-
1
-
-
0036069699
-
The CD28 signaling pathway regulates glucose metabolism
-
Frauwirth KA, Riley JL, Harris MH, Parry RV, Rathmell JC, Plas DR et al. The CD28 signaling pathway regulates glucose metabolism. Immunity 2002; 16:769–77.
-
(2002)
Immunity
, vol.16
, pp. 769-777
-
-
Frauwirth, K.A.1
Riley, J.L.2
Harris, M.H.3
Parry, R.V.4
Rathmell, J.C.5
Plas, D.R.6
-
2
-
-
12444279265
-
On the origin of cancer cells
-
Warburg O. On the origin of cancer cells. Science 1956; 123:309–14.
-
(1956)
Science
, vol.123
, pp. 309-314
-
-
Warburg, O.1
-
3
-
-
80054046029
-
Heiden, aerobic glycolysis: meeting the metabolic requirements of cell proliferation
-
Lunt SY, Vander MG. Heiden, aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Ann Rev Cell Dev Biol 2011; 27:441–64.
-
(2011)
Ann Rev Cell Dev Biol
, vol.27
, pp. 441-464
-
-
Lunt, S.Y.1
Vander, M.G.2
-
4
-
-
44449165597
-
Glucose uptake is limiting in T cell activation and requires CD28-mediated Akt-dependent and independent pathways
-
Jacobs SR, Herman CE, MacIver NJ, Wofford JA, Wieman HL, Hammen JJ et al. Glucose uptake is limiting in T cell activation and requires CD28-mediated Akt-dependent and independent pathways. J Immunol 2008; 180:4476–86.
-
(2008)
J Immunol
, vol.180
, pp. 4476-4486
-
-
Jacobs, S.R.1
Herman, C.E.2
MacIver, N.J.3
Wofford, J.A.4
Wieman, H.L.5
Hammen, J.J.6
-
5
-
-
1842581892
-
Regulation of T lymphocyte metabolism
-
Frauwirth KA, Thompson CB. Regulation of T lymphocyte metabolism. J Immunol 2004; 172:4661–5.
-
(2004)
J Immunol
, vol.172
, pp. 4661-4665
-
-
Frauwirth, K.A.1
Thompson, C.B.2
-
6
-
-
79960369458
-
HIF1α-dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and Treg cells
-
Shi LZ, Wang R, Huang G, Vogel P, Neale G, Green DR et al. HIF1α-dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and Treg cells. J Exp Med 2011; 208:1367–76.
-
(2011)
J Exp Med
, vol.208
, pp. 1367-1376
-
-
Shi, L.Z.1
Wang, R.2
Huang, G.3
Vogel, P.4
Neale, G.5
Green, D.R.6
-
8
-
-
84937604783
-
Complement regulates nutrient influx and metabolic reprogramming during Th1 cell responses
-
Kolev M, Dimeloe S, Le Friec G, Navarini A, Arbore G, Povoleri GA et al. Complement regulates nutrient influx and metabolic reprogramming during Th1 cell responses. Immunity 2015; 42:1033–47.
-
(2015)
Immunity
, vol.42
, pp. 1033-1047
-
-
Kolev, M.1
Dimeloe, S.2
Le Friec, G.3
Navarini, A.4
Arbore, G.5
Povoleri, G.A.6
-
9
-
-
81055126129
-
Estrogen-related receptor-α is a metabolic regulator of effector T-cell activation and differentiation
-
Michalek RD, Gerriets VA, Nichols AG, Inoue M, Kazmin D, Chang C-Y et al. Estrogen-related receptor-α is a metabolic regulator of effector T-cell activation and differentiation. Proc Natl Acad Sci USA 2011; 108:18348–53.
-
(2011)
Proc Natl Acad Sci USA
, vol.108
, pp. 18348-18353
-
-
Michalek, R.D.1
Gerriets, V.A.2
Nichols, A.G.3
Inoue, M.4
Kazmin, D.5
Chang, C.-Y.6
-
10
-
-
84255199079
-
The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation
-
Wang R, Dillon CP, Shi LZ, Milasta S, Carter R, Finkelstein D et al. The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation. Immunity 2011; 35:871–82.
-
(2011)
Immunity
, vol.35
, pp. 871-882
-
-
Wang, R.1
Dillon, C.P.2
Shi, L.Z.3
Milasta, S.4
Carter, R.5
Finkelstein, D.6
-
11
-
-
84938662913
-
Single cell tuning of Myc expression by antigen receptor signal strength and interleukin-2 in T lymphocytes
-
Preston GC, Sinclair LV, Kaskar A, Hukelmann JL, Navarro MN, Ferrero I et al. Single cell tuning of Myc expression by antigen receptor signal strength and interleukin-2 in T lymphocytes. EMBO J 2015; 34:2008–24.
-
(2015)
EMBO J
, vol.34
, pp. 2008-2024
-
-
Preston, G.C.1
Sinclair, L.V.2
Kaskar, A.3
Hukelmann, J.L.4
Navarro, M.N.5
Ferrero, I.6
-
12
-
-
84886720433
-
The transcription factor IRF4 is essential for TCR affinity-mediated metabolic programming and clonal expansion of T cells
-
Man K, Miasari M, Shi W, Xin A, Henstridge DC, Preston S et al. The transcription factor IRF4 is essential for TCR affinity-mediated metabolic programming and clonal expansion of T cells. Nat Immunol 2013; 14:1155–65.
-
(2013)
Nat Immunol
, vol.14
, pp. 1155-1165
-
-
Man, K.1
Miasari, M.2
Shi, W.3
Xin, A.4
Henstridge, D.C.5
Preston, S.6
-
15
-
-
84878831880
-
Posttranscriptional control of T cell effector function by aerobic glycolysis
-
Chang C-H, Curtis JD, Maggi LB, Faubert B, Villarino AV, Sullivan DO et al. Posttranscriptional control of T cell effector function by aerobic glycolysis. Cell 2013; 153:1239–51.
-
(2013)
Cell
, vol.153
, pp. 1239-1251
-
-
Chang, C.-H.1
Curtis, J.D.2
Maggi, L.B.3
Faubert, B.4
Villarino, A.V.5
Sullivan, D.O.6
-
18
-
-
84945474595
-
Glycolysis controls the induction of human regulatory T cells by modulating the expression of FOXP3 exon 2 splicing variants
-
De Rosa V, Galgani M, Porcellini A, Colamatteo A, Santopaolo M, Zuchegna C et al. Glycolysis controls the induction of human regulatory T cells by modulating the expression of FOXP3 exon 2 splicing variants. Nat Immunol 2015; 16:1174–84.
-
(2015)
Nat Immunol
, vol.16
, pp. 1174-1184
-
-
De Rosa, V.1
Galgani, M.2
Porcellini, A.3
Colamatteo, A.4
Santopaolo, M.5
Zuchegna, C.6
-
19
-
-
84958624127
-
The proteomic landscape of human ex vivo regulatory and conventional T cells reveals specific metabolic requirements
-
Procaccini C, Carbone F, Di Silvestre D, Brambilla F, De Rosa V, Galgani M et al. The proteomic landscape of human ex vivo regulatory and conventional T cells reveals specific metabolic requirements. Immunity 2016; 44:406–21.
-
(2016)
Immunity
, vol.44
, pp. 406-421
-
-
Procaccini, C.1
Carbone, F.2
Di Silvestre, D.3
Brambilla, F.4
De Rosa, V.5
Galgani, M.6
-
20
-
-
84856687289
-
The role of low-level lactate production in airway inflammation in asthma
-
Ostroukhova M, Goplen N, Karim MZ, Michalec L, Guo L, Liang Q et al. The role of low-level lactate production in airway inflammation in asthma. Am J Physiol Lung Cell Mol Physiol 2012; 302:L300–7.
-
(2012)
Am J Physiol Lung Cell Mol Physiol
, vol.302
, pp. L300-L307
-
-
Ostroukhova, M.1
Goplen, N.2
Karim, M.Z.3
Michalec, L.4
Guo, L.5
Liang, Q.6
-
23
-
-
84945583836
-
Preventing allograft rejection by targeting immune metabolism
-
Lee C-F, Lo Y-C, Cheng C-H, Furtmüller GJ, Oh B, Andrade-Oliveira V et al. Preventing allograft rejection by targeting immune metabolism. Cell Rep 2015; 13:760–70.
-
(2015)
Cell Rep
, vol.13
, pp. 760-770
-
-
Lee, C.-F.1
Lo, Y.-C.2
Cheng, C.-H.3
Furtmüller, G.J.4
Oh, B.5
Andrade-Oliveira, V.6
-
24
-
-
84885448124
-
Phosphofructokinase deficiency impairs ATP generation, autophagy, and redox balance in rheumatoid arthritis T cells
-
Yang Z, Fujii H, Mohan SV, Goronzy JJ, Weyand CM. Phosphofructokinase deficiency impairs ATP generation, autophagy, and redox balance in rheumatoid arthritis T cells. J Exp Med 2013; 210:2119–34.
-
(2013)
J Exp Med
, vol.210
, pp. 2119-2134
-
-
Yang, Z.1
Fujii, H.2
Mohan, S.V.3
Goronzy, J.J.4
Weyand, C.M.5
-
25
-
-
84941344937
-
Metabolic competition in the tumor microenvironment is a driver of cancer progression
-
Chang C-H, Qiu J, O'Sullivan D, Buck MD, Noguchi T, Curtis JD et al. Metabolic competition in the tumor microenvironment is a driver of cancer progression. Cell 2015; 162:1229–41.
-
(2015)
Cell
, vol.162
, pp. 1229-1241
-
-
Chang, C.-H.1
Qiu, J.2
O'Sullivan, D.3
Buck, M.D.4
Noguchi, T.5
Curtis, J.D.6
-
26
-
-
84941366350
-
Phosphoenolpyruvate is a metabolic checkpoint of anti-tumor T cell responses
-
Ho P-C, Bihuniak JD, Macintyre AN, Staron M, Liu X, Amezquita R et al. Phosphoenolpyruvate is a metabolic checkpoint of anti-tumor T cell responses. Cell 2015; 162:1217–28.
-
(2015)
Cell
, vol.162
, pp. 1217-1228
-
-
Ho, P.-C.1
Bihuniak, J.D.2
Macintyre, A.N.3
Staron, M.4
Liu, X.5
Amezquita, R.6
-
27
-
-
84951313126
-
Cancer mediates effector T cell dysfunction by targeting microRNAs and EZH2 via glycolysis restriction
-
Zhao E, Maj T, Kryczek I, Li W, Wu K, Zhao L et al. Cancer mediates effector T cell dysfunction by targeting microRNAs and EZH2 via glycolysis restriction. Nat Immunol 2016; 17:95–103.
-
(2016)
Nat Immunol
, vol.17
, pp. 95-103
-
-
Zhao, E.1
Maj, T.2
Kryczek, I.3
Li, W.4
Wu, K.5
Zhao, L.6
-
28
-
-
84925688346
-
PD-1 alters T-cell metabolic reprogramming by inhibiting glycolysis and promoting lipolysis and fatty acid oxidation
-
Patsoukis N, Bardhan K, Chatterjee P, Sari D, Liu B, Bell LN et al. PD-1 alters T-cell metabolic reprogramming by inhibiting glycolysis and promoting lipolysis and fatty acid oxidation. Nat Commun 2015; 6:6692.
-
(2015)
Nat Commun
, vol.6
, pp. 6692
-
-
Patsoukis, N.1
Bardhan, K.2
Chatterjee, P.3
Sari, D.4
Liu, B.5
Bell, L.N.6
-
30
-
-
84874242919
-
Mitochondria are required for antigen-specific T cell activation through reactive oxygen species signaling
-
Sena LA, Li S, Jairaman A, Prakriya M, Ezponda T, Hildeman DA et al. Mitochondria are required for antigen-specific T cell activation through reactive oxygen species signaling. Immunity 2013; 38:225–36.
-
(2013)
Immunity
, vol.38
, pp. 225-236
-
-
Sena, L.A.1
Li, S.2
Jairaman, A.3
Prakriya, M.4
Ezponda, T.5
Hildeman, D.A.6
-
31
-
-
84900440370
-
Inflammatory T cell responses rely on amino acid transporter ASCT2 facilitation of glutamine uptake and mTORC1 kinase activation
-
Nakaya M, Xiao Y, Zhou X, Chang J-H, Chang M, Cheng X et al. Inflammatory T cell responses rely on amino acid transporter ASCT2 facilitation of glutamine uptake and mTORC1 kinase activation. Immunity 2014; 40:692–705.
-
(2014)
Immunity
, vol.40
, pp. 692-705
-
-
Nakaya, M.1
Xiao, Y.2
Zhou, X.3
Chang, J.-H.4
Chang, M.5
Cheng, X.6
-
32
-
-
77955475969
-
Glutamine uptake and metabolism are coordinately regulated by ERK/MAPK during T lymphocyte activation
-
Carr EL, Kelman A, Wu GS, Gopaul R, Senkevitch E, Aghvanyan A et al. Glutamine uptake and metabolism are coordinately regulated by ERK/MAPK during T lymphocyte activation. J Immunol 2010; 185:1037–44.
-
(2010)
J Immunol
, vol.185
, pp. 1037-1044
-
-
Carr, E.L.1
Kelman, A.2
Wu, G.S.3
Gopaul, R.4
Senkevitch, E.5
Aghvanyan, A.6
-
33
-
-
59049087460
-
Bidirectional transport of amino acids regulates mTOR and autophagy
-
Nicklin P, Bergman P, Zhang B, Triantafellow E, Wang H, Nyfeler B et al. Bidirectional transport of amino acids regulates mTOR and autophagy. Cell 2009; 136:521–34.
-
(2009)
Cell
, vol.136
, pp. 521-534
-
-
Nicklin, P.1
Bergman, P.2
Zhang, B.3
Triantafellow, E.4
Wang, H.5
Nyfeler, B.6
-
34
-
-
84864931233
-
Glutaminolysis activates Rag-mTORC1 signaling
-
Durán RV, Oppliger W, Robitaille AM, Heiserich L, Skendaj R, Gottlieb E et al. Glutaminolysis activates Rag-mTORC1 signaling. Mol Cell 2012; 47:349–58.
-
(2012)
Mol Cell
, vol.47
, pp. 349-358
-
-
Durán, R.V.1
Oppliger, W.2
Robitaille, A.M.3
Heiserich, L.4
Skendaj, R.5
Gottlieb, E.6
-
35
-
-
84921309472
-
The energy sensor AMPK regulates T cell metabolic adaptation and effector responses in vivo
-
Blagih J, Coulombe F, Vincent EE, Dupuy F, Galicia-Vazquez G, Yurchenko E et al. The energy sensor AMPK regulates T cell metabolic adaptation and effector responses in vivo. Immunity 2015; 42:41–54.
-
(2015)
Immunity
, vol.42
, pp. 41-54
-
-
Blagih, J.1
Coulombe, F.2
Vincent, E.E.3
Dupuy, F.4
Galicia-Vazquez, G.5
Yurchenko, E.6
-
37
-
-
78649269147
-
Characterization of the metabolic phenotype of chronically activated lymphocytes
-
Wahl DR, Petersen B, Warner R, Richardson BC, Glick GD, Opipari AW. Characterization of the metabolic phenotype of chronically activated lymphocytes. Lupus 2010; 19:1492–501.
-
(2010)
Lupus
, vol.19
, pp. 1492-1501
-
-
Wahl, D.R.1
Petersen, B.2
Warner, R.3
Richardson, B.C.4
Glick, G.D.5
Opipari, A.W.6
-
38
-
-
79251500689
-
Manipulating the bioenergetics of alloreactive T cells causes their selective apoptosis and arrests graft-versus-host disease
-
Gatza E, Wahl DR, Opipari AW, Sundberg TB, Reddy P, Liu C et al. Manipulating the bioenergetics of alloreactive T cells causes their selective apoptosis and arrests graft-versus-host disease. Sci Transl Med 2011; 3:67ra8.
-
(2011)
Sci Transl Med
, vol.3
, pp. 67ra8
-
-
Gatza, E.1
Wahl, D.R.2
Opipari, A.W.3
Sundberg, T.B.4
Reddy, P.5
Liu, C.6
-
39
-
-
84891607730
-
Effector T cells require fatty acid metabolism during murine graft-versus-host disease
-
Byersdorfer CA, Tkachev V, Opipari AW, Goodell S, Swanson J, Sandquist S et al. Effector T cells require fatty acid metabolism during murine graft-versus-host disease. Blood 2013; 122:3230–7.
-
(2013)
Blood
, vol.122
, pp. 3230-3237
-
-
Byersdorfer, C.A.1
Tkachev, V.2
Opipari, A.W.3
Goodell, S.4
Swanson, J.5
Sandquist, S.6
-
41
-
-
36049013077
-
Convergence of multiple signaling pathways is required to coordinately up-regulate mtDNA and mitochondrial biogenesis during T cell activation
-
D'Souza AD, Parikh N, Kaech SM, Shadel GS. Convergence of multiple signaling pathways is required to coordinately up-regulate mtDNA and mitochondrial biogenesis during T cell activation. Mitochondrion 2007; 7:374–85.
-
(2007)
Mitochondrion
, vol.7
, pp. 374-385
-
-
D'Souza, A.D.1
Parikh, N.2
Kaech, S.M.3
Shadel, G.S.4
-
42
-
-
84969761352
-
Mitochondrial respiration controls lysosomal function during inflammatory T cell responses
-
Baixauli F, Acín-Pérez R, Villarroya-Beltrí C, Mazzeo C, Nuñez-Andrade N, Gabandé-Rodriguez E et al. Mitochondrial respiration controls lysosomal function during inflammatory T cell responses. Cell Metab 2015; 22:485–98.
-
(2015)
Cell Metab
, vol.22
, pp. 485-498
-
-
Baixauli, F.1
Acín-Pérez, R.2
Villarroya-Beltrí, C.3
Mazzeo, C.4
Nuñez-Andrade, N.5
Gabandé-Rodriguez, E.6
-
44
-
-
67650096912
-
Enhancing CD8 T-cell memory by modulating fatty acid metabolism
-
Pearce EL, Walsh MC, Cejas PJ, Harms GM, Shen H, Wang L-S et al. Enhancing CD8 T-cell memory by modulating fatty acid metabolism. Nature 2009; 460:103–7.
-
(2009)
Nature
, vol.460
, pp. 103-107
-
-
Pearce, E.L.1
Walsh, M.C.2
Cejas, P.J.3
Harms, G.M.4
Shen, H.5
Wang, L.-S.6
-
47
-
-
84883423963
-
CD8 memory T cells have a bioenergetic advantage that underlies their rapid recall ability
-
van der Windt GJW, O'Sullivan D, Everts B, Huang SC-C, Buck MD, Curtis JD et al. CD8 memory T cells have a bioenergetic advantage that underlies their rapid recall ability. Proc Natl Acad Sci USA 2013; 110:14336–41.
-
(2013)
Proc Natl Acad Sci USA
, vol.110
, pp. 14336-14341
-
-
van der Windt, G.J.W.1
O'Sullivan, D.2
Everts, B.3
Huang, S.C.-C.4
Buck, M.D.5
Curtis, J.D.6
-
48
-
-
73949151977
-
Mitochondria positioning controls local calcium influx in T cells
-
Schwindling C, Quintana A, Krause E, Hoth M. Mitochondria positioning controls local calcium influx in T cells. J Immunol 2010; 184:184–90.
-
(2010)
J Immunol
, vol.184
, pp. 184-190
-
-
Schwindling, C.1
Quintana, A.2
Krause, E.3
Hoth, M.4
-
49
-
-
84907011926
-
p38 signaling inhibits mTORC1-independent autophagy in senescent human CD8⁺ T cells
-
Henson SM, Lanna A, Riddell NE, Franzese O, Macaulay R, Griffiths SJ et al. p38 signaling inhibits mTORC1-independent autophagy in senescent human CD8⁺ T cells. J Clin Invest 2014; 124:4004–16.
-
(2014)
J Clin Invest
, vol.124
, pp. 4004-4016
-
-
Henson, S.M.1
Lanna, A.2
Riddell, N.E.3
Franzese, O.4
Macaulay, R.5
Griffiths, S.J.6
-
50
-
-
84976478216
-
Mitochondrial dynamics controls T cell fate through metabolic programming
-
Buck MD, O'Sullivan D, Klein GR, Curtis JD, Chang C-H, Sanin DE et al. Mitochondrial dynamics controls T cell fate through metabolic programming. Cell 2016; 166:63–76.
-
(2016)
Cell
, vol.166
, pp. 63-76
-
-
Buck, M.D.1
O'Sullivan, D.2
Klein, G.R.3
Curtis, J.D.4
Chang, C.-H.5
Sanin, D.E.6
-
52
-
-
84876514626
-
Control of amino-acid transport by antigen receptors coordinates the metabolic reprogramming essential for T cell differentiation
-
Sinclair LV, Rolf J, Emslie E, Shi Y-B, Taylor PM, Cantrell DA. Control of amino-acid transport by antigen receptors coordinates the metabolic reprogramming essential for T cell differentiation. Nat Immunol 2013; 14:500–8.
-
(2013)
Nat Immunol
, vol.14
, pp. 500-508
-
-
Sinclair, L.V.1
Rolf, J.2
Emslie, E.3
Shi, Y.-B.4
Taylor, P.M.5
Cantrell, D.A.6
-
53
-
-
21244456553
-
Rheb binding to mammalian target of rapamycin (mTOR) is regulated by amino acid sufficiency
-
Long X, Ortiz-Vega S, Lin Y, Avruch J. Rheb binding to mammalian target of rapamycin (mTOR) is regulated by amino acid sufficiency. J Biol Chem 2005; 280:23433–6.
-
(2005)
J Biol Chem
, vol.280
, pp. 23433-23436
-
-
Long, X.1
Ortiz-Vega, S.2
Lin, Y.3
Avruch, J.4
-
54
-
-
77951768486
-
Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids
-
Sancak Y, Bar-Peled L, Zoncu R, Markhard AL, Nada S, Sabatini DM. Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell 2010; 141:290–303.
-
(2010)
Cell
, vol.141
, pp. 290-303
-
-
Sancak, Y.1
Bar-Peled, L.2
Zoncu, R.3
Markhard, A.L.4
Nada, S.5
Sabatini, D.M.6
-
55
-
-
84866431363
-
Ragulator is a GEF for the rag GTPases that signal amino acid levels to mTORC1
-
Bar-Peled L, Schweitzer LD, Zoncu R, Sabatini DM. Ragulator is a GEF for the rag GTPases that signal amino acid levels to mTORC1. Cell 2012; 150:1196–208.
-
(2012)
Cell
, vol.150
, pp. 1196-1208
-
-
Bar-Peled, L.1
Schweitzer, L.D.2
Zoncu, R.3
Sabatini, D.M.4
-
56
-
-
84952898511
-
Structural basis for leucine sensing by the Sestrin2-mTORC1 pathway
-
Saxton RA, Knockenhauer KE, Wolfson RL, Chantranupong L, Pacold ME, Wang T et al. Structural basis for leucine sensing by the Sestrin2-mTORC1 pathway. Science 2016; 351:53–8.
-
(2016)
Science
, vol.351
, pp. 53-58
-
-
Saxton, R.A.1
Knockenhauer, K.E.2
Wolfson, R.L.3
Chantranupong, L.4
Pacold, M.E.5
Wang, T.6
-
57
-
-
84952915479
-
Sestrin2 is a leucine sensor for the mTORC1 pathway
-
Wolfson RL, Chantranupong L, Saxton RA, Shen K, Scaria SM, Cantor JR et al. Sestrin2 is a leucine sensor for the mTORC1 pathway. Science 2016; 351:43–8.
-
(2016)
Science
, vol.351
, pp. 43-48
-
-
Wolfson, R.L.1
Chantranupong, L.2
Saxton, R.A.3
Shen, K.4
Scaria, S.M.5
Cantor, J.R.6
-
58
-
-
84959880781
-
The CASTOR proteins are arginine sensors for the mTORC1 pathway
-
Chantranupong L, Scaria SM, Saxton RA, Gygi MP, Shen K, Wyant GA et al. The CASTOR proteins are arginine sensors for the mTORC1 pathway. Cell 2016; 165:153–64.
-
(2016)
Cell
, vol.165
, pp. 153-164
-
-
Chantranupong, L.1
Scaria, S.M.2
Saxton, R.A.3
Gygi, M.P.4
Shen, K.5
Wyant, G.A.6
-
59
-
-
84964527036
-
Metabolic maintenance of cell asymmetry following division in activated T lymphocytes
-
Verbist KC, Guy CS, Milasta S, Liedmann S, Kamiński MM, Wang R et al. Metabolic maintenance of cell asymmetry following division in activated T lymphocytes. Nature 2016; 532:389–93.
-
(2016)
Nature
, vol.532
, pp. 389-393
-
-
Verbist, K.C.1
Guy, C.S.2
Milasta, S.3
Liedmann, S.4
Kamiński, M.M.5
Wang, R.6
-
61
-
-
33748127113
-
Suppression of T-cell functions by human granulocyte arginase
-
Munder M, Schneider H, Luckner C, Giese T, Langhans C-D, Fuentes JM et al. Suppression of T-cell functions by human granulocyte arginase. Blood 2006; 108:1627–34.
-
(2006)
Blood
, vol.108
, pp. 1627-1634
-
-
Munder, M.1
Schneider, H.2
Luckner, C.3
Giese, T.4
Langhans, C.-D.5
Fuentes, J.M.6
-
62
-
-
84930651350
-
Metabolic regulation of hepatitis B immunopathology by myeloid-derived suppressor cells
-
Pallett LJ, Gill US, Quaglia A, Sinclair LV, Jover-Cobos M, Schurich A et al. Metabolic regulation of hepatitis B immunopathology by myeloid-derived suppressor cells. Nat Med 2015; 21:591–600.
-
(2015)
Nat Med
, vol.21
, pp. 591-600
-
-
Pallett, L.J.1
Gill, U.S.2
Quaglia, A.3
Sinclair, L.V.4
Jover-Cobos, M.5
Schurich, A.6
-
63
-
-
70449574101
-
Local suppression of T cell responses by arginase-induced l-arginine depletion in nonhealing leishmaniasis
-
Modolell M, Choi B-S, Ryan RO, Hancock M, Titus RG, Abebe T et al. Local suppression of T cell responses by arginase-induced l-arginine depletion in nonhealing leishmaniasis. PLoS Negl Trop Dis 2009; 3:e480.
-
(2009)
PLoS Negl Trop Dis
, vol.3
-
-
Modolell, M.1
Choi, B.-S.2
Ryan, R.O.3
Hancock, M.4
Titus, R.G.5
Abebe, T.6
-
64
-
-
80053148519
-
Arginine depletion as a mechanism for the immune privilege of corneal allografts
-
Fu H, Khan A, Coe D, Zaher S, Chai J-G, Kropf P et al. Arginine depletion as a mechanism for the immune privilege of corneal allografts. Eur J Immunol 2011; 41:2997–3005.
-
(2011)
Eur J Immunol
, vol.41
, pp. 2997-3005
-
-
Fu, H.1
Khan, A.2
Coe, D.3
Zaher, S.4
Chai, J.-G.5
Kropf, P.6
-
65
-
-
84878124921
-
Cytotoxicity of tumor antigen specific human T cells is unimpaired by arginine depletion
-
Munder M, Engelhardt M, Knies D, Medenhoff S, Wabnitz G, Luckner-Minden C et al. Cytotoxicity of tumor antigen specific human T cells is unimpaired by arginine depletion. PLoS ONE 2013; 8:e63521.
-
(2013)
PLoS ONE
, vol.8
-
-
Munder, M.1
Engelhardt, M.2
Knies, D.3
Medenhoff, S.4
Wabnitz, G.5
Luckner-Minden, C.6
-
66
-
-
4143130091
-
Arginase I production in the tumor microenvironment by mature myeloid cells inhibits T-cell receptor expression and antigen-specific T-cell responses
-
Rodriguez PC, Quiceno DG, Zabaleta J, Ortiz B, Zea AH, Piazuelo MB et al. Arginase I production in the tumor microenvironment by mature myeloid cells inhibits T-cell receptor expression and antigen-specific T-cell responses. Cancer Res 2004; 64:5839–49.
-
(2004)
Cancer Res
, vol.64
, pp. 5839-5849
-
-
Rodriguez, P.C.1
Quiceno, D.G.2
Zabaleta, J.3
Ortiz, B.4
Zea, A.H.5
Piazuelo, M.B.6
-
67
-
-
34249710406
-
Arginase activity mediates reversible T cell hyporesponsiveness in human pregnancy
-
Kropf P, Baud D, Marshall SE, Munder M, Mosley A, Fuentes JM et al. Arginase activity mediates reversible T cell hyporesponsiveness in human pregnancy. Eur J Immunol 2007; 37:935–45.
-
(2007)
Eur J Immunol
, vol.37
, pp. 935-945
-
-
Kropf, P.1
Baud, D.2
Marshall, S.E.3
Munder, M.4
Mosley, A.5
Fuentes, J.M.6
-
68
-
-
84876684375
-
Sterol regulatory element-binding proteins are essential for the metabolic programming of effector T cells and adaptive immunity
-
Kidani Y, Elsaesser H, Hock MB, Vergnes L, Williams KJ, Argus JP et al. Sterol regulatory element-binding proteins are essential for the metabolic programming of effector T cells and adaptive immunity. Nat Immunol 2013; 14:489–99.
-
(2013)
Nat Immunol
, vol.14
, pp. 489-499
-
-
Kidani, Y.1
Elsaesser, H.2
Hock, M.B.3
Vergnes, L.4
Williams, K.J.5
Argus, J.P.6
-
70
-
-
84881192927
-
mTORC1 couples immune signals and metabolic programming to establish Treg-cell function
-
Zeng H, Yang K, Cloer C, Neale G, Vogel P, Chi H. mTORC1 couples immune signals and metabolic programming to establish Treg-cell function. Nature 2013; 499:485–90.
-
(2013)
Nature
, vol.499
, pp. 485-490
-
-
Zeng, H.1
Yang, K.2
Cloer, C.3
Neale, G.4
Vogel, P.5
Chi, H.6
-
71
-
-
84922080059
-
De novo fatty acid synthesis controls the fate between regulatory T and T helper 17 cells
-
Berod L, Friedrich C, Nandan A, Freitag J, Hagemann S, Harmrolfs K et al. De novo fatty acid synthesis controls the fate between regulatory T and T helper 17 cells. Nat Med 2014; 20:1327–33.
-
(2014)
Nat Med
, vol.20
, pp. 1327-1333
-
-
Berod, L.1
Friedrich, C.2
Nandan, A.3
Freitag, J.4
Hagemann, S.5
Harmrolfs, K.6
-
74
-
-
77957054466
-
The mammalian target of rapamycin: linking T cell differentiation, function, and metabolism
-
Powell JD, Delgoffe GM. The mammalian target of rapamycin: linking T cell differentiation, function, and metabolism. Immunity 2010; 33:301–11.
-
(2010)
Immunity
, vol.33
, pp. 301-311
-
-
Powell, J.D.1
Delgoffe, G.M.2
-
75
-
-
84951276483
-
The cytotoxic T cell proteome and its shaping by the kinase mTOR
-
Hukelmann JL, Anderson KE, Sinclair LV, Grzes KM, Murillo AB, Hawkins PT et al. The cytotoxic T cell proteome and its shaping by the kinase mTOR. Nat Immunol 2016; 17:104–12.
-
(2016)
Nat Immunol
, vol.17
, pp. 104-112
-
-
Hukelmann, J.L.1
Anderson, K.E.2
Sinclair, L.V.3
Grzes, K.M.4
Murillo, A.B.5
Hawkins, P.T.6
-
77
-
-
84892941233
-
Aptamer-targeted inhibition of mTOR in T cells enhances antitumor immunity
-
Berezhnoy A, Castro I, Levay A, Malek TR, Gilboa E. Aptamer-targeted inhibition of mTOR in T cells enhances antitumor immunity. J Clin Invest 2014; 124:188–97.
-
(2014)
J Clin Invest
, vol.124
, pp. 188-197
-
-
Berezhnoy, A.1
Castro, I.2
Levay, A.3
Malek, T.R.4
Gilboa, E.5
-
79
-
-
80054726323
-
The liver kinase B1 is a central regulator of T cell development, activation, and metabolism
-
MacIver NJ, Blagih J, Saucillo DC, Tonelli L, Griss T, Rathmell JC et al. The liver kinase B1 is a central regulator of T cell development, activation, and metabolism. J Immunol 2011; 187:4187–98.
-
(2011)
J Immunol
, vol.187
, pp. 4187-4198
-
-
MacIver, N.J.1
Blagih, J.2
Saucillo, D.C.3
Tonelli, L.4
Griss, T.5
Rathmell, J.C.6
-
80
-
-
67649196932
-
Metformin attenuated the autoimmune disease of the central nervous system in animal models of multiple sclerosis
-
Nath N, Khan M, Paintlia MK, Singh I, Hoda MN, Giri S. Metformin attenuated the autoimmune disease of the central nervous system in animal models of multiple sclerosis. J Immunol 2009; 182:8005–14.
-
(2009)
J Immunol
, vol.182
, pp. 8005-8014
-
-
Nath, N.1
Khan, M.2
Paintlia, M.K.3
Singh, I.4
Hoda, M.N.5
Giri, S.6
-
81
-
-
77952359802
-
Novel anti-inflammatory action of 5-aminoimidazole-4-carboxamide ribonucleoside with protective effect in dextran sulfate sodium-induced acute and chronic colitis
-
Bai A, Yong M, Ma AG, Ma Y, Weiss CR, Guan Q et al. Novel anti-inflammatory action of 5-aminoimidazole-4-carboxamide ribonucleoside with protective effect in dextran sulfate sodium-induced acute and chronic colitis. J Pharmacol Exp Ther 2010; 333:717–25.
-
(2010)
J Pharmacol Exp Ther
, vol.333
, pp. 717-725
-
-
Bai, A.1
Yong, M.2
Ma, A.G.3
Ma, Y.4
Weiss, C.R.5
Guan, Q.6
|