia induces autophagic cell death in apoptosis-competent cells through a mechanism involving BNIP3
-
Azad MB, Chen Y, Henson ES, et al. Hypoxia induces autophagic cell death in apoptosis-competent cells through a mechanism involving BNIP3. Autophagy 2008;4:195-204
-
(2008)
Autophagy
, vol.4
, pp. 195-204
-
-
Azad, M.B.1
Chen, Y.2
Henson, E.S.3
-
37
-
-
38849099158
-
Chemical inhibition of the mitochondrial division dynamin reveals its role in Bax/Bak-dependent mitochondrial outer membrane permeabilization
-
Cassidy-Stone A, Chipuk JE, Ingerman E, et al. Chemical inhibition of the mitochondrial division dynamin reveals its role in Bax/Bak-dependent mitochondrial outer membrane permeabilization. Dev Cell 2008;14:193-204
-
(2008)
Dev Cell
, vol.14
, pp. 193-204
-
-
Cassidy-Stone, A.1
Chipuk, J.E.2
Ingerman, E.3
-
38
-
-
77951173235
-
Acute inhibition of fatty acid import inhibits GLUT4 transcription in adipose tissue, but not skeletal or cardiac muscle tissue, partly through liver X receptor (LXR) signaling
-
Griesel BA, Weems J, Russell RA, Abel ED, Humphries K, Olson AL. Acute inhibition of fatty acid import inhibits GLUT4 transcription in adipose tissue, but not skeletal or cardiac muscle tissue, partly through liver X receptor (LXR) signaling. Diabetes 2010;59:800-807
-
(2010)
Diabetes
, vol.59
, pp. 800-807
-
-
Griesel, B.A.1
Weems, J.2
Russell, R.A.3
Abel, E.D.4
Humphries, K.5
Olson, A.L.6
-
39
-
-
78651427556
-
2/NADH flux ratios determining mitochondrial radical formation were crucial for the eukaryotic invention of peroxisomes and catabolic tissue differentiation
-
2/NADH flux ratios determining mitochondrial radical formation were crucial for the eukaryotic invention of peroxisomes and catabolic tissue differentiation. Bioessays 2011;33: 88-94
-
(2011)
Bioessays
, vol.33
, pp. 88-94
-
-
Speijer, D.1
-
40
-
-
25144476923
-
Physiological functions of the mitochondrial uncoupling proteins UCP2 and UCP3
-
Brand MD, Esteves TC. Physiological functions of the mitochondrial uncoupling proteins UCP2 and UCP3. Cell Metab 2005;2:85-93
-
(2005)
Cell Metab
, vol.2
, pp. 85-93
-
-
Brand, M.D.1
Esteves, T.C.2
-
41
-
-
84864015441
-
BNip3 regulates mitochondrial function and lipid metabolism in the liver
-
Glick D, Zhang W, Beaton M, et al. BNip3 regulates mitochondrial function and lipid metabolism in the liver. Mol Cell Biol 2012;32:2570-2584
-
(2012)
Mol Cell Biol
, vol.32
, pp. 2570-2584
-
-
Glick, D.1
Zhang, W.2
Beaton, M.3
-
42
-
-
84987670877
-
BNip3 connects energy sensing to hepatic metabolism and mitophagy [abstract]
-
Proceedings of the 104th Annual Meeting of the American Assocation for Cancer Research 2014 Apr 5-9; San Diego, CA: AACR; Abstract nr 4324
-
Boland ML, Huang H, Shah R, et al. BNip3 connects energy sensing to hepatic metabolism and mitophagy [abstract]. Proceedings of the 104th Annual Meeting of the American Assocation for Cancer Research 2014 Apr 5-9; San Diego, CA: AACR; Cancer Res 2014;74(19 Suppl): Abstract nr 4324
-
(2014)
Cancer Res
, vol.74
, Issue.19
-
-
Boland, M.L.1
Huang, H.2
Shah, R.3
-
43
-
-
84954318420
-
Metabolism. AMP-activated protein kinase mediates mitochondrial fission in response to energy stress
-
Toyama EQ, Herzig S, Courchet J, et al. Metabolism. AMP-activated protein kinase mediates mitochondrial fission in response to energy stress. Science 2016;351:275-281
-
(2016)
Science
, vol.351
, pp. 275-281
-
-
Toyama, E.Q.1
Herzig, S.2
Courchet, J.3
-
44
-
-
79251587803
-
Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy
-
Egan DF, Shackelford DB, Mihaylova MM, et al. Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science 2011;331:456-461
-
(2011)
Science
, vol.331
, pp. 456-461
-
-
Egan, D.F.1
Shackelford, D.B.2
Mihaylova, M.M.3
-
45
-
-
84943450709
-
Hepatic Bmal1 regulates rhythmic mitochondrial dynamics and promotes metabolic fitness
-
Jacobi D, Liu S, Burkewitz K, et al. Hepatic Bmal1 regulates rhythmic mitochondrial dynamics and promotes metabolic fitness. Cell Metab 2015;22: 709-720
-
(2015)
Cell Metab
, vol.22
, pp. 709-720
-
-
Jacobi, D.1
Liu, S.2
Burkewitz, K.3
-
46
-
-
0042991264
-
Glyceroneogenesis and the triglyceride/fatty acid cycle
-
Reshef L, Olswang Y, Cassuto H, et al. Glyceroneogenesis and the triglyceride/fatty acid cycle. J Biol Chem 2003;278:30413-30416
-
(2003)
J Biol Chem
, vol.278
, pp. 30413-30416
-
-
Reshef, L.1
Olswang, Y.2
Cassuto, H.3
-
47
-
-
52749093466
-
Pyruvate dehydrogenase kinase 4: Regulation by thiazolidinediones and implication in glyceroneogenesis in adipose tissue
-
Cadoudal T, Distel E, Durant S, et al. Pyruvate dehydrogenase kinase 4: regulation by thiazolidinediones and implication in glyceroneogenesis in adipose tissue. Diabetes 2008;57:2272-2279
-
(2008)
Diabetes
, vol.57
, pp. 2272-2279
-
-
Cadoudal, T.1
Distel, E.2
Durant, S.3
-
48
-
-
84892928725
-
UCP2 transports C4 metabolites out of mitochondria, regulating glucose and glutamine oxidation
-
Vozza A, Parisi G, De Leonardis F, et al. UCP2 transports C4 metabolites out of mitochondria, regulating glucose and glutamine oxidation. Proc Natl Acad Sci U S A 2014;111:960-965
-
(2014)
Proc Natl Acad Sci U S A
, vol.111
, pp. 960-965
-
-
Vozza, A.1
Parisi, G.2
De Leonardis, F.3
-
49
-
-
84957440739
-
BNIP3 is essential for mitochondrial bioenergetics during adipocyte remodelling in mice
-
Choi JW, Jo A, Kim M, et al. BNIP3 is essential for mitochondrial bioenergetics during adipocyte remodelling in mice. Diabetologia 2016;59:571-581
-
(2016)
Diabetologia
, vol.59
, pp. 571-581
-
-
Choi, J.W.1
Jo, A.2
Kim, M.3
-
50
-
-
12144291275
-
Thiazolidinediones, like metformin, inhibit respiratory complex I: A common mechanism contributing to their antidiabetic actions?
-
Brunmair B, Staniek K, Gras F, et al. Thiazolidinediones, like metformin, inhibit respiratory complex I: a common mechanism contributing to their antidiabetic actions? Diabetes 2004;53:1052-1059
-
(2004)
Diabetes
, vol.53
, pp. 1052-1059
-
-
Brunmair, B.1
Staniek, K.2
Gras, F.3
|