-
1
-
-
84968896486
-
World Malaria Report 2015
-
World Health Organization
-
1 World Health Organization, World Malaria Report 2015., 2015, World Health Organization (http://www.who.int/malaria/publications/world-malaria-report-2015/report/en).
-
(2015)
-
-
World Health Organization1
-
2
-
-
78649251920
-
Heme as trigger and target for trioxane-containing antimalarial drugs
-
2 Meunier, B., Robert, A., Heme as trigger and target for trioxane-containing antimalarial drugs. Acc. Chem. Res. 43 (2010), 1444–1451.
-
(2010)
Acc. Chem. Res.
, vol.43
, pp. 1444-1451
-
-
Meunier, B.1
Robert, A.2
-
3
-
-
2542640961
-
A medicinal chemistry perspective on artemisinin and related endoperoxides
-
3 O'Neill, P.M., Posner, G.H., A medicinal chemistry perspective on artemisinin and related endoperoxides. J. Med. Chem. 47 (2004), 2945–2964.
-
(2004)
J. Med. Chem.
, vol.47
, pp. 2945-2964
-
-
O'Neill, P.M.1
Posner, G.H.2
-
4
-
-
70449732094
-
Artemisinin-based combination therapies: a vital tool in efforts to eliminate malaria
-
4 Eastman, R.T., Fidock, D.A., Artemisinin-based combination therapies: a vital tool in efforts to eliminate malaria. Nat. Rev. Microbiol. 7 (2009), 864–874.
-
(2009)
Nat. Rev. Microbiol.
, vol.7
, pp. 864-874
-
-
Eastman, R.T.1
Fidock, D.A.2
-
5
-
-
42349104331
-
Qinghaosu (artemisinin): the price of success
-
5 White, N.J., Qinghaosu (artemisinin): the price of success. Science 320 (2008), 330–334.
-
(2008)
Science
, vol.320
, pp. 330-334
-
-
White, N.J.1
-
7
-
-
68049123592
-
Artemisinin resistance in Plasmodium falciparum malaria
-
7 Dondorp, A.M., et al. Artemisinin resistance in Plasmodium falciparum malaria. N. Engl. J. Med. 361 (2009), 455–467.
-
(2009)
N. Engl. J. Med.
, vol.361
, pp. 455-467
-
-
Dondorp, A.M.1
-
8
-
-
77952376553
-
Malaria's drug miracle in danger
-
8 Enserink, M., Malaria's drug miracle in danger. Science 328 (2010), 844–846.
-
(2010)
Science
, vol.328
, pp. 844-846
-
-
Enserink, M.1
-
9
-
-
84887416507
-
Pharmacokinetic and pharmacodynamic considerations in antimalarial dose optimization
-
9 White, N.J., Pharmacokinetic and pharmacodynamic considerations in antimalarial dose optimization. Antimicrob. Agents Chemother. 57 (2013), 5792–5807.
-
(2013)
Antimicrob. Agents Chemother.
, vol.57
, pp. 5792-5807
-
-
White, N.J.1
-
10
-
-
4344630762
-
Identification of an antimalarial synthetic trioxolane drug development candidate
-
10 Vennerstrom, J.L., et al. Identification of an antimalarial synthetic trioxolane drug development candidate. Nature 430 (2004), 900–904.
-
(2004)
Nature
, vol.430
, pp. 900-904
-
-
Vennerstrom, J.L.1
-
11
-
-
34547638282
-
Peroxide bond-dependent antiplasmodial specificity of artemisinin and OZ277 (RBx11160)
-
11 Kaiser, M., et al. Peroxide bond-dependent antiplasmodial specificity of artemisinin and OZ277 (RBx11160). Antimicrob. Agents Chemother. 51 (2007), 2991–2993.
-
(2007)
Antimicrob. Agents Chemother.
, vol.51
, pp. 2991-2993
-
-
Kaiser, M.1
-
12
-
-
84930381560
-
Malaria medicines: a glass half full?
-
12 Wells, T.N., et al. Malaria medicines: a glass half full?. Nat. Rev. Drug Discov. 14 (2015), 424–442.
-
(2015)
Nat. Rev. Drug Discov.
, vol.14
, pp. 424-442
-
-
Wells, T.N.1
-
13
-
-
84864962615
-
Arterolane maleate plus piperaquine phosphate for treatment of uncomplicated Plasmodium falciparum malaria: a comparative, multicenter, randomized clinical trial
-
13 Valecha, N., et al. Arterolane maleate plus piperaquine phosphate for treatment of uncomplicated Plasmodium falciparum malaria: a comparative, multicenter, randomized clinical trial. Clin. Infect. Dis. 55 (2012), 663–671.
-
(2012)
Clin. Infect. Dis.
, vol.55
, pp. 663-671
-
-
Valecha, N.1
-
14
-
-
79952732772
-
Synthetic ozonide drug candidate OZ439 offers new hope for a single-dose cure of uncomplicated malaria
-
14 Charman, S.A., et al. Synthetic ozonide drug candidate OZ439 offers new hope for a single-dose cure of uncomplicated malaria. Proc. Natl. Acad. Sci. U.S.A. 108 (2011), 4400–4405.
-
(2011)
Proc. Natl. Acad. Sci. U.S.A.
, vol.108
, pp. 4400-4405
-
-
Charman, S.A.1
-
15
-
-
80054771436
-
Pharmacokinetics and pharmacodynamics of arterolane maleate following multiple oral doses in adult patients with P. falciparum malaria
-
15 Gautam, A., et al. Pharmacokinetics and pharmacodynamics of arterolane maleate following multiple oral doses in adult patients with P. falciparum malaria. J. Clin. Pharmacol. 51 (2011), 1519–1528.
-
(2011)
J. Clin. Pharmacol.
, vol.51
, pp. 1519-1528
-
-
Gautam, A.1
-
16
-
-
84898660982
-
Safety, tolerability and pharmacokinetic profile of single and multiple oral doses of arterolane (RBx11160) maleate in healthy subjects
-
16 Saha, N., et al. Safety, tolerability and pharmacokinetic profile of single and multiple oral doses of arterolane (RBx11160) maleate in healthy subjects. J. Clin. Pharmacol. 54 (2014), 386–393.
-
(2014)
J. Clin. Pharmacol.
, vol.54
, pp. 386-393
-
-
Saha, N.1
-
17
-
-
84964384823
-
Antimalarial activity of artefenomel (OZ439), a novel synthetic antimalarial endoperoxide, in patients with Plasmodium falciparum and Plasmodium vivax malaria: an open-label phase 2 trial
-
17 Phyo, A.P., et al. Antimalarial activity of artefenomel (OZ439), a novel synthetic antimalarial endoperoxide, in patients with Plasmodium falciparum and Plasmodium vivax malaria: an open-label phase 2 trial. Lancet Infect. Dis. 16 (2016), 61–69.
-
(2016)
Lancet Infect. Dis.
, vol.16
, pp. 61-69
-
-
Phyo, A.P.1
-
18
-
-
85027947965
-
Artefenomel: a promising new antimalarial drug
-
18 Rosenthal, P.J., Artefenomel: a promising new antimalarial drug. Lancet Infect. Dis. 16 (2016), 6–8.
-
(2016)
Lancet Infect. Dis.
, vol.16
, pp. 6-8
-
-
Rosenthal, P.J.1
-
19
-
-
84872260566
-
First-in-man safety and pharmacokinetics of synthetic ozonide OZ439 demonstrates an improved exposure profile relative to other peroxide antimalarials
-
19 Moehrle, J.J., et al. First-in-man safety and pharmacokinetics of synthetic ozonide OZ439 demonstrates an improved exposure profile relative to other peroxide antimalarials. Br. J. Clin. Pharmacol. 75 (2013), 524–537.
-
(2013)
Br. J. Clin. Pharmacol.
, vol.75
, pp. 524-537
-
-
Moehrle, J.J.1
-
20
-
-
0026014249
-
Artemisinin (Qinghaosu): the role of intracellular hemin in its mechanism of antimalarial action
-
20 Meshnick, S.R., et al. Artemisinin (Qinghaosu): the role of intracellular hemin in its mechanism of antimalarial action. Mol. Biochem. Parasitol. 49 (1991), 181–189.
-
(1991)
Mol. Biochem. Parasitol.
, vol.49
, pp. 181-189
-
-
Meshnick, S.R.1
-
21
-
-
84888137711
-
Iron and heme metabolism in Plasmodium falciparum and the mechanism of action of artemisinins
-
21 Klonis, N., et al. Iron and heme metabolism in Plasmodium falciparum and the mechanism of action of artemisinins. Curr. Opin. Microbiol. 16 (2013), 722–727.
-
(2013)
Curr. Opin. Microbiol.
, vol.16
, pp. 722-727
-
-
Klonis, N.1
-
22
-
-
76649123110
-
Digestive-vacuole genesis and endocytic processes in the early intraerythrocytic stages of Plasmodium falciparum
-
22 Abu Bakar, N.A., et al. Digestive-vacuole genesis and endocytic processes in the early intraerythrocytic stages of Plasmodium falciparum. J. Cell Sci. 123 (2010), 441–450.
-
(2010)
J. Cell Sci.
, vol.123
, pp. 441-450
-
-
Abu Bakar, N.A.1
-
23
-
-
84857694426
-
Recent advances in plasmepsin medicinal chemistry and implications for future antimalarial drug discovery efforts
-
23 Meyers, M.J., Goldberg, D.E., Recent advances in plasmepsin medicinal chemistry and implications for future antimalarial drug discovery efforts. Curr. Top. Med. Chem. 12 (2012), 445–455.
-
(2012)
Curr. Top. Med. Chem.
, vol.12
, pp. 445-455
-
-
Meyers, M.J.1
Goldberg, D.E.2
-
24
-
-
80053336043
-
Falcipains and other cysteine proteases of malaria parasites
-
24 Rosenthal, P.J., Falcipains and other cysteine proteases of malaria parasites. Adv. Exp. Med. Biol. 712 (2011), 30–48.
-
(2011)
Adv. Exp. Med. Biol.
, vol.712
, pp. 30-48
-
-
Rosenthal, P.J.1
-
25
-
-
38149035199
-
Haemozoin formation
-
25 Egan, T.J., Haemozoin formation. Mol. Biochem. Parasitol. 157 (2008), 127–136.
-
(2008)
Mol. Biochem. Parasitol.
, vol.157
, pp. 127-136
-
-
Egan, T.J.1
-
26
-
-
84872543098
-
Insights into the role of heme in the mechanism of action of antimalarials
-
26 Combrinck, J.M., et al. Insights into the role of heme in the mechanism of action of antimalarials. ACS Chem. Biol. 8 (2013), 133–137.
-
(2013)
ACS Chem. Biol.
, vol.8
, pp. 133-137
-
-
Combrinck, J.M.1
-
27
-
-
84875498942
-
Altered temporal response of malaria parasites determines differential sensitivity to artemisinin
-
27 Klonis, N., et al. Altered temporal response of malaria parasites determines differential sensitivity to artemisinin. Proc. Natl. Acad. Sci. U.S.A. 110 (2013), 5157–5162.
-
(2013)
Proc. Natl. Acad. Sci. U.S.A.
, vol.110
, pp. 5157-5162
-
-
Klonis, N.1
-
28
-
-
82755197376
-
Quantitative assessment of Plasmodium falciparum sexual development reveals potent transmission-blocking activity by methylene blue
-
28 Adjalley, S.H., et al. Quantitative assessment of Plasmodium falciparum sexual development reveals potent transmission-blocking activity by methylene blue. Proc. Natl. Acad. Sci. U.S.A. 108 (2011), E1214–E1223.
-
(2011)
Proc. Natl. Acad. Sci. U.S.A.
, vol.108
, pp. E1214-E1223
-
-
Adjalley, S.H.1
-
29
-
-
83255176722
-
Imaging of Plasmodium liver stages to drive next-generation antimalarial drug discovery
-
29 Meister, S., et al. Imaging of Plasmodium liver stages to drive next-generation antimalarial drug discovery. Science 334 (2011), 1372–1377.
-
(2011)
Science
, vol.334
, pp. 1372-1377
-
-
Meister, S.1
-
30
-
-
84957801889
-
Haemoglobin degradation underpins the sensitivity of early ring stage Plasmodium falciparum to artemisinins
-
30 Xie, S.C., et al. Haemoglobin degradation underpins the sensitivity of early ring stage Plasmodium falciparum to artemisinins. J. Cell Sci. 129 (2016), 406–416.
-
(2016)
J. Cell Sci.
, vol.129
, pp. 406-416
-
-
Xie, S.C.1
-
31
-
-
0026785410
-
De novo biosynthesis of heme offers a new chemotherapeutic target in the human malarial parasite
-
31 Surolia, N., Padmanaban, G., De novo biosynthesis of heme offers a new chemotherapeutic target in the human malarial parasite. Biochem. Biophys. Res. Commun. 187 (1992), 744–750.
-
(1992)
Biochem. Biophys. Res. Commun.
, vol.187
, pp. 744-750
-
-
Surolia, N.1
Padmanaban, G.2
-
32
-
-
84951850850
-
Haem-activated promiscuous targeting of artemisinin in Plasmodium falciparum
-
32 Wang, J., et al. Haem-activated promiscuous targeting of artemisinin in Plasmodium falciparum. Nat. Commun., 6, 2015, 10111.
-
(2015)
Nat. Commun.
, vol.6
, pp. 10111
-
-
Wang, J.1
-
33
-
-
84918580707
-
The heme biosynthesis pathway is essential for Plasmodium falciparum development in mosquito stage but not in blood stages
-
33 Ke, H., et al. The heme biosynthesis pathway is essential for Plasmodium falciparum development in mosquito stage but not in blood stages. J. Biol. Chem. 289 (2014), 34827–34837.
-
(2014)
J. Biol. Chem.
, vol.289
, pp. 34827-34837
-
-
Ke, H.1
-
34
-
-
84875814268
-
Parasite maturation and host serum iron influence the labile iron pool of erythrocyte stage Plasmodium falciparum
-
34 Clark, M., et al. Parasite maturation and host serum iron influence the labile iron pool of erythrocyte stage Plasmodium falciparum. Br. J. Haematol. 161 (2013), 262–269.
-
(2013)
Br. J. Haematol.
, vol.161
, pp. 262-269
-
-
Clark, M.1
-
35
-
-
0033560719
-
Inhibition of the peroxidative degradation of haem as the basis of action of chloroquine and other quinoline antimalarials
-
35 Loria, P., et al. Inhibition of the peroxidative degradation of haem as the basis of action of chloroquine and other quinoline antimalarials. Biochem. J. 339 (1999), 363–370.
-
(1999)
Biochem. J.
, vol.339
, pp. 363-370
-
-
Loria, P.1
-
36
-
-
0031792787
-
Inhibition of glutathione-dependent degradation of heme by chloroquine and amodiaquine as a possible basis for their antimalarial mode of action
-
36 Ginsburg, H., et al. Inhibition of glutathione-dependent degradation of heme by chloroquine and amodiaquine as a possible basis for their antimalarial mode of action. Biochem. Pharmacol. 56 (1998), 1305–1313.
-
(1998)
Biochem. Pharmacol.
, vol.56
, pp. 1305-1313
-
-
Ginsburg, H.1
-
37
-
-
0042860063
-
Artemisinins target the SERCA of Plasmodium falciparum
-
37 Eckstein-Ludwig, U., et al. Artemisinins target the SERCA of Plasmodium falciparum. Nature 424 (2003), 957–961.
-
(2003)
Nature
, vol.424
, pp. 957-961
-
-
Eckstein-Ludwig, U.1
-
38
-
-
34548293148
-
Evidence for a common non-heme chelatable-iron-dependent activation mechanism for semisynthetic and synthetic endoperoxide antimalarial drugs
-
38 Stocks, P.A., et al. Evidence for a common non-heme chelatable-iron-dependent activation mechanism for semisynthetic and synthetic endoperoxide antimalarial drugs. Angew. Chem. Int. Ed. Engl. 46 (2007), 6278–6283.
-
(2007)
Angew. Chem. Int. Ed. Engl.
, vol.46
, pp. 6278-6283
-
-
Stocks, P.A.1
-
39
-
-
84870289054
-
Interactions between artemisinins and other antimalarial drugs in relation to the cofactor model–a unifying proposal for drug action
-
39 Haynes, R.K., et al. Interactions between artemisinins and other antimalarial drugs in relation to the cofactor model–a unifying proposal for drug action. ChemMedChem 7 (2012), 2204–2226.
-
(2012)
ChemMedChem
, vol.7
, pp. 2204-2226
-
-
Haynes, R.K.1
-
40
-
-
77949661216
-
Artemisinin directly targets malarial mitochondria through its specific mitochondrial activation
-
40 Wang, J., et al. Artemisinin directly targets malarial mitochondria through its specific mitochondrial activation. PLoS ONE, 5, 2010, e9582.
-
(2010)
PLoS ONE
, vol.5
, pp. e9582
-
-
Wang, J.1
-
41
-
-
84929493850
-
Targeting the cell stress response of Plasmodium falciparum to overcome artemisinin resistance
-
41 Dogovski, C., et al. Targeting the cell stress response of Plasmodium falciparum to overcome artemisinin resistance. PLoS Biol., 13, 2015, e1002132.
-
(2015)
PLoS Biol.
, vol.13
, pp. e1002132
-
-
Dogovski, C.1
-
42
-
-
77950362015
-
The molecular mechanism of action of artemisinin – the debate continues
-
42 O'Neill, P.M., et al. The molecular mechanism of action of artemisinin – the debate continues. Molecules 15 (2010), 1705–1721.
-
(2010)
Molecules
, vol.15
, pp. 1705-1721
-
-
O'Neill, P.M.1
-
43
-
-
77950362820
-
Biological actions of artemisinin: insights from medicinal chemistry studies
-
43 Li, J., Zhou, B., Biological actions of artemisinin: insights from medicinal chemistry studies. Molecules 15 (2010), 1378–1397.
-
(2010)
Molecules
, vol.15
, pp. 1378-1397
-
-
Li, J.1
Zhou, B.2
-
44
-
-
0037021405
-
Artemisinin: mechanisms of action, resistance and toxicity
-
44 Meshnick, S.R., Artemisinin: mechanisms of action, resistance and toxicity. Int. J. Parasitol. 32 (2002), 1655–1660.
-
(2002)
Int. J. Parasitol.
, vol.32
, pp. 1655-1660
-
-
Meshnick, S.R.1
-
45
-
-
7944222115
-
Artemisinins: mechanisms of action and potential for resistance
-
45 Krishna, S., et al. Artemisinins: mechanisms of action and potential for resistance. Drug Resist. Updat. 7 (2004), 233–244.
-
(2004)
Drug Resist. Updat.
, vol.7
, pp. 233-244
-
-
Krishna, S.1
-
46
-
-
0027364698
-
Morphologic effects of artemisinin in Plasmodium falciparum
-
46 Maeno, Y., et al. Morphologic effects of artemisinin in Plasmodium falciparum. Am. J. Trop. Med. Hyg. 49 (1993), 485–491.
-
(1993)
Am. J. Trop. Med. Hyg.
, vol.49
, pp. 485-491
-
-
Maeno, Y.1
-
47
-
-
0033516474
-
Artemisinin, an endoperoxide antimalarial, disrupts the hemoglobin catabolism and heme detoxification systems in malarial parasite
-
47 Pandey, A.V., et al. Artemisinin, an endoperoxide antimalarial, disrupts the hemoglobin catabolism and heme detoxification systems in malarial parasite. J. Biol. Chem. 274 (1999), 19383–19388.
-
(1999)
J. Biol. Chem.
, vol.274
, pp. 19383-19388
-
-
Pandey, A.V.1
-
48
-
-
37849019012
-
Artemisinin and a series of novel endoperoxide antimalarials exert early effects on digestive vacuole morphology
-
48 Crespo, M.D.P., et al. Artemisinin and a series of novel endoperoxide antimalarials exert early effects on digestive vacuole morphology. Antimicrob. Agents Chemother. 52 (2008), 98–109.
-
(2008)
Antimicrob. Agents Chemother.
, vol.52
, pp. 98-109
-
-
Crespo, M.D.P.1
-
49
-
-
58249143778
-
Accumulation of artemisinin trioxane derivatives within neutral lipids of Plasmodium falciparum malaria parasites is endoperoxide-dependent
-
49 Hartwig, C.L., et al. Accumulation of artemisinin trioxane derivatives within neutral lipids of Plasmodium falciparum malaria parasites is endoperoxide-dependent. Biochem. Pharmacol. 77 (2009), 322–336.
-
(2009)
Biochem. Pharmacol.
, vol.77
, pp. 322-336
-
-
Hartwig, C.L.1
-
50
-
-
84959253636
-
Artemisinin activity-based probes identify multiple molecular targets within the asexual stage of the malaria parasites Plasmodium falciparum 3D7
-
50 Ismail, H.M., et al. Artemisinin activity-based probes identify multiple molecular targets within the asexual stage of the malaria parasites Plasmodium falciparum 3D7. Proc. Natl. Acad. Sci. U.S.A. 113 (2016), 2080–2085.
-
(2016)
Proc. Natl. Acad. Sci. U.S.A.
, vol.113
, pp. 2080-2085
-
-
Ismail, H.M.1
-
51
-
-
0037015602
-
A proteomic view of the Plasmodium falciparum life cycle
-
51 Florens, L., et al. A proteomic view of the Plasmodium falciparum life cycle. Nature 419 (2002), 520–526.
-
(2002)
Nature
, vol.419
, pp. 520-526
-
-
Florens, L.1
-
52
-
-
77954726224
-
Protein export marks the early phase of gametocytogenesis of the human malaria parasite Plasmodium falciparum
-
52 Silvestrini, F., et al. Protein export marks the early phase of gametocytogenesis of the human malaria parasite Plasmodium falciparum. Mol. Cell. Proteomics 9 (2010), 1437–1448.
-
(2010)
Mol. Cell. Proteomics
, vol.9
, pp. 1437-1448
-
-
Silvestrini, F.1
-
53
-
-
80054901700
-
The phosphoproteomes of Plasmodium falciparum and Toxoplasma gondii reveal unusual adaptations within and beyond the parasites’ boundaries
-
53 Treeck, M., et al. The phosphoproteomes of Plasmodium falciparum and Toxoplasma gondii reveal unusual adaptations within and beyond the parasites’ boundaries. Cell Host Microbe 10 (2011), 410–419.
-
(2011)
Cell Host Microbe
, vol.10
, pp. 410-419
-
-
Treeck, M.1
-
54
-
-
84908399993
-
Supergenomic network compression and the discovery of EXP1 as a glutathione transferase inhibited by artesunate
-
54 Lisewski, A.M., et al. Supergenomic network compression and the discovery of EXP1 as a glutathione transferase inhibited by artesunate. Cell 158 (2014), 916–928.
-
(2014)
Cell
, vol.158
, pp. 916-928
-
-
Lisewski, A.M.1
-
55
-
-
0033035811
-
Artemisinin and its derivatives are transported by a vacuolar-network of Plasmodium falciparum and their antimalarial activities are additive with toxic sphingolipid analogues that block the network
-
55 Akompong, T., et al. Artemisinin and its derivatives are transported by a vacuolar-network of Plasmodium falciparum and their antimalarial activities are additive with toxic sphingolipid analogues that block the network. Mol. Biochem. Parasitol. 101 (1999), 71–79.
-
(1999)
Mol. Biochem. Parasitol.
, vol.101
, pp. 71-79
-
-
Akompong, T.1
-
56
-
-
79960992639
-
Artemisinin activity against Plasmodium falciparum requires hemoglobin uptake and digestion
-
56 Klonis, N., et al. Artemisinin activity against Plasmodium falciparum requires hemoglobin uptake and digestion. Proc. Natl. Acad. Sci. U.S.A. 108 (2011), 11405–11410.
-
(2011)
Proc. Natl. Acad. Sci. U.S.A.
, vol.108
, pp. 11405-11410
-
-
Klonis, N.1
-
57
-
-
84928814749
-
A molecular mechanism of artemisinin resistance in Plasmodium falciparum malaria
-
57 Mbengue, A., et al. A molecular mechanism of artemisinin resistance in Plasmodium falciparum malaria. Nature 520 (2015), 683–687.
-
(2015)
Nature
, vol.520
, pp. 683-687
-
-
Mbengue, A.1
-
58
-
-
77950612934
-
PfPI3K, a phosphatidylinositol-3 kinase from Plasmodium falciparum, is exported to the host erythrocyte and is involved in hemoglobin trafficking
-
58 Vaid, A., et al. PfPI3K, a phosphatidylinositol-3 kinase from Plasmodium falciparum, is exported to the host erythrocyte and is involved in hemoglobin trafficking. Blood 115 (2010), 2500–2507.
-
(2010)
Blood
, vol.115
, pp. 2500-2507
-
-
Vaid, A.1
-
59
-
-
3042628994
-
Antimalarial quinolines and artemisinin inhibit endocytosis in Plasmodium falciparum. Antimicrob
-
59 Hoppe, H.C., et al. Antimalarial quinolines and artemisinin inhibit endocytosis in Plasmodium falciparum. Antimicrob. Agents Chemother. 48 (2004), 2370–2378.
-
(2004)
Agents Chemother.
, vol.48
, pp. 2370-2378
-
-
Hoppe, H.C.1
-
60
-
-
84960470369
-
Plasmodium falciparum: multifaceted resistance to artemisinins
-
60 Paloque, L., et al. Plasmodium falciparum: multifaceted resistance to artemisinins. Malar. J., 15, 2016, 149.
-
(2016)
Malar. J.
, vol.15
, pp. 149
-
-
Paloque, L.1
-
61
-
-
84875870963
-
Artemisinin resistance in rodent malaria–mutation in the AP2 adaptor mu-chain suggests involvement of endocytosis and membrane protein trafficking
-
61 Henriques, G., et al. Artemisinin resistance in rodent malaria–mutation in the AP2 adaptor mu-chain suggests involvement of endocytosis and membrane protein trafficking. Malar. J., 12, 2013, 118.
-
(2013)
Malar. J.
, vol.12
, pp. 118
-
-
Henriques, G.1
-
62
-
-
84880306767
-
Correlation between Plasmodium yoelii nigeriensis susceptibility to artemisinin and alkylation of heme by the drug
-
62 Robert, A., et al. Correlation between Plasmodium yoelii nigeriensis susceptibility to artemisinin and alkylation of heme by the drug. Antimicrob. Agents Chemother. 57 (2013), 3998–4000.
-
(2013)
Antimicrob. Agents Chemother.
, vol.57
, pp. 3998-4000
-
-
Robert, A.1
-
63
-
-
84904892931
-
Spread of artemisinin resistance in Plasmodium falciparum malaria
-
63 Ashley, E.A., et al. Spread of artemisinin resistance in Plasmodium falciparum malaria. N. Engl. J. Med. 371 (2014), 411–423.
-
(2014)
N. Engl. J. Med.
, vol.371
, pp. 411-423
-
-
Ashley, E.A.1
-
64
-
-
84959375968
-
Malaria Policy Advisory Committee to the WHO: conclusions and recommendations of eighth biannual meeting (September 2015)
-
64 WHO Malaria Policy Advisory Committee and Secretariat, Malaria Policy Advisory Committee to the WHO: conclusions and recommendations of eighth biannual meeting (September 2015). Malar. J., 15, 2016, 117.
-
(2016)
Malar. J.
, vol.15
, pp. 117
-
-
WHO Malaria Policy Advisory Committee and Secretariat1
-
65
-
-
84861461519
-
Emergence of artemisinin-resistant malaria on the western border of Thailand: a longitudinal study
-
65 Phyo, A.P., et al. Emergence of artemisinin-resistant malaria on the western border of Thailand: a longitudinal study. Lancet 379 (2012), 1960–1966.
-
(2012)
Lancet
, vol.379
, pp. 1960-1966
-
-
Phyo, A.P.1
-
66
-
-
84867917706
-
Artemisinin-resistant Plasmodium falciparum in Pursat province, western Cambodia: a parasite clearance rate study
-
66 Amaratunga, C., et al. Artemisinin-resistant Plasmodium falciparum in Pursat province, western Cambodia: a parasite clearance rate study. Lancet Infect. Dis. 12 (2012), 851–858.
-
(2012)
Lancet Infect. Dis.
, vol.12
, pp. 851-858
-
-
Amaratunga, C.1
-
67
-
-
84887622121
-
Novel phenotypic assays for the detection of artemisinin-resistant Plasmodium falciparum malaria in Cambodia: in-vitro and ex-vivo drug-response studies
-
67 Witkowski, B., et al. Novel phenotypic assays for the detection of artemisinin-resistant Plasmodium falciparum malaria in Cambodia: in-vitro and ex-vivo drug-response studies. Lancet Infect. Dis. 13 (2013), 1043–1049.
-
(2013)
Lancet Infect. Dis.
, vol.13
, pp. 1043-1049
-
-
Witkowski, B.1
-
68
-
-
84900838464
-
Artemisinin resistance in Plasmodium falciparum
-
68 Amaratunga, C., et al. Artemisinin resistance in Plasmodium falciparum. Lancet Infect. Dis. 14 (2014), 449–450.
-
(2014)
Lancet Infect. Dis.
, vol.14
, pp. 449-450
-
-
Amaratunga, C.1
-
69
-
-
84859506329
-
A major genome region underlying artemisinin resistance in malaria
-
69 Cheeseman, I.H., et al. A major genome region underlying artemisinin resistance in malaria. Science 336 (2012), 79–82.
-
(2012)
Science
, vol.336
, pp. 79-82
-
-
Cheeseman, I.H.1
-
70
-
-
84871944250
-
Genetic loci associated with delayed clearance of Plasmodium falciparum following artemisinin treatment in Southeast Asia
-
70 Takala-Harrison, S., et al. Genetic loci associated with delayed clearance of Plasmodium falciparum following artemisinin treatment in Southeast Asia. Proc. Natl. Acad. Sci. U.S.A. 110 (2013), 240–245.
-
(2013)
Proc. Natl. Acad. Sci. U.S.A.
, vol.110
, pp. 240-245
-
-
Takala-Harrison, S.1
-
71
-
-
84878715473
-
Multiple populations of artemisinin-resistant Plasmodium falciparum in Cambodia
-
71 Miotto, O., et al. Multiple populations of artemisinin-resistant Plasmodium falciparum in Cambodia. Nat. Genet. 45 (2013), 648–655.
-
(2013)
Nat. Genet.
, vol.45
, pp. 648-655
-
-
Miotto, O.1
-
72
-
-
77951220629
-
Increased tolerance to artemisinin in Plasmodium falciparum is mediated by a quiescence mechanism
-
72 Witkowski, B., et al. Increased tolerance to artemisinin in Plasmodium falciparum is mediated by a quiescence mechanism. Antimicrob. Agents Chemother. 54 (2010), 1872–1877.
-
(2010)
Antimicrob. Agents Chemother.
, vol.54
, pp. 1872-1877
-
-
Witkowski, B.1
-
73
-
-
84892372929
-
A molecular marker of artemisinin-resistant Plasmodium falciparum malaria
-
73 Ariey, F., et al. A molecular marker of artemisinin-resistant Plasmodium falciparum malaria. Nature 505 (2014), 50–55.
-
(2014)
Nature
, vol.505
, pp. 50-55
-
-
Ariey, F.1
-
74
-
-
84905746811
-
Genome editing in the human malaria parasite Plasmodium falciparum using the CRISPR-Cas9 system
-
74 Ghorbal, M., et al. Genome editing in the human malaria parasite Plasmodium falciparum using the CRISPR-Cas9 system. Nat. Biotechnol. 32 (2014), 819–821.
-
(2014)
Nat. Biotechnol.
, vol.32
, pp. 819-821
-
-
Ghorbal, M.1
-
75
-
-
84921719133
-
K13-propeller mutations confer artemisinin resistance in Plasmodium falciparum clinical isolates
-
75 Straimer, J., et al. K13-propeller mutations confer artemisinin resistance in Plasmodium falciparum clinical isolates. Science 347 (2015), 428–431.
-
(2015)
Science
, vol.347
, pp. 428-431
-
-
Straimer, J.1
-
76
-
-
84929492770
-
Selection and spread of artemisinin-resistant alleles in Thailand prior to the global artemisinin resistance containment campaign
-
76 Talundzic, E., et al. Selection and spread of artemisinin-resistant alleles in Thailand prior to the global artemisinin resistance containment campaign. PLoS Pathog., 11, 2015, e1004789.
-
(2015)
PLoS Pathog.
, vol.11
, pp. e1004789
-
-
Talundzic, E.1
-
77
-
-
84928014326
-
Prevalence of K13-propeller polymorphisms in Plasmodium falciparum from China–Myanmar border in 2007-2012
-
77 Wang, Z., et al. Prevalence of K13-propeller polymorphisms in Plasmodium falciparum from China–Myanmar border in 2007-2012. Malar. J., 14, 2015, 168.
-
(2015)
Malar. J.
, vol.14
, pp. 168
-
-
Wang, Z.1
-
78
-
-
84983059142
-
A single mutation in K13 predominates in southern China and is associated with delayed clearance of Plasmodium falciparum following artemisinin treatment
-
78 Huang, F., et al. A single mutation in K13 predominates in southern China and is associated with delayed clearance of Plasmodium falciparum following artemisinin treatment. J. Infect. Dis. 212 (2015), 1629–1635.
-
(2015)
J. Infect. Dis.
, vol.212
, pp. 1629-1635
-
-
Huang, F.1
-
79
-
-
84961932806
-
Genomic epidemiology of artemisinin resistant malaria
-
79 MalariaGEN Plasmodium falciparum Community Project, Genomic epidemiology of artemisinin resistant malaria. eLife, 5, 2016, e08714.
-
(2016)
eLife
, vol.5
, pp. e08714
-
-
MalariaGEN Plasmodium falciparum Community Project1
-
80
-
-
84930607163
-
Polymorphisms in the K13-propeller gene in artemisinin-susceptible Plasmodium falciparum parasites from Bougoula-Hameau and Bandiagara
-
80 Ouattara, A., et al. Polymorphisms in the K13-propeller gene in artemisinin-susceptible Plasmodium falciparum parasites from Bougoula-Hameau and Bandiagara. Mali. A. J. Trop. Med. Hyg. 92 (2015), 1202–1206.
-
(2015)
Mali. A. J. Trop. Med. Hyg.
, vol.92
, pp. 1202-1206
-
-
Ouattara, A.1
-
81
-
-
84939865009
-
Lack of artemisinin resistance in Plasmodium falciparum in Uganda based on parasitological and molecular assays
-
81 Cooper, R.A., et al. Lack of artemisinin resistance in Plasmodium falciparum in Uganda based on parasitological and molecular assays. Antimicrob. Agents Chemother. 59 (2015), 5061–5064.
-
(2015)
Antimicrob. Agents Chemother.
, vol.59
, pp. 5061-5064
-
-
Cooper, R.A.1
-
82
-
-
84955624727
-
Lack of K13 mutations in Plasmodium falciparum persisting after artemisinin combination therapy treatment of Kenyan children
-
82 Muwanguzi, J., et al. Lack of K13 mutations in Plasmodium falciparum persisting after artemisinin combination therapy treatment of Kenyan children. Malar. J., 15, 2016, 36.
-
(2016)
Malar. J.
, vol.15
, pp. 36
-
-
Muwanguzi, J.1
-
83
-
-
84942313095
-
Absence of putative artemisinin resistance mutations among Plasmodium falciparum in Sub-Saharan Africa: a molecular epidemiologic study
-
83 Taylor, S.M., et al. Absence of putative artemisinin resistance mutations among Plasmodium falciparum in Sub-Saharan Africa: a molecular epidemiologic study. J. Infect. Dis. 211 (2015), 680–688.
-
(2015)
J. Infect. Dis.
, vol.211
, pp. 680-688
-
-
Taylor, S.M.1
-
84
-
-
84945129853
-
Understanding artemisinin-resistant malaria: what a difference a year makes
-
84 Fairhurst, R.M., Understanding artemisinin-resistant malaria: what a difference a year makes. Curr. Opin. Infect. Dis. 28 (2015), 417–425.
-
(2015)
Curr. Opin. Infect. Dis.
, vol.28
, pp. 417-425
-
-
Fairhurst, R.M.1
-
85
-
-
34250899722
-
Signal integration in the endoplasmic reticulum unfolded protein response
-
85 Ron, D., Walter, P., Signal integration in the endoplasmic reticulum unfolded protein response. Nat. Rev. Mol. Cell. Biol. 8 (2007), 519–529.
-
(2007)
Nat. Rev. Mol. Cell. Biol.
, vol.8
, pp. 519-529
-
-
Ron, D.1
Walter, P.2
-
86
-
-
84890204277
-
Protein quality control and elimination of protein waste: the role of the ubiquitin-proteasome system
-
86 Amm, I., et al. Protein quality control and elimination of protein waste: the role of the ubiquitin-proteasome system. Biochim. Biophys. Acta 1843 (2014), 182–196.
-
(2014)
Biochim. Biophys. Acta
, vol.1843
, pp. 182-196
-
-
Amm, I.1
-
87
-
-
84863230381
-
PK4, a eukaryotic initiation factor 2α (eIF2α) kinase, is essential for the development of the erythrocytic cycle of Plasmodium
-
87 Zhang, M., et al. PK4, a eukaryotic initiation factor 2α (eIF2α) kinase, is essential for the development of the erythrocytic cycle of Plasmodium. Proc. Natl. Acad. Sci. U.S.A. 109 (2012), 3956–3961.
-
(2012)
Proc. Natl. Acad. Sci. U.S.A.
, vol.109
, pp. 3956-3961
-
-
Zhang, M.1
-
88
-
-
84455161818
-
Phenotypic and genotypic analysis of in vitro-selected artemisinin-resistant progeny of Plasmodium falciparum
-
88 Tucker, M.S., et al. Phenotypic and genotypic analysis of in vitro-selected artemisinin-resistant progeny of Plasmodium falciparum. Antimicrob. Agents Chemother. 56 (2012), 302–314.
-
(2012)
Antimicrob. Agents Chemother.
, vol.56
, pp. 302-314
-
-
Tucker, M.S.1
-
89
-
-
84943782868
-
Artemisinin-resistant Plasmodium falciparum parasites exhibit altered patterns of development in infected erythrocytes
-
89 Hott, A., et al. Artemisinin-resistant Plasmodium falciparum parasites exhibit altered patterns of development in infected erythrocytes. Antimicrob. Agents Chemother. 59 (2015), 3156–3167.
-
(2015)
Antimicrob. Agents Chemother.
, vol.59
, pp. 3156-3167
-
-
Hott, A.1
-
90
-
-
84921785363
-
Population transcriptomics of human malaria parasites reveals the mechanism of artemisinin resistance
-
90 Mok, S., et al. Population transcriptomics of human malaria parasites reveals the mechanism of artemisinin resistance. Science 347 (2014), 431–435.
-
(2014)
Science
, vol.347
, pp. 431-435
-
-
Mok, S.1
-
91
-
-
84958046387
-
Structure- and function-based design of Plasmodium-selective proteasome inhibitors
-
91 Li, H., et al. Structure- and function-based design of Plasmodium-selective proteasome inhibitors. Nature 530 (2016), 233–236.
-
(2016)
Nature
, vol.530
, pp. 233-236
-
-
Li, H.1
-
92
-
-
34250662528
-
Gene encoding a deubiquitinating enzyme is mutated in artesunate- and chloroquine-resistant rodent malaria parasites
-
92 Hunt, P., et al. Gene encoding a deubiquitinating enzyme is mutated in artesunate- and chloroquine-resistant rodent malaria parasites. Mol. Microbiol. 65 (2007), 27–40.
-
(2007)
Mol. Microbiol.
, vol.65
, pp. 27-40
-
-
Hunt, P.1
-
93
-
-
0033961690
-
The kelch repeat superfamily of proteins: propellers of cell function
-
93 Adams, J., et al. The kelch repeat superfamily of proteins: propellers of cell function. Trends Cell. Biol. 10 (2000), 17–24.
-
(2000)
Trends Cell. Biol.
, vol.10
, pp. 17-24
-
-
Adams, J.1
-
94
-
-
84890307627
-
Update on the Kelch-like (KLHL) gene family
-
94 Dhanoa, B.S., et al. Update on the Kelch-like (KLHL) gene family. Hum. Genomics, 7, 2013, 13.
-
(2013)
Hum. Genomics
, vol.7
, pp. 13
-
-
Dhanoa, B.S.1
-
95
-
-
0028040875
-
The POZ domain: a conserved protein–protein interaction motif
-
95 Bardwell, V.J., Treisman, R., The POZ domain: a conserved protein–protein interaction motif. Genes Dev. 8 (1994), 1664–1677.
-
(1994)
Genes Dev.
, vol.8
, pp. 1664-1677
-
-
Bardwell, V.J.1
Treisman, R.2
-
96
-
-
33845534761
-
Born to bind: the BTB protein–protein interaction domain
-
96 Perez-Torrado, R., et al. Born to bind: the BTB protein–protein interaction domain. Bioessays 28 (2006), 1194–1202.
-
(2006)
Bioessays
, vol.28
, pp. 1194-1202
-
-
Perez-Torrado, R.1
-
97
-
-
43249090401
-
Characterization and expression of a human KCTD1 gene containing the BTB domain, which mediates transcriptional repression and homomeric interactions
-
97 Ding, X.F., et al. Characterization and expression of a human KCTD1 gene containing the BTB domain, which mediates transcriptional repression and homomeric interactions. DNA Cell Biol. 27 (2008), 257–265.
-
(2008)
DNA Cell Biol.
, vol.27
, pp. 257-265
-
-
Ding, X.F.1
-
98
-
-
0242575197
-
Targeting of protein ubiquitination by BTB–Cullin 3–Roc1 ubiquitin ligases
-
98 Furukawa, M., et al. Targeting of protein ubiquitination by BTB–Cullin 3–Roc1 ubiquitin ligases. Nat. Cell Biol. 5 (2003), 1001–1007.
-
(2003)
Nat. Cell Biol.
, vol.5
, pp. 1001-1007
-
-
Furukawa, M.1
-
99
-
-
34548105127
-
Sequence and structural analysis of BTB domain proteins
-
99 Stogios, P.J., et al. Sequence and structural analysis of BTB domain proteins. Genome Biol., 6, 2005, R82.
-
(2005)
Genome Biol.
, vol.6
, pp. R82
-
-
Stogios, P.J.1
-
100
-
-
84889889353
-
Nrf2 and Nrf1 signaling and ER stress crosstalk: implication for proteasomal degradation and autophagy
-
100 Digaleh, H., et al. Nrf2 and Nrf1 signaling and ER stress crosstalk: implication for proteasomal degradation and autophagy. Cell. Mol. Life Sci. 70 (2013), 4681–4694.
-
(2013)
Cell. Mol. Life Sci.
, vol.70
, pp. 4681-4694
-
-
Digaleh, H.1
-
101
-
-
0141752795
-
Nrf2 is a direct PERK substrate and effector of PERK-dependent cell survival
-
101 Cullinan, S.B., et al. Nrf2 is a direct PERK substrate and effector of PERK-dependent cell survival. Mol. Cell. Biol. 23 (2003), 7198–7209.
-
(2003)
Mol. Cell. Biol.
, vol.23
, pp. 7198-7209
-
-
Cullinan, S.B.1
-
102
-
-
84969804371
-
Beyond antioxidant genes in the ancient Nrf2 regulatory network
-
102 Lacher, S.E., et al. Beyond antioxidant genes in the ancient Nrf2 regulatory network. Free Radic. Biol. Med. 88 (2015), 452–465.
-
(2015)
Free Radic. Biol. Med.
, vol.88
, pp. 452-465
-
-
Lacher, S.E.1
-
103
-
-
84971009760
-
Bioinformatics analyses provide insight into distant homology of the Keap1–Nrf2 pathway
-
103 Gacesa, R., et al. Bioinformatics analyses provide insight into distant homology of the Keap1–Nrf2 pathway. Free Radic. Biol. Med. 88 (2015), 373–380.
-
(2015)
Free Radic. Biol. Med.
, vol.88
, pp. 373-380
-
-
Gacesa, R.1
-
104
-
-
76749100261
-
In silico and biological survey of transcription-associated proteins implicated in the transcriptional machinery during the erythrocytic development of Plasmodium falciparum
-
104 Bischoff, E., Vaquero, C., In silico and biological survey of transcription-associated proteins implicated in the transcriptional machinery during the erythrocytic development of Plasmodium falciparum. BMC Genomics, 11, 2010, 34.
-
(2010)
BMC Genomics
, vol.11
, pp. 34
-
-
Bischoff, E.1
Vaquero, C.2
-
105
-
-
84924080547
-
Genetic architecture of artemisinin resistant Plasmodium falciparum
-
105 Miotto, O., et al. Genetic architecture of artemisinin resistant Plasmodium falciparum. Nat. Genet. 47 (2015), 226–234.
-
(2015)
Nat. Genet.
, vol.47
, pp. 226-234
-
-
Miotto, O.1
-
106
-
-
0037020024
-
Chloroquine resistance in Plasmodium falciparum malaria parasites conferred by pfcrt mutations
-
106 Sidhu, A.B., et al. Chloroquine resistance in Plasmodium falciparum malaria parasites conferred by pfcrt mutations. Science 298 (2002), 210–213.
-
(2002)
Science
, vol.298
, pp. 210-213
-
-
Sidhu, A.B.1
-
107
-
-
2142769136
-
Mefloquine resistance in Plasmodium falciparum and increased pfmdr1 gene copy number
-
107 Price, R.N., et al. Mefloquine resistance in Plasmodium falciparum and increased pfmdr1 gene copy number. Lancet 364 (2004), 438–447.
-
(2004)
Lancet
, vol.364
, pp. 438-447
-
-
Price, R.N.1
-
108
-
-
33746302565
-
Decreasing pfmdr1 copy number in Plasmodium falciparum malaria heightens susceptibility to mefloquine, lumefantrine, halofantrine, quinine, and artemisinin
-
108 Sidhu, A.B., et al. Decreasing pfmdr1 copy number in Plasmodium falciparum malaria heightens susceptibility to mefloquine, lumefantrine, halofantrine, quinine, and artemisinin. J. Infect. Dis. 194 (2006), 528–535.
-
(2006)
J. Infect. Dis.
, vol.194
, pp. 528-535
-
-
Sidhu, A.B.1
-
109
-
-
79957580467
-
Drug-resistant malaria: molecular mechanisms and implications for public health
-
109 Petersen, I., et al. Drug-resistant malaria: molecular mechanisms and implications for public health. FEBS Lett. 585 (2011), 1551–1562.
-
(2011)
FEBS Lett.
, vol.585
, pp. 1551-1562
-
-
Petersen, I.1
-
110
-
-
84969945025
-
Globally prevalent PfMDR1 mutations modulate Plasmodium falciparum susceptibility to artemisinin-based combination therapies
-
110 Veiga, M.I., et al. Globally prevalent PfMDR1 mutations modulate Plasmodium falciparum susceptibility to artemisinin-based combination therapies. Nat. Commun., 7, 2016, 11553.
-
(2016)
Nat. Commun.
, vol.7
, pp. 11553
-
-
Veiga, M.I.1
-
111
-
-
84906937961
-
Polymorphisms in Plasmodium falciparum chloroquine resistance transporter and multidrug resistance 1 genes: parasite risk factors that affect treatment outcomes for P. falciparum malaria after artemether–lumefantrine and artesunate–amodiaquine
-
111 Venkatesan, M., et al. Polymorphisms in Plasmodium falciparum chloroquine resistance transporter and multidrug resistance 1 genes: parasite risk factors that affect treatment outcomes for P. falciparum malaria after artemether–lumefantrine and artesunate–amodiaquine. Am. J. Trop. Med. Hyg. 91 (2014), 833–843.
-
(2014)
Am. J. Trop. Med. Hyg.
, vol.91
, pp. 833-843
-
-
Venkatesan, M.1
-
112
-
-
84935754128
-
Balancing drug resistance and growth rates via compensatory mutations in the Plasmodium falciparum chloroquine resistance transporter
-
112 Petersen, I., et al. Balancing drug resistance and growth rates via compensatory mutations in the Plasmodium falciparum chloroquine resistance transporter. Mol. Microbiol. 97 (2015), 381–395.
-
(2015)
Mol. Microbiol.
, vol.97
, pp. 381-395
-
-
Petersen, I.1
-
113
-
-
84979517803
-
A comparison of the exposure time-dependence of the activities of synthetic ozonide antimalarials and dihydroartemisinin against K13 wildtype and mutant Plasmodium falciparum
-
113 Yang, T., et al. A comparison of the exposure time-dependence of the activities of synthetic ozonide antimalarials and dihydroartemisinin against K13 wildtype and mutant Plasmodium falciparum. Antimicrob. Agents Chemother., 2016, 10.1128/AAC.00574-16.
-
(2016)
Antimicrob. Agents Chemother.
-
-
Yang, T.1
-
114
-
-
84871609304
-
Validation of the proteasome as a therapeutic target in Plasmodium using an epoxyketone inhibitor with parasite-specific toxicity
-
114 Li, H., et al. Validation of the proteasome as a therapeutic target in Plasmodium using an epoxyketone inhibitor with parasite-specific toxicity. Chem. Biol. 19 (2012), 1535–1545.
-
(2012)
Chem. Biol.
, vol.19
, pp. 1535-1545
-
-
Li, H.1
-
115
-
-
84880323005
-
Broad-spectrum antimalarial activity of peptido sulfonyl fluorides, a new class of proteasome inhibitors
-
115 Tschan, S., et al. Broad-spectrum antimalarial activity of peptido sulfonyl fluorides, a new class of proteasome inhibitors. Antimicrob. Agents Chemother. 57 (2013), 3576–3584.
-
(2013)
Antimicrob. Agents Chemother.
, vol.57
, pp. 3576-3584
-
-
Tschan, S.1
-
116
-
-
84949141033
-
Identification of potent and selective non-covalent inhibitors of the Plasmodium falciparum proteasome
-
116 Li, H., et al. Identification of potent and selective non-covalent inhibitors of the Plasmodium falciparum proteasome. J. Am. Chem. Soc. 136 (2014), 13562–13565.
-
(2014)
J. Am. Chem. Soc.
, vol.136
, pp. 13562-13565
-
-
Li, H.1
-
117
-
-
84863769005
-
The Keap1–Nrf2 cell defense pathway–a promising therapeutic target?
-
117 Copple, I.M., The Keap1–Nrf2 cell defense pathway–a promising therapeutic target?. Adv. Pharmacol. 63 (2012), 43–79.
-
(2012)
Adv. Pharmacol.
, vol.63
, pp. 43-79
-
-
Copple, I.M.1
-
118
-
-
84959170188
-
Dihydroartemisinin–piperaquine resistance in Plasmodium falciparum malaria in Cambodia: a multisite prospective cohort study
-
118 Amaratunga, C., et al. Dihydroartemisinin–piperaquine resistance in Plasmodium falciparum malaria in Cambodia: a multisite prospective cohort study. Lancet Infect. Dis. 16 (2016), 357–365.
-
(2016)
Lancet Infect. Dis.
, vol.16
, pp. 357-365
-
-
Amaratunga, C.1
-
119
-
-
84929513620
-
Dihydroartemisinin–piperaquine failure associated with a triple mutant including kelch13 C580Y in Cambodia: an observational cohort study
-
119 Spring, M.D., et al. Dihydroartemisinin–piperaquine failure associated with a triple mutant including kelch13 C580Y in Cambodia: an observational cohort study. Lancet Infect. Dis. 15 (2015), 683–691.
-
(2015)
Lancet Infect. Dis.
, vol.15
, pp. 683-691
-
-
Spring, M.D.1
-
120
-
-
84904861610
-
Dihydroartemisinin–piperaquine failure in Cambodia
-
120 Saunders, D.L., et al. Dihydroartemisinin–piperaquine failure in Cambodia. N. Eng. J. Med. 371 (2014), 484–485.
-
(2014)
N. Eng. J. Med.
, vol.371
, pp. 484-485
-
-
Saunders, D.L.1
-
121
-
-
84872849978
-
Efficacy of dihydroartemisinin–piperaquine for treatment of uncomplicated Plasmodium falciparum and Plasmodium vivax in Cambodia, 2008 to 2010
-
121 Leang, R., et al. Efficacy of dihydroartemisinin–piperaquine for treatment of uncomplicated Plasmodium falciparum and Plasmodium vivax in Cambodia, 2008 to 2010. Antimicrob. Agents Chemother. 57 (2013), 818–826.
-
(2013)
Antimicrob. Agents Chemother.
, vol.57
, pp. 818-826
-
-
Leang, R.1
-
122
-
-
84939832774
-
Evidence of Plasmodium falciparum malaria multidrug resistance to artemisinin and piperaquine in Western Cambodia: dihydroartemisinin–piperaquine open-label multicenter clinical assessment
-
122 Leang, R., et al. Evidence of Plasmodium falciparum malaria multidrug resistance to artemisinin and piperaquine in Western Cambodia: dihydroartemisinin–piperaquine open-label multicenter clinical assessment. Antimicrob. Agents Chemother. 59 (2015), 4719–4726.
-
(2015)
Antimicrob. Agents Chemother.
, vol.59
, pp. 4719-4726
-
-
Leang, R.1
-
123
-
-
77957557403
-
Declining in efficacy of a three-day combination regimen of mefloquine–artesunate in a multi-drug resistance area along the Thai–Myanmar border
-
123 Na-Bangchang, K., et al. Declining in efficacy of a three-day combination regimen of mefloquine–artesunate in a multi-drug resistance area along the Thai–Myanmar border. Malar. J., 9, 2010, 273.
-
(2010)
Malar. J.
, vol.9
, pp. 273
-
-
Na-Bangchang, K.1
-
124
-
-
84875419985
-
Malaria burden and artemisinin resistance in the mobile and migrant population on the Thai–Myanmar border, 1999-2011: an observational study
-
124 Carrara, V.I., et al. Malaria burden and artemisinin resistance in the mobile and migrant population on the Thai–Myanmar border, 1999-2011: an observational study. PLoS Med., 10, 2013, e1001398.
-
(2013)
PLoS Med.
, vol.10
, pp. e1001398
-
-
Carrara, V.I.1
-
125
-
-
84872858923
-
Reduced artemisinin susceptibility of Plasmodium falciparum ring stages in western Cambodia
-
125 Witkowski, B., et al. Reduced artemisinin susceptibility of Plasmodium falciparum ring stages in western Cambodia. Antimicrob. Agents Chemother. 57 (2013), 914–923.
-
(2013)
Antimicrob. Agents Chemother.
, vol.57
, pp. 914-923
-
-
Witkowski, B.1
-
126
-
-
84922496747
-
Plasmodium falciparum clearance is rapid and pitting independent in immune Malian children treated with artesunate for malaria
-
126 Ndour, P.A., et al. Plasmodium falciparum clearance is rapid and pitting independent in immune Malian children treated with artesunate for malaria. J. Infect. Dis. 15 (2014), 290–297.
-
(2014)
J. Infect. Dis.
, vol.15
, pp. 290-297
-
-
Ndour, P.A.1
-
127
-
-
0033844946
-
The mechanisms of parasite clearance after antimalarial treatment of Plasmodium falciparum malaria
-
127 Chotivanich, K., et al. The mechanisms of parasite clearance after antimalarial treatment of Plasmodium falciparum malaria. J. Infect. Dis. 182 (2000), 629–633.
-
(2000)
J. Infect. Dis.
, vol.182
, pp. 629-633
-
-
Chotivanich, K.1
|