-
1
-
-
14544282413
-
Nutrient control of glucose homeostasis through a complex of PGC-α and SIRT1
-
Rodgers, J. T., C. Lerin, W. Haas, S. P. Gygi, B. M. Spiegelman, and P. Puigserver. 2005. Nutrient control of glucose homeostasis through a complex of PGC-α and SIRT1. Nature. 434: 113-118.
-
(2005)
Nature
, vol.434
, pp. 113-118
-
-
Rodgers, J.T.1
Lerin, C.2
Haas, W.3
Gygi, S.P.4
Spiegelman, B.M.5
Puigserver, P.6
-
2
-
-
3042681042
-
Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-γ
-
Picard, F., M. Kurtev, N. Chung, A. Topark-Ngarm, T. Senawong, and R. M. De Oliveira. 2004. Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-γ. Nature. 429: 771-776.
-
(2004)
Nature
, vol.429
, pp. 771-776
-
-
Picard, F.1
Kurtev, M.2
Chung, N.3
Topark-Ngarm, A.4
Senawong, T.5
De Oliveira, R.M.6
-
3
-
-
61749095297
-
SIRT1 exerts anti-inflammatory effects and improves insulin sensitivity in adipocytes
-
Yoshizaki T., J. C. Milne, T. Imamura, S. Schenk, N. Sonoda, J. L. Babendure, J. C. Lu, J. J. Smith, M. R. Jirousek, and J. M. Olefsky. 2009. SIRT1 exerts anti-inflammatory effects and improves insulin sensitivity in adipocytes. Mol. Cell. Biol. 29: 1363-1374.
-
(2009)
Mol. Cell. Biol
, vol.29
, pp. 1363-1374
-
-
Yoshizaki, T.1
Milne, J.C.2
Imamura, T.3
Schenk, S.4
Sonoda, N.5
Babendure, J.L.6
Lu, J.C.7
Smith, J.J.8
Jirousek, M.R.9
Olefsky, J.M.10
-
4
-
-
0028931724
-
Increased adipose tissue expression of tumor necrosis factor-alpha in human obesity and insulin resistance
-
Hotamisligil, G. S., P. Arner, J. F. Caro, R. L. Atkinson, and B. M. Spiegelman. 1995. Increased adipose tissue expression of tumor necrosis factor-alpha in human obesity and insulin resistance. J. Clin. Invest. 95: 2409-2415.
-
(1995)
J. Clin. Invest.
, vol.95
, pp. 2409-2415
-
-
Hotamisligil, G.S.1
Arner, P.2
Caro, J.F.3
Atkinson, R.L.4
Spiegelman, B.M.5
-
5
-
-
82255164629
-
Sirt1 regulates adipose tissue inflammation
-
Gillum, M. P., M. E. Kotas, D. M. Erio, R. P. Kursawe, and K. T. Chatterjee. 2011. Sirt1 regulates adipose tissue inflammation. Diabetes. 60: 3235-3245.
-
(2011)
Diabetes
, vol.60
, pp. 3235-3245
-
-
Gillum, M.P.1
Kotas, M.E.2
Erio, D.M.3
Kursawe, R.P.4
Chatterjee, K.T.5
-
6
-
-
33845868198
-
Sirtuins as potential targets for metabolic syndrome
-
Guarente, L. 2006. Sirtuins as potential targets for metabolic syndrome. Nature. 444: 868-874.
-
(2006)
Nature
, vol.444
, pp. 868-874
-
-
Guarente, L.1
-
7
-
-
77349087078
-
SIRT1 inhibits inflammatory pathways in macrophages and modulates insulin sensitivity. Am
-
Yoshizaki, T., S. Schenk, T. Imamura, J. L. Babendure, N. Sonoda, and E. J. Bae. 2010. SIRT1 inhibits inflammatory pathways in macrophages and modulates insulin sensitivity. Am. J. Physiol. Endocrinol. Metab. 298: E419-E428.
-
(2010)
J. Physiol. Endocrinol. Metab.
, vol.298
, pp. E419-E428
-
-
Yoshizaki, T.1
Schenk, S.2
Imamura, T.3
Babendure, J.L.4
Sonoda, N.5
Bae, E.J.6
-
8
-
-
63449112017
-
Hepatocyte-specific deletion of SIRT1 alters fatty acid metabolism and results in hepatic steatosis and inflammation
-
Purushotham, A., T. T. Schug, Q. Xu, S. Surapureddi, X. Guo, and X. Li. 2009. Hepatocyte-specific deletion of SIRT1 alters fatty acid metabolism and results in hepatic steatosis and inflammation. Cell Metab. 9: 327-338.
-
(2009)
Cell Metab
, vol.9
, pp. 327-338
-
-
Purushotham, A.1
Schug, T.T.2
Xu, Q.3
Surapureddi, S.4
Guo, X.5
Li, X.6
-
9
-
-
84863011114
-
Resveratrol ameliorates aging-related metabolic phenotypes by inhibiting cAMP phosphodiesterases
-
Park, S. J., F. Ahmad, A. Philp, K. Baar, T. Williams, H. Luo, H. Ke, H. Rehmann, R. Taussig, and A. L. Brown. 2012. Resveratrol ameliorates aging-related metabolic phenotypes by inhibiting cAMP phosphodiesterases. Cell. 148: 421-433.
-
(2012)
Cell
, vol.148
, pp. 421-433
-
-
Park, S.J.1
Ahmad, F.2
Philp, A.3
Baar, K.4
Williams, T.5
Luo, H.6
Ke, H.7
Rehmann, H.8
Taussig, R.9
Brown, A.L.10
-
10
-
-
33845399894
-
Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-α
-
Lagouge, M., C. Argmann, Z. Gerhart-Hines, H. Meziane, C. Lerin, F. Daussin, N. Messadeq, J. Milne, P. Lambert, and P. Elliott. 2006. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-α. Cell. 127: 1109-1122.
-
(2006)
Cell
, vol.127
, pp. 1109-1122
-
-
Lagouge, M.1
Argmann, C.2
Gerhart-Hines, Z.3
Meziane, H.4
Lerin, C.5
Daussin, F.6
Messadeq, N.7
Milne, J.8
Lambert, P.9
Elliott, P.10
-
11
-
-
84890848068
-
Resveratrol attenuates vascular endothelial inflammation by inducing autophagy through the cAMP signaling pathway
-
Chen, M. L., L. Yi, X. Jin, X. Y. Liang, Y. Zhou, T. Zhang, Q. Xie, X. Zhou, H. Chang, and Y. J. Fu. 2013. Resveratrol attenuates vascular endothelial inflammation by inducing autophagy through the cAMP signaling pathway. Autophagy. 9: 2033-2045.
-
(2013)
Autophagy
, vol.9
, pp. 2033-2045
-
-
Chen, M.L.1
Yi, L.2
Jin, X.3
Liang, X.Y.4
Zhou, Y.5
Zhang, T.6
Xie, Q.7
Zhou, X.8
Chang, H.9
Fu, Y.J.10
-
12
-
-
84899621303
-
Resveratrol modulates the inflammatory response via an estrogen receptor-signal integration network
-
Nwachukwu, J. C., S. Srinivasan, N. E. Bruno, A. A. Parent, T. S. Hughes, J. A. Pollock, O. Gjyshi, V. Cavett, J. Nowak, and R. D. Garcia-Ordonez. 2014. Resveratrol modulates the inflammatory response via an estrogen receptor-signal integration network. eLife. 3: e02057.
-
(2014)
eLife
, vol.3
, pp. e02057
-
-
Nwachukwu, J.C.1
Srinivasan, S.2
Bruno, N.E.3
Parent, A.A.4
Hughes, T.S.5
Pollock, J.A.6
Gjyshi, O.7
Cavett, V.8
Nowak, J.9
Garcia-Ordonez, R.D.10
-
13
-
-
77954614584
-
Resveratrol regulates human adipocyte number and function in a Sirt1-dependent manner
-
Fischer-Posovszky, P., V. Kukulus, D. Tews, T. Unterkircher, K. M. Debatin, S. Fulda, and M. Wabitsch. 2010. Resveratrol regulates human adipocyte number and function in a Sirt1-dependent manner. Am. J. Clin. Nutr. 92: 5-15.
-
(2010)
Am J. Clin. Nutr.
, vol.92
, pp. 5-15
-
-
Fischer-Posovszky, P.1
Kukulus, V.2
Tews, D.3
Unterkircher, T.4
Debatin, K.M.5
Fulda, S.6
Wabitsch, M.7
-
14
-
-
0035736260
-
Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo
-
Bodine, S. C., T. N. Stitt, M. Gonzalez, W. O. Kline, G. L. Stover, and R. Bauerlein. 2001. Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nat. Cell Biol. 3: 1014-1019.
-
(2001)
Nat. Cell Biol
, vol.3
, pp. 1014-1019
-
-
Bodine, S.C.1
Stitt, T.N.2
Gonzalez, M.3
Kline, W.O.4
Stover, G.L.5
Bauerlein, R.6
-
15
-
-
84902257417
-
Grb10 promotes lipolysis and thermogenesis by phosphorylation-dependent feedback inhibition of mTORC1
-
Liu, M., J. Bai, S. He, R. Villarreal, D. Hu, and C. Zhang. 2014. Grb10 promotes lipolysis and thermogenesis by phosphorylation-dependent feedback inhibition of mTORC1. Cell Metab. 19: 967-980.
-
(2014)
Cell Metab
, vol.19
, pp. 967-980
-
-
Liu, M.1
Bai, J.2
He, S.3
Villarreal, R.4
Hu, D.5
Zhang, C.6
-
16
-
-
34347220473
-
Defining the role of mTOR in cancer
-
Guertin, D. A., and D. M. Sabatini. 2007. Defining the role of mTOR in cancer. Cancer Cell. 12: 9-22.
-
(2007)
Cancer Cell
, vol.12
, pp. 9-22
-
-
Guertin, D.A.1
Sabatini, D.M.2
-
17
-
-
13844312400
-
Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex
-
Sarbassov, D. D., D. A. Guertin, S. M. Ali, and D. M. Sabatini. 2005. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science. 307: 1098-1101.
-
(2005)
Science
, vol.307
, pp. 1098-1101
-
-
Sarbassov, D.D.1
Guertin, D.A.2
Ali, S.M.3
Sabatini, D.M.4
-
18
-
-
2642586352
-
Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease
-
Ravikumar, B., C. Vacher, Z. Berger, J. E. Davies, S. Luo, and L. G. Oroz. 2004. Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat. Genet. 36: 585-595.
-
(2004)
Nat. Genet
, vol.36
, pp. 585-595
-
-
Ravikumar, B.1
Vacher, C.2
Berger, Z.3
Davies, J.E.4
Luo, S.5
Oroz, L.G.6
-
19
-
-
33748992313
-
Adipocytokines: Mediators linking adipose tissue, inflammation and immunity
-
Tilg, H., and A. R. Moschen. 2006. Adipocytokines: mediators linking adipose tissue, inflammation and immunity. Nat. Rev. Immunol. 6: 772-783.
-
(2006)
Nat. Rev. Immunol
, vol.6
, pp. 772-783
-
-
Tilg, H.1
Moschen, A.R.2
-
20
-
-
84872142459
-
JNK expression by macrophages promotes obesity-induced insulin resistance and inflammation
-
Han, M. S., D. Y. Jung, C. Morel, S. A. Lakhani, J. K. Kim, R. A. Flavell, and R. J. Davis. 2013. JNK expression by macrophages promotes obesity-induced insulin resistance and inflammation. Science. 339: 218-222.
-
(2013)
Science
, vol.339
, pp. 218-222
-
-
Han, M.S.1
Jung, D.Y.2
Morel, C.3
Lakhani, S.A.4
Kim, J.K.5
Flavell, R.A.6
Davis, R.J.7
-
21
-
-
84919965563
-
Macrophage mTORC1 disruption reduces inflammation and insulin resistance in obese mice
-
Jiang, H., M. Westerterp, C. Wang, Y. Zhu, and D. Ai. 2014. Macrophage mTORC1 disruption reduces inflammation and insulin resistance in obese mice. Diabetologia. 57: 2393-2404.
-
(2014)
Diabetologia
, vol.57
, pp. 2393-2404
-
-
Jiang, H.1
Westerterp, M.2
Wang, C.3
Zhu, Y.4
Ai, D.5
-
22
-
-
84881523549
-
Sirt1 inhibits akt2-mediated porcine adipogenesis potentially by direct protein-protein interaction
-
Pang, W., Y. Wang, N. Wei, R. Xu, Y. Xiong, and P. Wang. 2013. Sirt1 inhibits akt2-mediated porcine adipogenesis potentially by direct protein-protein interaction. PLoS One. 8: e71576.
-
(2013)
PLoS One
, vol.8
, pp. e71576
-
-
Pang, W.1
Wang, Y.2
Wei, N.3
Xu, R.4
Xiong, Y.5
Wang, P.6
-
23
-
-
84864390256
-
Sirt-1 is required for the inhibition of apoptosis and inflammatory responses in human tenocytes
-
Busch, F., A. Mobasheri, P. Shayan, R. Stahlmann, and M. Shakibaei. 2012. Sirt-1 is required for the inhibition of apoptosis and inflammatory responses in human tenocytes. J. Biol. Chem. 287: 25770-25781.
-
(2012)
J. Biol. Chem.
, vol.287
, pp. 25770-25781
-
-
Busch, F.1
Mobasheri, A.2
Shayan, P.3
Stahlmann, R.4
Shakibaei, M.5
-
24
-
-
0027967732
-
Transcriptional regulation of the apoC-III gene by insulin in diabetic mice: Correlation with changes in plasma triglyceride levels
-
Chen, M., J. Breslow, W. Li, and T. Leff. 1994. Transcriptional regulation of the apoC-III gene by insulin in diabetic mice: correlation with changes in plasma triglyceride levels. J. Lipid Res. 35: 1918-1924.
-
(1994)
J. Lipid Res.
, vol.35
, pp. 1918-1924
-
-
Chen, M.1
Breslow, J.2
Li, W.3
Leff, T.4
-
25
-
-
0002686245
-
Determination of the surface area of the white rat with its application to the expression of metabolic results. Am
-
Lee, M. O. 1929. Determination of the surface area of the white rat with its application to the expression of metabolic results. Am. J. Physiol. 89: 24-33.
-
(1929)
J. Physiol.
, vol.89
, pp. 24-33
-
-
Lee, M.O.1
-
26
-
-
84940403883
-
FABP4 reversed the regulation of leptin on mitochondrial fatty acid oxidation in mice adipocytes
-
Gan, L., Z. Liu, W. Cao, Z. Zhang, and C. Sun. 2015. FABP4 reversed the regulation of leptin on mitochondrial fatty acid oxidation in mice adipocytes. Sci. Rep. 5: 13588.
-
(2015)
Sci. Rep
, vol.5
, pp. 13588
-
-
Gan, L.1
Liu, Z.2
Cao, W.3
Zhang, Z.4
Sun, C.5
-
27
-
-
84941280931
-
Foxc2 enhances proliferation and inhibits apoptosis through activating Akt/mTORC1 signaling pathway in mouse preadipocytes
-
Gan, L., Z. Liu, W. Jin, Z. Zhou, and C. Sun. 2015. Foxc2 enhances proliferation and inhibits apoptosis through activating Akt/mTORC1 signaling pathway in mouse preadipocytes. J. Lipid Res. 56: 1471-1480.
-
(2015)
J. Lipid Res.
, vol.56
, pp. 1471-1480
-
-
Gan, L.1
Liu, Z.2
Jin, W.3
Zhou, Z.4
Sun, C.5
-
28
-
-
84926626305
-
Adiponectin prevents reduction of lipid-induced mitochondrial biogenesis via AMPK/ ACC2 pathway in chicken adipocyte
-
Gan, L., J. Yan, Z. Liu, M. Feng, and C. Sun. 2015. Adiponectin prevents reduction of lipid-induced mitochondrial biogenesis via AMPK/ ACC2 pathway in chicken adipocyte. J. Cell. Biochem. 116: 1090-1100.
-
(2015)
J. Cell. Biochem.
, vol.116
, pp. 1090-1100
-
-
Gan, L.1
Yan, J.2
Liu, Z.3
Feng, M.4
Sun, C.5
-
29
-
-
20044387026
-
IKK-β links inflammation to obesity-induced insulin resistance
-
Arkan, M. C., A. L. Hevener, F. R. Greten, S. Maeda, Z. W. Li, and J. M. Long. 2005. IKK-β links inflammation to obesity-induced insulin resistance. Nat. Med. 11: 191-198.
-
(2005)
Nat. Med
, vol.11
, pp. 191-198
-
-
Arkan, M.C.1
Hevener, A.L.2
Greten, F.R.3
Maeda, S.4
Li, Z.W.5
Long, J.M.6
-
30
-
-
33845866857
-
Inflammation and metabolic disorders
-
Hotamisligil, G. S. 2006. Inflammation and metabolic disorders. Nature. 444: 860-867.
-
(2006)
Nature
, vol.444
, pp. 860-867
-
-
Hotamisligil, G.S.1
-
31
-
-
33751072349
-
Resveratrol improves health and survival of mice on a high-calorie diet
-
Baur, J. A., K. J. Pearson, N. L. Price, H. A. Jamieson, C. Lerin, and A. Kalra. 2006. Resveratrol improves health and survival of mice on a high-calorie diet. Nature. 444: 337-342.
-
(2006)
Nature
, vol.444
, pp. 337-342
-
-
Baur, J.A.1
Pearson, K.J.2
Price, N.L.3
Jamieson, H.A.4
Lerin, C.5
Kalra, A.6
-
32
-
-
36749087548
-
Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes
-
Milne, J. C., P. D. Lambert, S. Schenk, D. P. Carney, J. J. Smith, and D. J. Gagne. 2007. Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes. Nature. 450: 712-716.
-
(2007)
Nature
, vol.450
, pp. 712-716
-
-
Milne, J.C.1
Lambert, P.D.2
Schenk, S.3
Carney, D.P.4
Smith, J.J.5
Gagne, D.J.6
-
33
-
-
80455143206
-
Calorie restriction-like effects of 30 days of resveratrol supplementation on energy metabolism and metabolic profile in obese humans
-
Timmers, S., E. Konings, L. Bilet, R. H. Houtkooper, T. van de Weijer, G. H. Goossens, J. Hoeks, S. van der Krieken, D. Ryu, and S. Kersten. 2011. Calorie restriction-like effects of 30 days of resveratrol supplementation on energy metabolism and metabolic profile in obese humans. Cell Metab. 14: 612-622.
-
(2011)
Cell Metab.
, vol.14
, pp. 612-622
-
-
Timmers, S.1
Konings, E.2
Bilet, L.3
Houtkooper, R.H.4
Van De Weijer, T.5
Goossens, G.H.6
Hoeks, J.7
Van Der Krieken, S.8
Ryu, D.9
Kersten, S.10
-
34
-
-
54849425547
-
Specific SIRT1 activation mimics low energy levels and protects against diet-induced metabolic disorders by enhancing fat oxidation
-
Feige, J. N., M. Lagouge, C. Canto, A. Strehle, S. M. Houten, J. C. Milne, P. D. Lambert, C. Mataki, P. J. Elliott, and J. Auwerx. 2008. Specific SIRT1 activation mimics low energy levels and protects against diet-induced metabolic disorders by enhancing fat oxidation. Cell Metab. 8: 347-358.
-
(2008)
Cell Metab
, vol.8
, pp. 347-358
-
-
Feige, J.N.1
Lagouge, M.2
Canto, C.3
Strehle, A.4
Houten, S.M.5
Milne, J.C.6
Lambert, P.D.7
Mataki, C.8
Elliott, P.J.9
Auwerx, J.10
-
35
-
-
84856703519
-
SnapShot: Insulin signaling pathways
-
Kadowaki, T., K. Ueki, T. Yamauchi, and N. Kubota. 2012. SnapShot: insulin signaling pathways. Cell. 148: 624.
-
(2012)
Cell
, vol.148
, pp. 624
-
-
Kadowaki, T.1
Ueki, K.2
Yamauchi, T.3
Kubota, N.4
-
36
-
-
45749127808
-
Insulin activation of the phosphatidylinositol 3-kinase/protein kinase B (Akt) pathway reduces lipopolysaccharide-induced inflammation in mice
-
Kidd, L. B., G. A. Schabbauer, J. P. Luyendyk, T. D. Holscher, R. E. Tilley, and M. Tencati. 2008. Insulin activation of the phosphatidylinositol 3-kinase/protein kinase B (Akt) pathway reduces lipopolysaccharide-induced inflammation in mice. J. Pharmacol. Exp. Ther. 326: 348-353.
-
(2008)
J. Pharmacol. Exp. Ther.
, vol.326
, pp. 348-353
-
-
Kidd, L.B.1
Schabbauer, G.A.2
Luyendyk, J.P.3
Holscher, T.D.4
Tilley, R.E.5
Tencati, M.6
-
37
-
-
3142740860
-
Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase
-
Cohen, H. Y., C. Miller, K. J. Bitterman, N. R. Wall, B. Hekking, and B. Kessler. 2004. Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science. 305: 390-392.
-
(2004)
Science
, vol.305
, pp. 390-392
-
-
Cohen, H.Y.1
Miller, C.2
Bitterman, K.J.3
Wall, N.R.4
Hekking, B.5
Kessler, B.6
-
38
-
-
26844558334
-
Calorie restriction promotes mitochondrial biogenesis by inducing the expression of eNOS
-
Nisoli, E., C. Tonello, A. Cardile, V. Cozzi, R. Bracale, and L. Tedesco. 2005. Calorie restriction promotes mitochondrial biogenesis by inducing the expression of eNOS. Science. 310: 314-317.
-
(2005)
Science
, vol.310
, pp. 314-317
-
-
Nisoli, E.1
Tonello, C.2
Cardile, A.3
Cozzi, V.4
Bracale, R.5
Tedesco, L.6
-
39
-
-
34547605613
-
IKKβ suppression of TSC1 links inflammation and tumor angiogenesis via the mTOR pathway
-
Lee, D. F., H. P. Kuo, C. T. Chen, J. M. Hsu, C. K. Chou, and Y. Wei. 2007. IKKβ suppression of TSC1 links inflammation and tumor angiogenesis via the mTOR pathway. Cell. 130: 440-455.
-
(2007)
Cell
, vol.130
, pp. 440-455
-
-
Lee, D.F.1
Kuo, H.P.2
Chen, C.T.3
Hsu, J.M.4
Chou, C.K.5
Wei, Y.6
-
40
-
-
4043088499
-
IKKβ links inflammation and tumorigenesis in a mouse model of colitis-associated cancer
-
Greten, F. R., L. Eckmann, T. F. Greten, J. M. Park, Z. W. Li, and L. J. Egan. 2004. IKKβ links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell. 118: 285-296.
-
(2004)
Cell
, vol.118
, pp. 285-296
-
-
Greten, F.R.1
Eckmann, L.2
Greten, T.F.3
Park, J.M.4
Li, Z.W.5
Egan, L.J.6
-
41
-
-
14244252683
-
Activation of the mammalian target of rapamycin pathway acutely inhibits insulin signaling to Akt and glucose transport in 3T3-L1 and human adipocytes
-
Tremblay, F., A. Gagnon, A. Veilleux, A. Sorisky, and A. Marette. 2005. Activation of the mammalian target of rapamycin pathway acutely inhibits insulin signaling to Akt and glucose transport in 3T3-L1 and human adipocytes. Endocrinology. 146: 1328-1337.
-
(2005)
Endocrinology
, vol.146
, pp. 1328-1337
-
-
Tremblay, F.1
Gagnon, A.2
Veilleux, A.3
Sorisky, A.4
Marette, A.5
-
42
-
-
77951166692
-
Mammalian target of rapamycin complex 1 suppresses lipolysis, stimulates lipogenesis, and promotes fat storage
-
Chakrabarti, P., T. English, J. Shi, C. M. Smas, and K. V. Kandror. 2010. Mammalian target of rapamycin complex 1 suppresses lipolysis, stimulates lipogenesis, and promotes fat storage. Diabetes. 59: 775-781.
-
(2010)
Diabetes
, vol.59
, pp. 775-781
-
-
Chakrabarti, P.1
English, T.2
Shi, J.3
Smas, C.M.4
Kandror, K.V.5
-
43
-
-
79952662483
-
The integral role of mTOR in lipid metabolism
-
Soliman, G. A. 2011. The integral role of mTOR in lipid metabolism. Cell Cycle. 10: 861-862.
-
(2011)
Cell Cycle
, vol.10
, pp. 861-862
-
-
Soliman, G.A.1
-
44
-
-
33745307617
-
Ras, PI3K and mTOR signaling controls tumour cell growth
-
Shaw, R. J., and L. C. Cantley. 2006. Ras, PI3K and mTOR signaling controls tumour cell growth. Nature. 441: 424-430.
-
(2006)
Nature
, vol.441
, pp. 424-430
-
-
Shaw, R.J.1
Cantley, L.C.2
|