-
1
-
-
0034773404
-
Role of AMP-activated protein kinase in mechanism of metformin action.
-
Zhou G, Myers R, Li Y et al. Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest 2001; 108: 1167-1174.
-
(2001)
J Clin Invest
, vol.108
, pp. 1167-1174
-
-
Zhou, G.1
Myers, R.2
Li, Y.3
-
2
-
-
77949493599
-
Metformin suppresses hepatic gluconeogenesis through induction of SIRT1 and GCN5.
-
Caton PW, Nayuni NK, Kieswich J, Khan NQ, Yaqoob MM, Corder R. Metformin suppresses hepatic gluconeogenesis through induction of SIRT1 and GCN5. J Endocrinol 2010; 205: 97-106.
-
(2010)
J Endocrinol
, vol.205
, pp. 97-106
-
-
Caton, P.W.1
Nayuni, N.K.2
Kieswich, J.3
Khan, N.Q.4
Yaqoob, M.M.5
Corder, R.6
-
3
-
-
3042681042
-
Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-gamma.
-
Picard F, Kurtev M, Chung N et al. Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-gamma. Nature 2004; 429: 771-776.
-
(2004)
Nature
, vol.429
, pp. 771-776
-
-
Picard, F.1
Kurtev, M.2
Chung, N.3
-
4
-
-
78049281029
-
Adipose tissue endothelial cells from obese human subjects: differences among depots in angiogenic, metabolic, and inflammatory gene expression and cellular senescence.
-
Villaret A, Galitzky J, Decaunes P et al. Adipose tissue endothelial cells from obese human subjects: differences among depots in angiogenic, metabolic, and inflammatory gene expression and cellular senescence. Diabetes 2010; 59: 2755-2763.
-
(2010)
Diabetes
, vol.59
, pp. 2755-2763
-
-
Villaret, A.1
Galitzky, J.2
Decaunes, P.3
-
5
-
-
77951179501
-
SIRT1 mRNA expression may be associated with energy expenditure and insulin sensitivity.
-
Rutanen J, Yaluri N, Modi S et al. SIRT1 mRNA expression may be associated with energy expenditure and insulin sensitivity. Diabetes 2010; 59: 829-835.
-
(2010)
Diabetes
, vol.59
, pp. 829-835
-
-
Rutanen, J.1
Yaluri, N.2
Modi, S.3
-
6
-
-
33846905695
-
Circadian rhythms in the development of obesity: potential role for the circadian clock within the adipocyte.
-
Bray MS, Young ME. Circadian rhythms in the development of obesity: potential role for the circadian clock within the adipocyte. Obes Rev 2007; 8: 169-181.
-
(2007)
Obes Rev
, vol.8
, pp. 169-181
-
-
Bray, M.S.1
Young, M.E.2
-
7
-
-
20844461135
-
Obesity and metabolic syndrome in circadian Clock mutant mice.
-
Turek FW, Joshu C, Kohsaka A et al. Obesity and metabolic syndrome in circadian Clock mutant mice. Science 2005; 308: 1043-1045.
-
(2005)
Science
, vol.308
, pp. 1043-1045
-
-
Turek, F.W.1
Joshu, C.2
Kohsaka, A.3
-
8
-
-
0034771257
-
Is there an association between shift work and having a metabolic syndrome? Results from a population based study of 27,485 people.
-
Karlsson B, Knutsson A, Lindahl B. Is there an association between shift work and having a metabolic syndrome? Results from a population based study of 27, 485 people. Occup Environ Med 2001; 58: 747-752.
-
(2001)
Occup Environ Med
, vol.58
, pp. 747-752
-
-
Karlsson, B.1
Knutsson, A.2
Lindahl, B.3
-
9
-
-
15944382729
-
CLOCK is involved in the circadian transactivation of peroxisome-proliferator-activated receptor alpha (PPARalpha) in mice.
-
Oishi K, Shirai H, Ishida N. CLOCK is involved in the circadian transactivation of peroxisome-proliferator-activated receptor alpha (PPARalpha) in mice. Biochem J 2005; 386: 575-581.
-
(2005)
Biochem J
, vol.386
, pp. 575-581
-
-
Oishi, K.1
Shirai, H.2
Ishida, N.3
-
10
-
-
30044448307
-
When the Clock stops ticking, metabolic syndrome explodes.
-
Staels B. When the Clock stops ticking, metabolic syndrome explodes. Nat Med 2006; 12: 54-55.
-
(2006)
Nat Med
, vol.12
, pp. 54-55
-
-
Staels, B.1
-
11
-
-
47549088250
-
The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control.
-
Nakahata Y, Kaluzova M, Grimaldi B et al. The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control. Cell 2008; 134: 329-340.
-
(2008)
Cell
, vol.134
, pp. 329-340
-
-
Nakahata, Y.1
Kaluzova, M.2
Grimaldi, B.3
-
12
-
-
47749140333
-
SIRT1 regulates circadian clock gene expression through PER2 deacetylation.
-
Asher G, Gatfield D, Stratmann M et al. SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell 2008; 134: 317-328.
-
(2008)
Cell
, vol.134
, pp. 317-328
-
-
Asher, G.1
Gatfield, D.2
Stratmann, M.3
-
14
-
-
63849210402
-
The regulation and function of mammalian AMPK-related kinases.
-
Bright NJ, Thornton C, Carling D. The regulation and function of mammalian AMPK-related kinases. Acta Physiol (Oxf) 2009; 196: 15-26.
-
(2009)
Acta Physiol (Oxf)
, vol.196
, pp. 15-26
-
-
Bright, N.J.1
Thornton, C.2
Carling, D.3
-
16
-
-
33645938915
-
Cytokine secretion by human adipocytes is differentially regulated by adiponectin, AICAR, and troglitazone.
-
Sell H, Dietze-Schroeder D, Eckardt K, Eckel J. Cytokine secretion by human adipocytes is differentially regulated by adiponectin, AICAR, and troglitazone. Biochem Biophys Res Commun 2006; 343: 700-706.
-
(2006)
Biochem Biophys Res Commun
, vol.343
, pp. 700-706
-
-
Sell, H.1
Dietze-Schroeder, D.2
Eckardt, K.3
Eckel, J.4
-
17
-
-
0037983775
-
Involvement of AMP-activated protein kinase in glucose uptake stimulated by the globular domain of adiponectin in primary rat adipocytes.
-
Wu X, Motoshima H, Mahadev K, Stalker TJ, Scalia R, Goldstein BJ. Involvement of AMP-activated protein kinase in glucose uptake stimulated by the globular domain of adiponectin in primary rat adipocytes. Diabetes 2003; 52: 1355-1363.
-
(2003)
Diabetes
, vol.52
, pp. 1355-1363
-
-
Wu, X.1
Motoshima, H.2
Mahadev, K.3
Stalker, T.J.4
Scalia, R.5
Goldstein, B.J.6
-
18
-
-
77951872309
-
Adiponectin and AdipoR1 regulate PGC-1alpha and mitochondria by Ca(2+) and AMPK/SIRT1.
-
Iwabu M, Yamauchi T, Okada-Iwabu M et al. Adiponectin and AdipoR1 regulate PGC-1alpha and mitochondria by Ca(2+) and AMPK/SIRT1. Nature 2010; 464: 1313-1319.
-
(2010)
Nature
, vol.464
, pp. 1313-1319
-
-
Iwabu, M.1
Yamauchi, T.2
Okada-Iwabu, M.3
-
19
-
-
79959705713
-
AMP-activated protein kinase is activated in adipose tissue of individuals with type 2 diabetes treated with metformin: a randomised glycaemia-controlled crossover study.
-
Boyle JG, Logan PJ, Jones GC et al. AMP-activated protein kinase is activated in adipose tissue of individuals with type 2 diabetes treated with metformin: a randomised glycaemia-controlled crossover study. Diabetologia 2011; 54: 1799-1809.
-
(2011)
Diabetologia
, vol.54
, pp. 1799-1809
-
-
Boyle, J.G.1
Logan, P.J.2
Jones, G.C.3
-
20
-
-
34547127625
-
Activation of 5′-AMP-activated kinase with diabetes drug metformin induces casein kinase Iepsilon (CKIepsilon)-dependent degradation of clock protein mPer2.
-
Um JH, Yang S, Yamazaki S et al. Activation of 5′-AMP-activated kinase with diabetes drug metformin induces casein kinase Iepsilon (CKIepsilon)-dependent degradation of clock protein mPer2. J Biol Chem 2007; 282: 20794-20798.
-
(2007)
J Biol Chem
, vol.282
, pp. 20794-20798
-
-
Um, J.H.1
Yang, S.2
Yamazaki, S.3
-
21
-
-
43049121395
-
Glucose restriction inhibits skeletal myoblast differentiation by activating SIRT1 through AMPK-mediated regulation of Nampt.
-
Fulco M, Cen Y, Zhao P et al. Glucose restriction inhibits skeletal myoblast differentiation by activating SIRT1 through AMPK-mediated regulation of Nampt. Dev Cell 2008; 14: 661-673.
-
(2008)
Dev Cell
, vol.14
, pp. 661-673
-
-
Fulco, M.1
Cen, Y.2
Zhao, P.3
-
22
-
-
65549103855
-
Circadian clock feedback cycle through NAMPT-mediated NAD+ biosynthesis.
-
Ramsey KM, Yoshino J, Brace CS et al. Circadian clock feedback cycle through NAMPT-mediated NAD+ biosynthesis. Science 2009; 324: 651-654.
-
(2009)
Science
, vol.324
, pp. 651-654
-
-
Ramsey, K.M.1
Yoshino, J.2
Brace, C.S.3
-
23
-
-
35548930677
-
High-fat diet disrupts behavioral and molecular circadian rhythms in mice.
-
Kohsaka A, Laposky AD, Ramsey KM et al. High-fat diet disrupts behavioral and molecular circadian rhythms in mice. Cell Metab 2007; 6: 414-421.
-
(2007)
Cell Metab
, vol.6
, pp. 414-421
-
-
Kohsaka, A.1
Laposky, A.D.2
Ramsey, K.M.3
-
24
-
-
70350128135
-
AMPK regulates the circadian clock by cryptochrome phosphorylation and degradation.
-
Lamia KA, Sachdeva UM, DiTacchio L et al. AMPK regulates the circadian clock by cryptochrome phosphorylation and degradation. Science 2009; 326: 437-440.
-
(2009)
Science
, vol.326
, pp. 437-440
-
-
Lamia, K.A.1
Sachdeva, U.M.2
DiTacchio, L.3
|