메뉴 건너뛰기




Volumn 11, Issue 4, 2016, Pages 352-369

Metaboloepigenetics: The emerging network in stem cell homeostasis regulation

Author keywords

Circadian rhythms; Epigenetics; Metabolism; MicroRNAs; Nutrition; Stem cells

Indexed keywords

SMALL NUCLEOLAR RNA; CHROMATIN;

EID: 84964058436     PISSN: 1574888X     EISSN: None     Source Type: Journal    
DOI: 10.2174/1574888X11666151203223839     Document Type: Article
Times cited : (9)

References (266)
  • 1
    • 0035182533 scopus 로고    scopus 로고
    • Stem and progenitor cells: Origins, phenotypes, lineage commitments, and transdifferentiations
    • Weissman IL, Anderson DJ, Gage F. Stem and progenitor cells: origins, phenotypes, lineage commitments, and transdifferentiations. Annu Rev Cell Dev Biol 2001; 17: 387-403.
    • (2001) Annu Rev Cell Dev Biol , vol.17 , pp. 387-403
    • Weissman, I.L.1    Anderson, D.J.2    Gage, F.3
  • 3
    • 84896929687 scopus 로고    scopus 로고
    • Metabolic requirements for the maintenance of selfrenewing stem cells
    • Ito K, Suda T. Metabolic requirements for the maintenance of selfrenewing stem cells. Nat Rev Mol Cell Biol 2014; 15: 243-56.
    • (2014) Nat Rev Mol Cell Biol , vol.15 , pp. 243-256
    • Ito, K.1    Suda, T.2
  • 4
    • 84875953755 scopus 로고    scopus 로고
    • Stem cell metabolism in tissue development and aging
    • Shyh-Chang N, Daley GQ, Cantley LC. Stem cell metabolism in tissue development and aging. Development 2013; 140: 2535-47.
    • (2013) Development , vol.140 , pp. 2535-2547
    • Shyh-Chang, N.1    Daley, G.Q.2    Cantley, L.C.3
  • 5
    • 34249275353 scopus 로고    scopus 로고
    • Phenotypic plasticity and the epigenetics of human disease
    • Feinberg AP. Phenotypic plasticity and the epigenetics of human disease. Nature 2007; 447: 433-40.
    • (2007) Nature , vol.447 , pp. 433-440
    • Feinberg, A.P.1
  • 6
    • 0034610814 scopus 로고    scopus 로고
    • The language of covalent histone modifications
    • Strahl BD, Allis CD. The language of covalent histone modifications. Nature 2000; 403: 41-5.
    • (2000) Nature , vol.403 , pp. 41-45
    • Strahl, B.D.1    Allis, C.D.2
  • 7
    • 0033926403 scopus 로고    scopus 로고
    • Review: Chromatin structural features and targets that regulate transcription
    • Wolffe AP, Guschin D. Review: chromatin structural features and targets that regulate transcription. J Struct Biol 2000; 129: 102-22.
    • (2000) J Struct Biol , vol.129 , pp. 102-122
    • Wolffe, A.P.1    Guschin, D.2
  • 8
    • 34249299791 scopus 로고    scopus 로고
    • The complex language of chromatin regulation during transcription
    • Berger SL. The complex language of chromatin regulation during transcription. Nature 2007; 447: 407-12.
    • (2007) Nature , vol.447 , pp. 407-412
    • Berger, S.L.1
  • 9
    • 84878985489 scopus 로고    scopus 로고
    • Epigenetic programming and risk: The birthplace of cardiovascular disease?
    • Vinci MC, Polvani G, Pesce M. Epigenetic programming and risk: the birthplace of cardiovascular disease? Stem Cell Rev 2013; 9: 241-53.
    • (2013) Stem Cell Rev , vol.9 , pp. 241-253
    • Vinci, M.C.1    Polvani, G.2    Pesce, M.3
  • 10
    • 33749052511 scopus 로고    scopus 로고
    • Rheostat control of gene expression by metabolites
    • Ladurner AG. Rheostat control of gene expression by metabolites. Mol Cell 2006; 24: 1-11.
    • (2006) Mol Cell , vol.24 , pp. 1-11
    • Ladurner, A.G.1
  • 11
    • 4143147468 scopus 로고    scopus 로고
    • Metabolic enzymes and coenzymes in transcription--a direct link between metabolism and transcription?
    • Shi Y. Metabolic enzymes and coenzymes in transcription--a direct link between metabolism and transcription? Trends Genet 2004; 20: 445-52.
    • (2004) Trends Genet , vol.20 , pp. 445-452
    • Shi, Y.1
  • 12
    • 84863534997 scopus 로고    scopus 로고
    • Metabolic regulation of epigenetics
    • Lu C, Thompson CB. Metabolic regulation of epigenetics. Cell Metab 2012; 16: 9-17.
    • (2012) Cell Metab , vol.16 , pp. 9-17
    • Lu, C.1    Thompson, C.B.2
  • 13
    • 0015010618 scopus 로고
    • Histone acetyltransferase in chromatin. Evidence for in vitro enzymatic transfer of acetate from acetylcoenzyme A to histones
    • Racey LA, Byvoet P. Histone acetyltransferase in chromatin. Evidence for in vitro enzymatic transfer of acetate from acetylcoenzyme A to histones. Exp Cell Res 1971; 64: 366-70.
    • (1971) Exp Cell Res , vol.64 , pp. 366-370
    • Racey, L.A.1    Byvoet, P.2
  • 14
    • 79955960768 scopus 로고    scopus 로고
    • Acetyl-CoA induces cell growth and proliferation by promoting the acetylation of histones at growth genes
    • Cai L, Sutter BM, Li B, Tu BP. Acetyl-CoA induces cell growth and proliferation by promoting the acetylation of histones at growth genes. Mol Cell 2011; 42: 426-37.
    • (2011) Mol Cell , vol.42 , pp. 426-437
    • Cai, L.1    Sutter, B.M.2    Li, B.3    Tu, B.P.4
  • 15
    • 84876217035 scopus 로고    scopus 로고
    • Label-free quantitative proteomics of the lysine acetylome in mitochondria identifies substrates of SIRT3 in metabolic pathways
    • Rardin MJ, Newman JC, Held JM, et al. Label-free quantitative proteomics of the lysine acetylome in mitochondria identifies substrates of SIRT3 in metabolic pathways. Proc Natl Acad Sci USA 2013; 110: 6601-6.
    • (2013) Proc Natl Acad Sci USA , vol.110 , pp. 6601-6606
    • Rardin, M.J.1    Newman, J.C.2    Held, J.M.3
  • 16
    • 84872276165 scopus 로고    scopus 로고
    • Calorie restriction and SIRT3 trigger global reprogramming of the mitochondrial protein acetylome
    • Hebert AS, Dittenhafer-Reed KE, Yu W, et al. Calorie restriction and SIRT3 trigger global reprogramming of the mitochondrial protein acetylome. Mol Cell 2013; 49: 186-99.
    • (2013) Mol Cell , vol.49 , pp. 186-199
    • Hebert, A.S.1    Dittenhafer-Reed, K.E.2    Yu, W.3
  • 19
    • 0034677535 scopus 로고    scopus 로고
    • Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase
    • Imai S, Armstrong CM, Kaeberlein M, Guarente L. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 2000; 403: 795-800.
    • (2000) Nature , vol.403 , pp. 795-800
    • Imai, S.1    Armstrong, C.M.2    Kaeberlein, M.3    Guarente, L.4
  • 20
    • 58149090925 scopus 로고    scopus 로고
    • SIRT6 links histone H3 lysine 9 deacetylation to NF-kappaB-dependent gene expression and organismal life span
    • Kawahara TL, Michishita E, Adler AS, et al. SIRT6 links histone H3 lysine 9 deacetylation to NF-kappaB-dependent gene expression and organismal life span. Cell 2009; 136: 62-74.
    • (2009) Cell , vol.136 , pp. 62-74
    • Kawahara, T.L.1    Michishita, E.2    Adler, A.S.3
  • 21
    • 84455188711 scopus 로고    scopus 로고
    • Minireview: NAD+, a circadian metabolite with an epigenetic twist
    • Sassone-Corsi P. Minireview: NAD+, a circadian metabolite with an epigenetic twist. Endocrinology 2012; 153: 1-5.
    • (2012) Endocrinology , vol.153 , pp. 1-5
    • Sassone-Corsi, P.1
  • 23
    • 43049169926 scopus 로고    scopus 로고
    • Epigenetic control of rDNA loci in response to intracellular energy status
    • Murayama A, Ohmori K, Fujimura A, et al. Epigenetic control of rDNA loci in response to intracellular energy status. Cell 2008; 133: 627-39.
    • (2008) Cell , vol.133 , pp. 627-639
    • Murayama, A.1    Ohmori, K.2    Fujimura, A.3
  • 24
    • 31044445366 scopus 로고    scopus 로고
    • Genomic instability and aging-like phenotype in the absence of mammalian SIRT6
    • Mostoslavsky R, Chua KF, Lombard DB, et al. Genomic instability and aging-like phenotype in the absence of mammalian SIRT6. Cell 2006; 124: 315-29.
    • (2006) Cell , vol.124 , pp. 315-329
    • Mostoslavsky, R.1    Chua, K.F.2    Lombard, D.B.3
  • 25
    • 84868018628 scopus 로고    scopus 로고
    • Sirtuins as regulators of mammalian aging
    • Naiman S, Kanfi Y, Cohen HY. Sirtuins as regulators of mammalian aging. Aging (Albany NY) 2012; 4: 521-2.
    • (2012) Aging (Albany NY) , vol.4 , pp. 521-522
    • Naiman, S.1    Kanfi, Y.2    Cohen, H.Y.3
  • 26
    • 33846113751 scopus 로고    scopus 로고
    • Nformylation of lysine in histone proteins as a secondary modification arising from oxidative DNA damage
    • Jiang T, Zhou X, Taghizadeh K, Dong M, Dedon PC. Nformylation of lysine in histone proteins as a secondary modification arising from oxidative DNA damage. Proc Natl Acad Sci USA 2007; 104: 60-5.
    • (2007) Proc Natl Acad Sci USA , vol.104 , pp. 60-65
    • Jiang, T.1    Zhou, X.2    Taghizadeh, K.3    Dong, M.4    Dedon, P.C.5
  • 27
    • 39149121854 scopus 로고    scopus 로고
    • Nepsilon-formylation of lysine is a widespread post-translational modification of nuclear proteins occurring at residues involved in regulation of chromatin function
    • Wisniewski JR, Zougman A, Mann M. Nepsilon-formylation of lysine is a widespread post-translational modification of nuclear proteins occurring at residues involved in regulation of chromatin function. Nucleic Acids Res 2008; 36: 570-7.
    • (2008) Nucleic Acids Res , vol.36 , pp. 570-577
    • Wisniewski, J.R.1    Zougman, A.2    Mann, M.3
  • 28
    • 80052942443 scopus 로고    scopus 로고
    • Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification
    • Tan M, Luo H, Lee S, et al. Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification. Cell 2011; 146: 1016-28.
    • (2011) Cell , vol.146 , pp. 1016-1028
    • Tan, M.1    Luo, H.2    Lee, S.3
  • 29
    • 83055173304 scopus 로고    scopus 로고
    • The first identification of lysine malonylation substrates and its regulatory enzyme
    • M111.012658
    • Peng C, Lu Z, Xie Z, et al. The first identification of lysine malonylation substrates and its regulatory enzyme. Mol Cell Proteomics 2011; 10: M111.012658.
    • (2011) Mol Cell Proteomics , vol.10
    • Peng, C.1    Lu, Z.2    Xie, Z.3
  • 30
    • 78650516004 scopus 로고    scopus 로고
    • Identification of lysine succinylation as a new post-translational modification
    • Zhang Z, Tan M, Xie Z, Dai L, Chen Y, Zhao Y. Identification of lysine succinylation as a new post-translational modification. Nat Chem Biol 2011; 7: 58-63.
    • (2011) Nat Chem Biol , vol.7 , pp. 58-63
    • Zhang, Z.1    Tan, M.2    Xie, Z.3    Dai, L.4    Chen, Y.5    Zhao, Y.6
  • 31
    • 34248640428 scopus 로고    scopus 로고
    • Lysine propionylation and butyrylation are novel post-translational modifications in histones
    • Chen Y, Sprung R, Tang Y, et al. Lysine propionylation and butyrylation are novel post-translational modifications in histones. Mol Cell Proteomics 2007; 6: 812-9.
    • (2007) Mol Cell Proteomics , vol.6 , pp. 812-819
    • Chen, Y.1    Sprung, R.2    Tang, Y.3
  • 32
    • 84899473489 scopus 로고    scopus 로고
    • Lysine 2- hydroxyisobutyrylation is a widely distributed active histone mark
    • Dai L, Peng C, Montellier E, et al. Lysine 2- hydroxyisobutyrylation is a widely distributed active histone mark. Nat Chem Biol 2014; 10: 365-70.
    • (2014) Nat Chem Biol , vol.10 , pp. 365-370
    • Dai, L.1    Peng, C.2    Montellier, E.3
  • 33
    • 84857046239 scopus 로고    scopus 로고
    • Histone crotonylation specifically marks the haploid male germ cell gene expression program: Post-meiotic male-specific gene expression
    • Montellier E, Rousseaux S, Zhao Y, Khochbin S. Histone crotonylation specifically marks the haploid male germ cell gene expression program: post-meiotic male-specific gene expression. Bioessays 2012; 34: 187-93.
    • (2012) Bioessays , vol.34 , pp. 187-193
    • Montellier, E.1    Rousseaux, S.2    Zhao, Y.3    Khochbin, S.4
  • 34
    • 57049152851 scopus 로고    scopus 로고
    • Catalysis and substrate selection by histone/protein lysine acetyltransferases
    • Berndsen CE, Denu JM. Catalysis and substrate selection by histone/protein lysine acetyltransferases. Curr Opin Struct Biol 2008; 18: 682-9.
    • (2008) Curr Opin Struct Biol , vol.18 , pp. 682-689
    • Berndsen, C.E.1    Denu, J.M.2
  • 35
    • 0034905743 scopus 로고    scopus 로고
    • Blood determinations of S-adenosylmethionine, S-adenosylhomocysteine, and homocysteine: Correlations with diet
    • Poirier LA, Wise CK, Delongchamp RR, Sinha R. Blood determinations of S-adenosylmethionine, S-adenosylhomocysteine, and homocysteine: correlations with diet. Cancer Epidemiol Biomarkers Prev 2001; 10: 649-55.
    • (2001) Cancer Epidemiol Biomarkers Prev , vol.10 , pp. 649-655
    • Poirier, L.A.1    Wise, C.K.2    Delongchamp, R.R.3    Sinha, R.4
  • 36
    • 84864010293 scopus 로고    scopus 로고
    • Nutrition and epigenetics: An interplay of dietary methyl donors, one-carbon metabolism and DNA methylation
    • Anderson OS, Sant KE, Dolinoy DC. Nutrition and epigenetics: an interplay of dietary methyl donors, one-carbon metabolism and DNA methylation. J Nutr Biochem 2012; 23: 853-9.
    • (2012) J Nutr Biochem , vol.23 , pp. 853-859
    • Anderson, O.S.1    Sant, K.E.2    Dolinoy, D.C.3
  • 37
    • 84855956247 scopus 로고    scopus 로고
    • Epigenetics and the environment: Emerging patterns and implications
    • Feil R, Fraga MF. Epigenetics and the environment: emerging patterns and implications. Nat Rev Genet 2011; 13: 97-109.
    • (2011) Nat Rev Genet , vol.13 , pp. 97-109
    • Feil, R.1    Fraga, M.F.2
  • 38
    • 31544467532 scopus 로고    scopus 로고
    • Nutritional epigenetics: Impact of folate deficiency on DNA methylation and colon cancer susceptibility
    • Kim YI. Nutritional epigenetics: impact of folate deficiency on DNA methylation and colon cancer susceptibility. J Nutr 2005; 135: 2703-9.
    • (2005) J Nutr , vol.135 , pp. 2703-2709
    • Kim, Y.I.1
  • 39
    • 11144332565 scopus 로고    scopus 로고
    • Histone demethylation mediated by the nuclear amine oxidase homolog LSD1
    • Shi Y, Lan F, Matson C, et al. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 2004; 119: 941-53.
    • (2004) Cell , vol.119 , pp. 941-953
    • Shi, Y.1    Lan, F.2    Matson, C.3
  • 40
    • 80052495940 scopus 로고    scopus 로고
    • Tet-mediated formation of 5- carboxylcytosine and its excision by TDG in mammalian DNA
    • He YF, Li BZ, Li Z, et al. Tet-mediated formation of 5- carboxylcytosine and its excision by TDG in mammalian DNA. Science (80-) 2011; 333: 1303-7.
    • (2011) Science (80-) , vol.333 , pp. 1303-1307
    • He, Y.F.1    Li, B.Z.2    Li, Z.3
  • 41
    • 84862632865 scopus 로고    scopus 로고
    • Inhibition of alpha-KG-dependent histone and DNA demethylases by fumarate and succinate that are accumulated in mutations of FH and SDH tumor suppressors
    • Xiao M, Yang H, Xu W, et al. Inhibition of alpha-KG-dependent histone and DNA demethylases by fumarate and succinate that are accumulated in mutations of FH and SDH tumor suppressors. Genes Dev 2012; 26: 1326-38.
    • (2012) Genes Dev , vol.26 , pp. 1326-1338
    • Xiao, M.1    Yang, H.2    Xu, W.3
  • 42
    • 84925503908 scopus 로고    scopus 로고
    • Intracellular alpha-ketoglutarate maintains the pluripotency of embryonic stem cells
    • Carey BW, Finley LW, Cross JR, Allis CD, Thompson CB. Intracellular alpha-ketoglutarate maintains the pluripotency of embryonic stem cells. Nature 2015; 518: 413-6.
    • (2015) Nature , vol.518 , pp. 413-416
    • Carey, B.W.1    Finley, L.W.2    Cross, J.R.3    Allis, C.D.4    Thompson, C.B.5
  • 43
    • 79960064353 scopus 로고    scopus 로고
    • Tet2 loss leads to increased hematopoietic stem cell self-renewal and myeloid transformation
    • Moran-Crusio K, Reavie L, Shih A, et al. Tet2 loss leads to increased hematopoietic stem cell self-renewal and myeloid transformation. Cancer Cell 2011; 20: 11-24.
    • (2011) Cancer Cell , vol.20 , pp. 11-24
    • Moran-Crusio, K.1    Reavie, L.2    Shih, A.3
  • 44
    • 79960062301 scopus 로고    scopus 로고
    • TET2 inactivation results in pleiotropic hematopoietic abnormalities in mouse and is a recurrent event during human lymphomagenesis
    • Quivoron C, Couronne L, Della Valle V, et al. TET2 inactivation results in pleiotropic hematopoietic abnormalities in mouse and is a recurrent event during human lymphomagenesis. Cancer Cell 2011; 20: 25-38.
    • (2011) Cancer Cell , vol.20 , pp. 25-38
    • Quivoron, C.1    Couronne, L.2    Della Valle, V.3
  • 45
    • 84876784115 scopus 로고    scopus 로고
    • Epigenetic flexibility in metabolic regulation: Disease cause and prevention?
    • Kirchner H, Osler ME, Krook A, Zierath JR. Epigenetic flexibility in metabolic regulation: disease cause and prevention? Trends Cell Biol 2013; 23: 203-9.
    • (2013) Trends Cell Biol , vol.23 , pp. 203-209
    • Kirchner, H.1    Osler, M.E.2    Krook, A.3    Zierath, J.R.4
  • 46
    • 48249127225 scopus 로고    scopus 로고
    • Epigenetic histone H3 lysine 9 methylation in metabolic memory and inflammatory phenotype of vascular smooth muscle cells in diabetes
    • Villeneuve LM, Reddy MA, Lanting LL, Wang M, Meng L, Natarajan R. Epigenetic histone H3 lysine 9 methylation in metabolic memory and inflammatory phenotype of vascular smooth muscle cells in diabetes. Proc Natl Acad Sci USA 2008; 105: 9047-52.
    • (2008) Proc Natl Acad Sci USA , vol.105 , pp. 9047-9052
    • Villeneuve, L.M.1    Reddy, M.A.2    Lanting, L.L.3    Wang, M.4    Meng, L.5    Natarajan, R.6
  • 47
    • 37049020951 scopus 로고    scopus 로고
    • Cohort profile: The Dutch Hunger Winter families study
    • Lumey LH, Stein AD, Kahn HS, et al. Cohort profile: the Dutch Hunger Winter families study. Int J Epidemiol 2007; 36: 1196-204.
    • (2007) Int J Epidemiol , vol.36 , pp. 1196-1204
    • Lumey, L.H.1    Stein, A.D.2    Kahn, H.S.3
  • 48
    • 84876673669 scopus 로고    scopus 로고
    • Intergenerational programming of metabolic disease: Evidence from human populations and experimental animal models
    • Patti ME. Intergenerational programming of metabolic disease: evidence from human populations and experimental animal models. Cell Mol Life Sci 2013; 70: 1597-608.
    • (2013) Cell Mol Life Sci , vol.70 , pp. 1597-1608
    • Patti, M.E.1
  • 49
    • 0031873353 scopus 로고    scopus 로고
    • Maternal epigenetics and methyl supplements affect agouti gene expression in Avy/a mice
    • Wolff GL, Kodell RL, Moore SR, Cooney CA. Maternal epigenetics and methyl supplements affect agouti gene expression in Avy/a mice. FASEB J 1998; 12: 949-57.
    • (1998) FASEB J , vol.12 , pp. 949-957
    • Wolff, G.L.1    Kodell, R.L.2    Moore, S.R.3    Cooney, C.A.4
  • 50
    • 37649011327 scopus 로고    scopus 로고
    • DNA methylation, insulin resistance, and blood pressure in offspring determined by maternal periconceptional B vitamin and methionine status
    • Sinclair KD, Allegrucci C, Singh R, et al. DNA methylation, insulin resistance, and blood pressure in offspring determined by maternal periconceptional B vitamin and methionine status. Proc Natl Acad Sci USA 2007; 104: 19351-6.
    • (2007) Proc Natl Acad Sci USA , vol.104 , pp. 19351-19356
    • Sinclair, K.D.1    Allegrucci, C.2    Singh, R.3
  • 51
    • 34547117535 scopus 로고    scopus 로고
    • The developmental origins of health and disease: Current theories and epigenetic mechanisms
    • Sinclair KD, Lea RG, Rees WD, Young LE. The developmental origins of health and disease: current theories and epigenetic mechanisms. Soc Reprod Fertil Suppl 2007; 64: 425-43.
    • (2007) Soc Reprod Fertil Suppl , vol.64 , pp. 425-443
    • Sinclair, K.D.1    Lea, R.G.2    Rees, W.D.3    Young, L.E.4
  • 52
    • 34250781054 scopus 로고    scopus 로고
    • Transgenerational response to nutrition, early life circumstances and longevity
    • Kaati G, Bygren LO, Pembrey M, Sjostrom M. Transgenerational response to nutrition, early life circumstances and longevity. Eur J Hum Genet 2007; 15: 784-90.
    • (2007) Eur J Hum Genet , vol.15 , pp. 784-790
    • Kaati, G.1    Bygren, L.O.2    Pembrey, M.3    Sjostrom, M.4
  • 53
    • 77957230254 scopus 로고    scopus 로고
    • Weight gain induced by an isocaloric pair-fed high fat diet: A nutriepigenetic study on FASN and NDUFB6 gene promoters
    • Lomba A, Martinez JA, Garcia-Diaz DF, et al. Weight gain induced by an isocaloric pair-fed high fat diet: A nutriepigenetic study on FASN and NDUFB6 gene promoters. Mol Genet Metab 2010; 101: 273-8.
    • (2010) Mol Genet Metab , vol.101 , pp. 273-278
    • Lomba, A.1    Martinez, J.A.2    Garcia-Diaz, D.F.3
  • 54
    • 79960990097 scopus 로고    scopus 로고
    • Eicosapentaenoic acid demethylates a single CpG that mediates expression of tumor suppressor CCAAT/enhancer-binding protein delta in U937 leukemia cells
    • Ceccarelli V, Racanicchi S, Martelli MP, et al. Eicosapentaenoic acid demethylates a single CpG that mediates expression of tumor suppressor CCAAT/enhancer-binding protein delta in U937 leukemia cells. J Biol Chem 2011; 286: 27092-102.
    • (2011) J Biol Chem , vol.286 , pp. 27092-27102
    • Ceccarelli, V.1    Racanicchi, S.2    Martelli, M.P.3
  • 55
    • 80053654433 scopus 로고    scopus 로고
    • The CpG island methylation regulated expression of endothelial proangiogenic genes in response to beta-carotene and arachidonic acid
    • Kiec-Wilk B, Sliwa A, Mikolajczyk M, Malecki MT, Mathers JC. The CpG island methylation regulated expression of endothelial proangiogenic genes in response to beta-carotene and arachidonic acid. Nutr Cancer 2011; 63: 1053-63.
    • (2011) Nutr Cancer , vol.63 , pp. 1053-1063
    • Kiec-Wilk, B.1    Sliwa, A.2    Mikolajczyk, M.3    Malecki, M.T.4    Mathers, J.C.5
  • 56
    • 79955432055 scopus 로고    scopus 로고
    • Unsaturated fatty acids repress the expression of ATP-binding cassette transporter A1 in HepG2 and FHs 74 Int cells
    • Ku CS, Rasmussen HE, Park Y, Jesch ED, Lee J. Unsaturated fatty acids repress the expression of ATP-binding cassette transporter A1 in HepG2 and FHs 74 Int cells. Nutr Res 2011; 31: 278-85.
    • (2011) Nutr Res , vol.31 , pp. 278-285
    • Ku, C.S.1    Rasmussen, H.E.2    Park, Y.3    Jesch, E.D.4    Lee, J.5
  • 57
    • 84872390822 scopus 로고    scopus 로고
    • Dietary supplementation with methyl donors reduces fatty liver and modifies the fatty acid synthase DNA methylation profile in rats fed an obesogenic diet
    • Cordero P, Gomez-Uriz AM, Campion J, Milagro FI, Martinez JA. Dietary supplementation with methyl donors reduces fatty liver and modifies the fatty acid synthase DNA methylation profile in rats fed an obesogenic diet. Genes Nutr 2013; 8: 105-13.
    • (2013) Genes Nutr , vol.8 , pp. 105-113
    • Cordero, P.1    Gomez-Uriz, A.M.2    Campion, J.3    Milagro, F.I.4    Martinez, J.A.5
  • 58
    • 84860263532 scopus 로고    scopus 로고
    • Nutrition, epigenetics, and metabolic syndrome
    • Wang J, Wu Z, Li D, et al. Nutrition, epigenetics, and metabolic syndrome. Antioxid Redox Signal 2012; 17: 282-301.
    • (2012) Antioxid Redox Signal , vol.17 , pp. 282-301
    • Wang, J.1    Wu, Z.2    Li, D.3
  • 59
    • 84862282554 scopus 로고    scopus 로고
    • Emerging perspectives on essential amino acid metabolism in obesity and the insulin-resistant state
    • Adams SH. Emerging perspectives on essential amino acid metabolism in obesity and the insulin-resistant state. Adv Nutr 2011; 2: 445-56.
    • (2011) Adv Nutr , vol.2 , pp. 445-456
    • Adams, S.H.1
  • 61
    • 53349101264 scopus 로고    scopus 로고
    • Transient high glucose causes persistent epigenetic changes and altered gene expression during subsequent normoglycemia
    • El-Osta A, Brasacchio D, Yao D, et al. Transient high glucose causes persistent epigenetic changes and altered gene expression during subsequent normoglycemia. J Exp Med 2008; 205: 2409-17.
    • (2008) J Exp Med , vol.205 , pp. 2409-2417
    • El-Osta, A.1    Brasacchio, D.2    Yao, D.3
  • 62
    • 65549170303 scopus 로고    scopus 로고
    • Hyperglycemia induces a dynamic cooperativity of histone methylase and demethylase enzymes associated with gene-activating epigenetic marks that coexist on the lysine tail
    • Brasacchio D, Okabe J, Tikellis C, et al. Hyperglycemia induces a dynamic cooperativity of histone methylase and demethylase enzymes associated with gene-activating epigenetic marks that coexist on the lysine tail. Diabetes 2009; 58: 1229-36.
    • (2009) Diabetes , vol.58 , pp. 1229-1236
    • Brasacchio, D.1    Okabe, J.2    Tikellis, C.3
  • 63
    • 0020658546 scopus 로고
    • Excessive obesity in offspring of Pima Indian women with diabetes during pregnancy
    • Pettitt DJ, Baird HR, Aleck KA, Bennett PH, Knowler WC. Excessive obesity in offspring of Pima Indian women with diabetes during pregnancy. N Engl J Med 1983; 308: 242-5.
    • (1983) N Engl J Med , vol.308 , pp. 242-245
    • Pettitt, D.J.1    Baird, H.R.2    Aleck, K.A.3    Bennett, P.H.4    Knowler, W.C.5
  • 64
    • 0033645241 scopus 로고    scopus 로고
    • Intrauterine exposure to diabetes conveys risks for type 2 diabetes and obesity: A study of discordant sibships
    • Dabelea D, Hanson RL, Lindsay RS, et al. Intrauterine exposure to diabetes conveys risks for type 2 diabetes and obesity: a study of discordant sibships. Diabetes 2000; 49: 2208-11.
    • (2000) Diabetes , vol.49 , pp. 2208-2211
    • Dabelea, D.1    Hanson, R.L.2    Lindsay, R.S.3
  • 65
    • 33847769732 scopus 로고    scopus 로고
    • Anthropometric measures in middle age after exposure to famine during gestation: Evidence from the Dutch famine
    • Stein AD, Kahn HS, Rundle A, Zybert PA, van der Pal-de Bruin K, Lumey LH. Anthropometric measures in middle age after exposure to famine during gestation: evidence from the Dutch famine. Am J Clin Nutr 2007; 85: 869-76.
    • (2007) Am J Clin Nutr , vol.85 , pp. 869-876
    • Stein, A.D.1    Kahn, H.S.2    Rundle, A.3    Zybert, P.A.4    van der Pal-de Bruin, K.5    Lumey, L.H.6
  • 66
    • 84904284472 scopus 로고    scopus 로고
    • Sensing the Environment: Epigenetic Regulation of Gene Expression
    • Vinci MC. Sensing the Environment: Epigenetic Regulation of Gene Expression. J Physic Chem Biophys 2012; S3: 001.
    • (2012) J Physic Chem Biophys , vol.S3 , pp. 001
    • Vinci, M.C.1
  • 67
    • 55949137722 scopus 로고    scopus 로고
    • Persistent epigenetic differences associated with prenatal exposure to famine in humans
    • Heijmans BT, Tobi EW, Stein AD, et al. Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc Natl Acad Sci USA 2008; 105: 17046-9.
    • (2008) Proc Natl Acad Sci USA , vol.105 , pp. 17046-17049
    • Heijmans, B.T.1    Tobi, E.W.2    Stein, A.D.3
  • 68
    • 77958596171 scopus 로고    scopus 로고
    • Chronic high-fat diet in fathers programs beta-cell dysfunction in female rat offspring
    • Ng SF, Lin RC, Laybutt DR, Barres R, Owens JA, Morris MJ. Chronic high-fat diet in fathers programs beta-cell dysfunction in female rat offspring. Nature 2010; 467: 963-6.
    • (2010) Nature , vol.467 , pp. 963-966
    • Ng, S.F.1    Lin, R.C.2    Laybutt, D.R.3    Barres, R.4    Owens, J.A.5    Morris, M.J.6
  • 69
    • 77955456693 scopus 로고    scopus 로고
    • Periconceptional undernutrition in normal and overweight ewes leads to increased adrenal growth and epigenetic changes in adrenal IGF2/H19 gene in offspring
    • Zhang S, Rattanatray L, MacLaughlin SM, et al. Periconceptional undernutrition in normal and overweight ewes leads to increased adrenal growth and epigenetic changes in adrenal IGF2/H19 gene in offspring. FASEB J 2010; 24: 2772-82.
    • (2010) FASEB J , vol.24 , pp. 2772-2782
    • Zhang, S.1    Rattanatray, L.2    MacLaughlin, S.M.3
  • 70
    • 50049108528 scopus 로고    scopus 로고
    • Feeding pregnant rats a protein-restricted diet persistently alters the methylation of specific cytosines in the hepatic PPAR alpha promoter of the offspring
    • Lillycrop KA, Phillips ES, Torrens C, Hanson MA, Jackson AA, Burdge GC. Feeding pregnant rats a protein-restricted diet persistently alters the methylation of specific cytosines in the hepatic PPAR alpha promoter of the offspring. Br J Nutr 2008; 100: 278-82.
    • (2008) Br J Nutr , vol.100 , pp. 278-282
    • Lillycrop, K.A.1    Phillips, E.S.2    Torrens, C.3    Hanson, M.A.4    Jackson, A.A.5    Burdge, G.C.6
  • 71
    • 80053446399 scopus 로고    scopus 로고
    • Gestational low protein diet selectively induces the amino acid response pathway target genes in the liver of offspring rats through transcription factor binding and histone modifications
    • Zhou D, Pan YX. Gestational low protein diet selectively induces the amino acid response pathway target genes in the liver of offspring rats through transcription factor binding and histone modifications. Biochim Biophys Acta 2011; 1809: 549-56.
    • (2011) Biochim Biophys Acta , vol.1809 , pp. 549-556
    • Zhou, D.1    Pan, Y.X.2
  • 72
    • 60349113479 scopus 로고    scopus 로고
    • Maternal nutritional history predicts obesity in adult offspring independent of postnatal diet
    • Howie GJ, Sloboda DM, Kamal T, Vickers MH. Maternal nutritional history predicts obesity in adult offspring independent of postnatal diet. J Physiol 2009; 587: 905-15.
    • (2009) J Physiol , vol.587 , pp. 905-915
    • Howie, G.J.1    Sloboda, D.M.2    Kamal, T.3    Vickers, M.H.4
  • 73
    • 70349627249 scopus 로고    scopus 로고
    • Maternal and postweaning diet interaction alters hypothalamic gene expression and modulates response to a high-fat diet in male offspring
    • Page KC, Malik RE, Ripple JA, Anday EK. Maternal and postweaning diet interaction alters hypothalamic gene expression and modulates response to a high-fat diet in male offspring. Am J Physiol Regul Integr Comp Physiol 2009; 297: R1049-57.
    • (2009) Am J Physiol Regul Integr Comp Physiol , vol.297 , pp. R1049-R1057
    • Page, K.C.1    Malik, R.E.2    Ripple, J.A.3    Anday, E.K.4
  • 74
    • 70350674919 scopus 로고    scopus 로고
    • Hypothalamic proopiomelanocortin promoter methylation becomes altered by early overfeeding: An epigenetic model of obesity and the metabolic syndrome
    • Plagemann A, Harder T, Brunn M, et al. Hypothalamic proopiomelanocortin promoter methylation becomes altered by early overfeeding: an epigenetic model of obesity and the metabolic syndrome. J Physiol 2009; 587: 4963-76.
    • (2009) J Physiol , vol.587 , pp. 4963-4976
    • Plagemann, A.1    Harder, T.2    Brunn, M.3
  • 75
    • 77957258099 scopus 로고    scopus 로고
    • Maternal high-fat diet alters methylation and gene expression of dopamine and opioid-related genes
    • Vucetic Z, Kimmel J, Totoki K, Hollenbeck E, Reyes TM. Maternal high-fat diet alters methylation and gene expression of dopamine and opioid-related genes. Endocrinology 2010; 151: 4756-64.
    • (2010) Endocrinology , vol.151 , pp. 4756-4764
    • Vucetic, Z.1    Kimmel, J.2    Totoki, K.3    Hollenbeck, E.4    Reyes, T.M.5
  • 76
    • 66149158149 scopus 로고    scopus 로고
    • Maternal obesity is necessary for programming effect of high-fat diet on offspring
    • White CL, Purpera MN, Morrison CD. Maternal obesity is necessary for programming effect of high-fat diet on offspring. Am J Physiol Regul Integr Comp Physiol 2009; 296: R1464-72.
    • (2009) Am J Physiol Regul Integr Comp Physiol , vol.296 , pp. R1464-R1472
    • White, C.L.1    Purpera, M.N.2    Morrison, C.D.3
  • 77
    • 79960258500 scopus 로고    scopus 로고
    • Maternal over-nutrition and offspring obesity predisposition: Targets for preventative interventions
    • Rooney K, Ozanne SE. Maternal over-nutrition and offspring obesity predisposition: targets for preventative interventions. Int J Obes 2011; 35: 883-90.
    • (2011) Int J Obes , vol.35 , pp. 883-890
    • Rooney, K.1    Ozanne, S.E.2
  • 78
    • 24644520641 scopus 로고    scopus 로고
    • A long view of fashions in cancer research
    • Harris H. A long view of fashions in cancer research. Bioessays 2005; 27: 833-8.
    • (2005) Bioessays , vol.27 , pp. 833-838
    • Harris, H.1
  • 79
    • 80054046029 scopus 로고    scopus 로고
    • Aerobic glycolysis: Meeting the metabolic requirements of cell proliferation
    • Lunt SY, Vander Heiden MG. Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annu Rev Cell Dev Biol 2011; 27: 441-64.
    • (2011) Annu Rev Cell Dev Biol , vol.27 , pp. 441-464
    • Lunt, S.Y.1    Vander Heiden, M.G.2
  • 80
    • 0025343842 scopus 로고
    • Regulation of oxidative phosphorylation in the mammalian cell
    • Balaban RS. Regulation of oxidative phosphorylation in the mammalian cell. Am J Physiol 1990; 258: C377-89.
    • (1990) Am J Physiol , vol.258 , pp. C377-C389
    • Balaban, R.S.1
  • 81
    • 0027511220 scopus 로고
    • The role of the Crabtree effect and an endogenous fuel in the energy metabolism of resting and proliferating thymocytes
    • Guppy M, Greiner E, Brand K. The role of the Crabtree effect and an endogenous fuel in the energy metabolism of resting and proliferating thymocytes. Eur J Biochem 1993; 212: 95-9.
    • (1993) Eur J Biochem , vol.212 , pp. 95-99
    • Guppy, M.1    Greiner, E.2    Brand, K.3
  • 82
    • 33749478922 scopus 로고    scopus 로고
    • Cancer’s molecular sweet tooth and the Warburg effect
    • Kim JW, Dang C V. Cancer’s molecular sweet tooth and the Warburg effect. Cancer Res 2006; 66: 8927-30.
    • (2006) Cancer Res , vol.66 , pp. 8927-8930
    • Kim, J.W.1    Dang, C.V.2
  • 83
    • 0017904532 scopus 로고
    • Measurement of metabolites in single preimplantation embryos; a new means to study metabolic control in early embryos
    • Barbehenn EK, Wales RG, Lowry OH. Measurement of metabolites in single preimplantation embryos; a new means to study metabolic control in early embryos. J Embryol Exp Morphol 1978; 43: 29-46.
    • (1978) J Embryol Exp Morphol , vol.43 , pp. 29-46
    • Barbehenn, E.K.1    Wales, R.G.2    Lowry, O.H.3
  • 84
    • 0031805478 scopus 로고    scopus 로고
    • Glucose transporters in preimplantation development
    • Pantaleon M, Kaye PL. Glucose transporters in preimplantation development. Rev Reprod 1998; 3: 77-81.
    • (1998) Rev Reprod , vol.3 , pp. 77-81
    • Pantaleon, M.1    Kaye, P.L.2
  • 85
    • 79959221064 scopus 로고    scopus 로고
    • Energy metabolism in human pluripotent stem cells and their differentiated counterparts
    • Varum S, Rodrigues AS, Moura MB, et al. Energy metabolism in human pluripotent stem cells and their differentiated counterparts. PLoS One 2011; 6: e20914.
    • (2011) PLoS One , vol.6 , pp. e20914
    • Varum, S.1    Rodrigues, A.S.2    Moura, M.B.3
  • 86
    • 83455235489 scopus 로고    scopus 로고
    • UCP2 regulates energy metabolism and differentiation potential of human pluripotent stem cells
    • Zhang J, Khvorostov I, Hong JS, et al. UCP2 regulates energy metabolism and differentiation potential of human pluripotent stem cells. EMBO J 2011; 30: 4860-73.
    • (2011) EMBO J , vol.30 , pp. 4860-4873
    • Zhang, J.1    Khvorostov, I.2    Hong, J.S.3
  • 87
    • 0025202779 scopus 로고
    • Death of mouse embryos that lack a functional gene for glucose phosphate isomerase
    • West JD, Flockhart JH, Peters J, Ball ST. Death of mouse embryos that lack a functional gene for glucose phosphate isomerase. Genet Res 1990; 56: 223-36.
    • (1990) Genet Res , vol.56 , pp. 223-236
    • West, J.D.1    Flockhart, J.H.2    Peters, J.3    Ball, S.T.4
  • 88
    • 83455169174 scopus 로고    scopus 로고
    • Human pluripotent stem cells decouple respiration from energy production
    • Shyh-Chang N, Zheng Y, Locasale JW, Cantley LC. Human pluripotent stem cells decouple respiration from energy production. EMBO J 2011; 30: 4851-2.
    • (2011) EMBO J , vol.30 , pp. 4851-4852
    • Shyh-Chang, N.1    Zheng, Y.2    Locasale, J.W.3    Cantley, L.C.4
  • 89
    • 70349592516 scopus 로고    scopus 로고
    • The relationship between pluripotency and mitochondrial DNA proliferation during early embryo development and embryonic stem cell differentiation
    • Facucho-Oliveira JM, St John JC. The relationship between pluripotency and mitochondrial DNA proliferation during early embryo development and embryonic stem cell differentiation. Stem Cell Rev 2009; 5: 140-58.
    • (2009) Stem Cell Rev , vol.5 , pp. 140-158
    • Facucho-Oliveira, J.M.1    St John, J.C.2
  • 91
    • 33747875396 scopus 로고    scopus 로고
    • Dynamic changes in mitochondrial biogenesis and antioxidant enzymes during the spontaneous differentiation of human embryonic stem cells
    • Cho YM, Kwon S, Pak YK, et al. Dynamic changes in mitochondrial biogenesis and antioxidant enzymes during the spontaneous differentiation of human embryonic stem cells. Biochem Biophys Res Commun 2006; 348: 1472-8.
    • (2006) Biochem Biophys Res Commun , vol.348 , pp. 1472-1478
    • Cho, Y.M.1    Kwon, S.2    Pak, Y.K.3
  • 93
    • 84855490988 scopus 로고    scopus 로고
    • The metabolome of induced pluripotent stem cells reveals metabolic changes occurring in somatic cell reprogramming
    • Panopoulos AD, Yanes O, Ruiz S, et al. The metabolome of induced pluripotent stem cells reveals metabolic changes occurring in somatic cell reprogramming. Cell Res 2012; 22: 168-77.
    • (2012) Cell Res , vol.22 , pp. 168-177
    • Panopoulos, A.D.1    Yanes, O.2    Ruiz, S.3
  • 94
    • 77951002352 scopus 로고    scopus 로고
    • The senescence-related mitochondrial/oxidative stress pathway is repressed in human induced pluripotent stem cells
    • Prigione A, Fauler B, Lurz R, Lehrach H, Adjaye J. The senescence-related mitochondrial/oxidative stress pathway is repressed in human induced pluripotent stem cells. Stem Cells 2010; 28: 721-33.
    • (2010) Stem Cells , vol.28 , pp. 721-733
    • Prigione, A.1    Fauler, B.2    Lurz, R.3    Lehrach, H.4    Adjaye, J.5
  • 95
    • 79960945131 scopus 로고    scopus 로고
    • Somatic oxidative bioenergetics transitions into pluripotency-dependent glycolysis to facilitate nuclear reprogramming
    • Folmes CD, Nelson TJ, Martinez-Fernandez A, et al. Somatic oxidative bioenergetics transitions into pluripotency-dependent glycolysis to facilitate nuclear reprogramming. Cell Metab 2011; 14: 264-71.
    • (2011) Cell Metab , vol.14 , pp. 264-271
    • Folmes, C.D.1    Nelson, T.J.2    Martinez-Fernandez, A.3
  • 96
    • 66249108601 scopus 로고    scopus 로고
    • Understanding the Warburg effect: The metabolic requirements of cell proliferation
    • Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science (80-) 2009; 324: 1029-33.
    • (2009) Science (80-) , vol.324 , pp. 1029-1033
    • Vander Heiden, M.G.1    Cantley, L.C.2    Thompson, C.B.3
  • 97
    • 84855759349 scopus 로고    scopus 로고
    • Modulation of the pentose phosphate pathway induces endodermal differentiation in embryonic stem cells
    • Manganelli G, Fico A, Masullo U, Pizzolongo F, Cimmino A, Filosa S. Modulation of the pentose phosphate pathway induces endodermal differentiation in embryonic stem cells. PLoS One 2012; 7: e29321.
    • (2012) PLoS One , vol.7 , pp. e29321
    • Manganelli, G.1    Fico, A.2    Masullo, U.3    Pizzolongo, F.4    Cimmino, A.5    Filosa, S.6
  • 98
    • 77749254890 scopus 로고    scopus 로고
    • Spatiotemporal compartmentalization of key physiological processes during muscle precursor differentiation
    • Ozbudak EM, Tassy O, Pourquie O. Spatiotemporal compartmentalization of key physiological processes during muscle precursor differentiation. Proc Natl Acad Sci USA 2010; 107: 4224-9.
    • (2010) Proc Natl Acad Sci USA , vol.107 , pp. 4224-4229
    • Ozbudak, E.M.1    Tassy, O.2    Pourquie, O.3
  • 100
    • 78649647814 scopus 로고    scopus 로고
    • Reprogramming of human primary somatic cells by OCT4 and chemical compounds
    • Zhu S, Li W, Zhou H, et al. Reprogramming of human primary somatic cells by OCT4 and chemical compounds. Cell Stem Cell 2010; 7: 651-5.
    • (2010) Cell Stem Cell , vol.7 , pp. 651-655
    • Zhu, S.1    Li, W.2    Zhou, H.3
  • 101
    • 84870389262 scopus 로고    scopus 로고
    • The Warburg effect dictates the mechanism of butyrate-mediated histone acetylation and cell proliferation
    • Donohoe DR, Collins LB, Wali A, Bigler R, Sun W, Bultman SJ. The Warburg effect dictates the mechanism of butyrate-mediated histone acetylation and cell proliferation. Mol Cell 2012; 48: 612-26.
    • (2012) Mol Cell , vol.48 , pp. 612-626
    • Donohoe, D.R.1    Collins, L.B.2    Wali, A.3    Bigler, R.4    Sun, W.5    Bultman, S.J.6
  • 102
    • 84870598190 scopus 로고    scopus 로고
    • ERK1/2-dependent phosphorylation and nuclear translocation of PKM2 promotes the Warburg effect
    • Yang W, Zheng Y, Xia Y, et al. ERK1/2-dependent phosphorylation and nuclear translocation of PKM2 promotes the Warburg effect. Nat Cell Biol 2012; 14: 1295-304.
    • (2012) Nat Cell Biol , vol.14 , pp. 1295-1304
    • Yang, W.1    Zheng, Y.2    Xia, Y.3
  • 104
    • 84872160110 scopus 로고    scopus 로고
    • Influence of threonine metabolism on S-adenosylmethionine and histone methylation
    • Shyh-Chang N, Locasale JW, Lyssiotis CA, et al. Influence of threonine metabolism on S-adenosylmethionine and histone methylation. Science (80-) 2013; 339: 222-6.
    • (2013) Science (80-) , vol.339 , pp. 222-226
    • Shyh-Chang, N.1    Locasale, J.W.2    Lyssiotis, C.A.3
  • 105
    • 80053139819 scopus 로고    scopus 로고
    • Targeted killing of a mammalian cell based upon its specialized metabolic state
    • Alexander PB, Wang J, McKnight SL. Targeted killing of a mammalian cell based upon its specialized metabolic state. Proc Natl Acad Sci USA 2011; 108: 15828-33.
    • (2011) Proc Natl Acad Sci USA , vol.108 , pp. 15828-15833
    • Alexander, P.B.1    Wang, J.2    McKnight, S.L.3
  • 106
    • 77952545479 scopus 로고    scopus 로고
    • Metabolic oxidation regulates embryonic stem cell differentiation
    • Yanes O, Clark J, Wong DM, et al. Metabolic oxidation regulates embryonic stem cell differentiation. Nat Chem Biol 2010; 6: 411-7.
    • (2010) Nat Chem Biol , vol.6 , pp. 411-417
    • Yanes, O.1    Clark, J.2    Wong, D.M.3
  • 107
    • 84868632060 scopus 로고    scopus 로고
    • A PML-PPAR-delta pathway for fatty acid oxidation regulates hematopoietic stem cell maintenance
    • Ito K, Carracedo A, Weiss D, et al. A PML-PPAR-delta pathway for fatty acid oxidation regulates hematopoietic stem cell maintenance. Nat Med 2012; 18: 1350-8.
    • (2012) Nat Med , vol.18 , pp. 1350-1358
    • Ito, K.1    Carracedo, A.2    Weiss, D.3
  • 108
    • 84900342698 scopus 로고    scopus 로고
    • Direct measurement of local oxygen concentration in the bone marrow of live animals
    • Spencer JA, Ferraro F, Roussakis E, et al. Direct measurement of local oxygen concentration in the bone marrow of live animals. Nature 2014; 508: 269-73.
    • (2014) Nature , vol.508 , pp. 269-273
    • Spencer, J.A.1    Ferraro, F.2    Roussakis, E.3
  • 109
    • 84877575509 scopus 로고    scopus 로고
    • Quantitative imaging of haematopoietic stem and progenitor cell localization and hypoxic status in the bone marrow microenvironment
    • Nombela-Arrieta C, Pivarnik G, Winkel B, et al. Quantitative imaging of haematopoietic stem and progenitor cell localization and hypoxic status in the bone marrow microenvironment. Nat Cell Biol 2013; 15: 533-43.
    • (2013) Nat Cell Biol , vol.15 , pp. 533-543
    • Nombela-Arrieta, C.1    Pivarnik, G.2    Winkel, B.3
  • 110
    • 84862776944 scopus 로고    scopus 로고
    • From stem cells to cancer stem cells: HIF takes the stage
    • Lee KE, Simon MC. From stem cells to cancer stem cells: HIF takes the stage. Curr Opin Cell Biol 2012; 24: 232-5.
    • (2012) Curr Opin Cell Biol , vol.24 , pp. 232-235
    • Lee, K.E.1    Simon, M.C.2
  • 111
    • 77950860807 scopus 로고    scopus 로고
    • Hypoxia mediates low cellcycle activity and increases the proportion of long-termreconstituting hematopoietic stem cells during in vitro culture
    • Eliasson P, Rehn M, Hammar P, et al. Hypoxia mediates low cellcycle activity and increases the proportion of long-termreconstituting hematopoietic stem cells during in vitro culture. Exp Hematol 2010; 38: 301-10 e2.
    • (2010) Exp Hematol , vol.38 , pp. 301e2-310e2
    • Eliasson, P.1    Rehn, M.2    Hammar, P.3
  • 112
    • 33644747418 scopus 로고    scopus 로고
    • HIF-2alpha regulates Oct-4: Effects of hypoxia on stem cell function, embryonic development, and tumor growth
    • Covello KL, Kehler J, Yu H, et al. HIF-2alpha regulates Oct-4: effects of hypoxia on stem cell function, embryonic development, and tumor growth. Genes Dev 2006; 20: 557-70.
    • (2006) Genes Dev , vol.20 , pp. 557-570
    • Covello, K.L.1    Kehler, J.2    Yu, H.3
  • 113
    • 34247631690 scopus 로고    scopus 로고
    • The transcription factor HIF-1alpha plays a critical role in the growth factor-dependent regulation of both aerobic and anaerobic glycolysis
    • Lum JJ, Bui T, Gruber M, et al. The transcription factor HIF-1alpha plays a critical role in the growth factor-dependent regulation of both aerobic and anaerobic glycolysis. Genes Dev 2007; 21: 1037-49.
    • (2007) Genes Dev , vol.21 , pp. 1037-1049
    • Lum, J.J.1    Bui, T.2    Gruber, M.3
  • 114
    • 0029101515 scopus 로고
    • Hypoxic regulation of lactate dehydrogenase A. Interaction between hypoxia-inducible factor 1 and cAMP response elements
    • Firth JD, Ebert BL, Ratcliffe PJ. Hypoxic regulation of lactate dehydrogenase A. Interaction between hypoxia-inducible factor 1 and cAMP response elements. J Biol Chem 1995; 270: 21021-7.
    • (1995) J Biol Chem , vol.270 , pp. 21021-21027
    • Firth, J.D.1    Ebert, B.L.2    Ratcliffe, P.J.3
  • 115
    • 33644614520 scopus 로고    scopus 로고
    • HIF-1- mediated expression of pyruvate dehydrogenase kinase: A metabolic switch required for cellular adaptation to hypoxia
    • Kim JW, Tchernyshyov I, Semenza GL, Dang C V. HIF-1- mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab 2006; 3: 177-85.
    • (2006) Cell Metab , vol.3 , pp. 177-185
    • Kim, J.W.1    Tchernyshyov, I.2    Semenza, G.L.3    Dang, C.V.4
  • 116
    • 84872011926 scopus 로고    scopus 로고
    • Regulation of glycolysis by Pdk functions as a metabolic checkpoint for cell cycle quiescence in hematopoietic stem cells
    • Takubo K, Nagamatsu G, Kobayashi CI, et al. Regulation of glycolysis by Pdk functions as a metabolic checkpoint for cell cycle quiescence in hematopoietic stem cells. Cell Stem Cell 2013; 12: 49-61.
    • (2013) Cell Stem Cell , vol.12 , pp. 49-61
    • Takubo, K.1    Nagamatsu, G.2    Kobayashi, C.I.3
  • 117
    • 33846419112 scopus 로고    scopus 로고
    • FoxOs are critical mediators of hematopoietic stem cell resistance to physiologic oxidative stress
    • Tothova Z, Kollipara R, Huntly BJ, et al. FoxOs are critical mediators of hematopoietic stem cell resistance to physiologic oxidative stress. Cell 2007; 128: 325-39.
    • (2007) Cell , vol.128 , pp. 325-339
    • Tothova, Z.1    Kollipara, R.2    Huntly, B.J.3
  • 118
    • 33645730667 scopus 로고    scopus 로고
    • Reactive oxygen species act through p38 MAPK to limit the lifespan of hematopoietic stem cells
    • Ito K, Hirao A, Arai F, et al. Reactive oxygen species act through p38 MAPK to limit the lifespan of hematopoietic stem cells. Nat Med 2006; 12: 446-51.
    • (2006) Nat Med , vol.12 , pp. 446-451
    • Ito, K.1    Hirao, A.2    Arai, F.3
  • 119
    • 77954833815 scopus 로고    scopus 로고
    • Physiological levels of reactive oxygen species are required to maintain genomic stability in stem cells
    • Li TS, Marban E. Physiological levels of reactive oxygen species are required to maintain genomic stability in stem cells. Stem Cells 2010; 28: 1178-85.
    • (2010) Stem Cells , vol.28 , pp. 1178-1185
    • Li, T.S.1    Marban, E.2
  • 120
    • 84897101058 scopus 로고    scopus 로고
    • Roles of reactive oxygen species in the fate of stem cells
    • Chaudhari P, Ye Z, Jang YY. Roles of reactive oxygen species in the fate of stem cells. Antioxid Redox Signal 2014; 20: 1881-90.
    • (2014) Antioxid Redox Signal , vol.20 , pp. 1881-1890
    • Chaudhari, P.1    Ye, Z.2    Jang, Y.Y.3
  • 121
    • 84876104810 scopus 로고    scopus 로고
    • H2O2 accumulation mediates differentiation capacity alteration, but not proliferative decline, in senescent human fetal mesenchymal stem cells
    • Ho PJ, Yen ML, Tang BC, Chen CT, Yen BL. H2O2 accumulation mediates differentiation capacity alteration, but not proliferative decline, in senescent human fetal mesenchymal stem cells. Antioxid Redox Signal 2013; 18: 1895-905.
    • (2013) Antioxid Redox Signal , vol.18 , pp. 1895-1905
    • Ho, P.J.1    Yen, M.L.2    Tang, B.C.3    Chen, C.T.4    Yen, B.L.5
  • 122
    • 77956205122 scopus 로고    scopus 로고
    • The distinct metabolic profile of hematopoietic stem cells reflects their location in a hypoxic niche
    • Simsek T, Kocabas F, Zheng J, et al. The distinct metabolic profile of hematopoietic stem cells reflects their location in a hypoxic niche. Cell Stem Cell 2010; 7: 380-90.
    • (2010) Cell Stem Cell , vol.7 , pp. 380-390
    • Simsek, T.1    Kocabas, F.2    Zheng, J.3
  • 123
    • 77955273858 scopus 로고    scopus 로고
    • Mitochondrial respiration defects modulate differentiation but not proliferation of hematopoietic stem and progenitor cells
    • Inoue S, Noda S, Kashima K, Nakada K, Hayashi J, Miyoshi H. Mitochondrial respiration defects modulate differentiation but not proliferation of hematopoietic stem and progenitor cells. FEBS Lett 2010; 584: 3402-9.
    • (2010) FEBS Lett , vol.584 , pp. 3402-3409
    • Inoue, S.1    Noda, S.2    Kashima, K.3    Nakada, K.4    Hayashi, J.5    Miyoshi, H.6
  • 124
    • 49249086654 scopus 로고    scopus 로고
    • Coordinated changes of mitochondrial biogenesis and antioxidant enzymes during osteogenic differentiation of human mesenchymal stem cells
    • Chen CT, Shih YR, Kuo TK, Lee OK, Wei YH. Coordinated changes of mitochondrial biogenesis and antioxidant enzymes during osteogenic differentiation of human mesenchymal stem cells. Stem Cells 2008; 26: 960-8.
    • (2008) Stem Cells , vol.26 , pp. 960-968
    • Chen, C.T.1    Shih, Y.R.2    Kuo, T.K.3    Lee, O.K.4    Wei, Y.H.5
  • 125
    • 79960666063 scopus 로고    scopus 로고
    • The metabolism of human mesenchymal stem cells during proliferation and differentiation
    • Pattappa G, Heywood HK, de Bruijn JD, Lee DA. The metabolism of human mesenchymal stem cells during proliferation and differentiation. J Cell Physiol 2011; 226: 2562-70.
    • (2011) J Cell Physiol , vol.226 , pp. 2562-2570
    • Pattappa, G.1    Heywood, H.K.2    de Bruijn, J.D.3    Lee, D.A.4
  • 126
    • 84871040682 scopus 로고    scopus 로고
    • Continuous and uninterrupted oxygen tension influences the colony formation and oxidative metabolism of human mesenchymal stem cells
    • Pattappa G, Thorpe SD, Jegard NC, Heywood HK, de Bruijn JD, Lee DA. Continuous and uninterrupted oxygen tension influences the colony formation and oxidative metabolism of human mesenchymal stem cells. Tissue Eng Part C Methods 2013; 19: 68-79.
    • (2013) Tissue Eng Part C Methods , vol.19 , pp. 68-79
    • Pattappa, G.1    Thorpe, S.D.2    Jegard, N.C.3    Heywood, H.K.4    de Bruijn, J.D.5    Lee, D.A.6
  • 127
    • 33846420629 scopus 로고    scopus 로고
    • A high glycolytic flux supports the proliferative potential of murine embryonic stem cells
    • Kondoh H, Lleonart ME, Nakashima Y, et al. A high glycolytic flux supports the proliferative potential of murine embryonic stem cells. Antioxid Redox Signal 2007; 9: 293-9.
    • (2007) Antioxid Redox Signal , vol.9 , pp. 293-299
    • Kondoh, H.1    Lleonart, M.E.2    Nakashima, Y.3
  • 128
    • 84875775617 scopus 로고    scopus 로고
    • Mitochondrial DNA haplotypes define gene expression patterns in pluripotent and differentiating embryonic stem cells
    • Kelly RD, Rodda AE, Dickinson A, et al. Mitochondrial DNA haplotypes define gene expression patterns in pluripotent and differentiating embryonic stem cells. Stem Cells 2013; 31: 703-16.
    • (2013) Stem Cells , vol.31 , pp. 703-716
    • Kelly, R.D.1    Rodda, A.E.2    Dickinson, A.3
  • 129
    • 27744563079 scopus 로고    scopus 로고
    • The expression of mitochondrial DNA transcription factors during early cardiomyocyte in vitro differentiation from human embryonic stem cells
    • St John JC, Ramalho-Santos J, Gray HL, et al. The expression of mitochondrial DNA transcription factors during early cardiomyocyte in vitro differentiation from human embryonic stem cells. Cloning Stem Cells 2005; 7: 141-53.
    • (2005) Cloning Stem Cells , vol.7 , pp. 141-153
    • St John, J.C.1    Ramalho-Santos, J.2    Gray, H.L.3
  • 130
    • 84879559313 scopus 로고    scopus 로고
    • Cord blood-derived CD34+ hematopoietic cells with low mitochondrial mass are enriched in hematopoietic repopulating stem cell function
    • Romero-Moya D, Bueno C, Montes R, et al. Cord blood-derived CD34+ hematopoietic cells with low mitochondrial mass are enriched in hematopoietic repopulating stem cell function. Haematologica 2013; 98: 1022-9.
    • (2013) Haematologica , vol.98 , pp. 1022-1029
    • Romero-Moya, D.1    Bueno, C.2    Montes, R.3
  • 131
    • 77950630969 scopus 로고    scopus 로고
    • Growth factor erv1-like modulates Drp1 to preserve mitochondrial dynamics and function in mouse embryonic stem cells
    • Todd LR, Damin MN, Gomathinayagam R, Horn SR, Means AR, Sankar U. Growth factor erv1-like modulates Drp1 to preserve mitochondrial dynamics and function in mouse embryonic stem cells. Mol Biol Cell 2010; 21: 1225-36.
    • (2010) Mol Biol Cell , vol.21 , pp. 1225-1236
    • Todd, L.R.1    Damin, M.N.2    Gomathinayagam, R.3    Horn, S.R.4    Means, A.R.5    Sankar, U.6
  • 132
    • 58149310809 scopus 로고    scopus 로고
    • Mitochondrial concept of leukemogenesis: Key role of oxygen-peroxide effects
    • Lyu BN, Ismailov SB, Ismailov B, Lyu MB. Mitochondrial concept of leukemogenesis: key role of oxygen-peroxide effects. Theor Biol Med Model 2008; 5: 23.
    • (2008) Theor Biol Med Model , vol.5 , pp. 23
    • Lyu, B.N.1    Ismailov, S.B.2    Ismailov, B.3    Lyu, M.B.4
  • 133
    • 84876909069 scopus 로고    scopus 로고
    • The ageing haematopoietic stem cell compartment
    • Geiger H, de Haan G, Florian MC. The ageing haematopoietic stem cell compartment. Nat Rev Immunol 2013; 13: 376-89.
    • (2013) Nat Rev Immunol , vol.13 , pp. 376-389
    • Geiger, H.1    de Haan, G.2    Florian, M.C.3
  • 135
    • 2642580016 scopus 로고    scopus 로고
    • Premature ageing in mice expressing defective mitochondrial DNA polymerase
    • Trifunovic A, Wredenberg A, Falkenberg M, et al. Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature 2004; 429: 417-23.
    • (2004) Nature , vol.429 , pp. 417-423
    • Trifunovic, A.1    Wredenberg, A.2    Falkenberg, M.3
  • 136
    • 79955698235 scopus 로고    scopus 로고
    • Accumulating mitochondrial DNA mutations drive premature hematopoietic aging phenotypes distinct from physiological stem cell aging
    • Norddahl GL, Pronk CJ, Wahlestedt M, et al. Accumulating mitochondrial DNA mutations drive premature hematopoietic aging phenotypes distinct from physiological stem cell aging. Cell Stem Cell 2011; 8: 499-510.
    • (2011) Cell Stem Cell , vol.8 , pp. 499-510
    • Norddahl, G.L.1    Pronk, C.J.2    Wahlestedt, M.3
  • 137
    • 78349297565 scopus 로고    scopus 로고
    • Oxidative stress and diabetic complications
    • Giacco F, Brownlee M. Oxidative stress and diabetic complications. Circ Res 2010; 107: 1058-70.
    • (2010) Circ Res , vol.107 , pp. 1058-1070
    • Giacco, F.1    Brownlee, M.2
  • 138
    • 79958285686 scopus 로고    scopus 로고
    • Mitochondrial DNA backgrounds might modulate diabetes complications rather than T2DM as a whole
    • Achilli A, Olivieri A, Pala M, et al. Mitochondrial DNA backgrounds might modulate diabetes complications rather than T2DM as a whole. PLoS One 2011; 6: e21029.
    • (2011) PLoS One , vol.6 , pp. e21029
    • Achilli, A.1    Olivieri, A.2    Pala, M.3
  • 139
    • 84862993738 scopus 로고    scopus 로고
    • Specific mitochondrial DNA mutation in mice regulates diabetes and lymphoma development
    • Hashizume O, Shimizu A, Yokota M, et al. Specific mitochondrial DNA mutation in mice regulates diabetes and lymphoma development. Proc Natl Acad Sci USA 2012; 109: 10528-33.
    • (2012) Proc Natl Acad Sci USA , vol.109 , pp. 10528-10533
    • Hashizume, O.1    Shimizu, A.2    Yokota, M.3
  • 140
    • 79952749156 scopus 로고    scopus 로고
    • DNA methyltransferase 1, cytosine methylation, and cytosine hydroxymethylation in mammalian mitochondria
    • Shock LS, Thakkar P V, Peterson EJ, Moran RG, Taylor SM. DNA methyltransferase 1, cytosine methylation, and cytosine hydroxymethylation in mammalian mitochondria. Proc Natl Acad Sci USA 2011; 108: 3630-5.
    • (2011) Proc Natl Acad Sci USA , vol.108 , pp. 3630-3635
    • Shock, L.S.1    Thakkar, P.V.2    Peterson, E.J.3    Moran, R.G.4    Taylor, S.M.5
  • 141
    • 84882889657 scopus 로고    scopus 로고
    • The control region of mitochondrial DNA shows an unusual CpG and non-CpG methylation pattern
    • Bellizzi D, D’Aquila P, Scafone T, et al. The control region of mitochondrial DNA shows an unusual CpG and non-CpG methylation pattern. DNA Res 2013; 20: 537-47.
    • (2013) DNA Res , vol.20 , pp. 537-547
    • Bellizzi, D.1    D’Aquila, P.2    Scafone, T.3
  • 142
    • 84881546730 scopus 로고    scopus 로고
    • Epigenetic modification of liver mitochondrial DNA is associated with histological severity of nonalcoholic fatty liver disease
    • Pirola CJ, Gianotti TF, Burgueno AL, et al. Epigenetic modification of liver mitochondrial DNA is associated with histological severity of nonalcoholic fatty liver disease. Gut 2013; 62: 1356-63.
    • (2013) Gut , vol.62 , pp. 1356-1363
    • Pirola, C.J.1    Gianotti, T.F.2    Burgueno, A.L.3
  • 143
    • 84878097979 scopus 로고    scopus 로고
    • Effects of airborne pollutants on mitochondrial DNA methylation
    • Byun HM, Panni T, Motta V, et al. Effects of airborne pollutants on mitochondrial DNA methylation. Part Fibre Toxicol 2013; 10: 18.
    • (2013) Part Fibre Toxicol , vol.10 , pp. 18
    • Byun, H.M.1    Panni, T.2    Motta, V.3
  • 144
    • 84874267510 scopus 로고    scopus 로고
    • High-resolution enzymatic mapping of genomic 5-hydroxymethylcytosine in mouse embryonic stem cells
    • Sun Z, Terragni J, Borgaro JG, et al. High-resolution enzymatic mapping of genomic 5-hydroxymethylcytosine in mouse embryonic stem cells. Cell Rep 2013; 3: 567-76.
    • (2013) Cell Rep , vol.3 , pp. 567-576
    • Sun, Z.1    Terragni, J.2    Borgaro, J.G.3
  • 145
    • 84876090720 scopus 로고    scopus 로고
    • Chronobiology in mammalian health
    • Liu Z, Chu G. Chronobiology in mammalian health. Mol Biol Rep 2013; 40: 2491-501.
    • (2013) Mol Biol Rep , vol.40 , pp. 2491-2501
    • Liu, Z.1    Chu, G.2
  • 146
    • 84883176122 scopus 로고    scopus 로고
    • The times they’re a-changing: Effects of circadian desynchronization on physiology and disease
    • Golombek DA, Casiraghi LP, Agostino PV, et al. The times they’re a-changing: effects of circadian desynchronization on physiology and disease. J Physiol Paris 2013; 107: 310-22.
    • (2013) J Physiol Paris , vol.107 , pp. 310-322
    • Golombek, D.A.1    Casiraghi, L.P.2    Agostino, P.V.3
  • 147
  • 150
    • 84869036539 scopus 로고    scopus 로고
    • Circadian topology of metabolism
    • Bass J. Circadian topology of metabolism. Nature 2012; 491: 348-56.
    • (2012) Nature , vol.491 , pp. 348-356
    • Bass, J.1
  • 151
    • 84904260132 scopus 로고    scopus 로고
    • Molecular mechanisms of the circadian clockwork in mammals
    • Robinson I, Reddy AB. Molecular mechanisms of the circadian clockwork in mammals. FEBS Lett 2014; 588: 2477-83.
    • (2014) FEBS Lett , vol.588 , pp. 2477-2483
    • Robinson, I.1    Reddy, A.B.2
  • 152
    • 78649687209 scopus 로고    scopus 로고
    • Circadian integration of metabolism and energetics
    • Bass J, Takahashi JS. Circadian integration of metabolism and energetics. Science 2010; 330: 1349-54.
    • (2010) Science , vol.330 , pp. 1349-1354
    • Bass, J.1    Takahashi, J.S.2
  • 153
    • 24944460267 scopus 로고    scopus 로고
    • Differential control of Bmal1 circadian transcription by REV-ERB and ROR nuclear receptors
    • Guillaumond F, Dardente H, Giguère V, Cermakian N. Differential control of Bmal1 circadian transcription by REV-ERB and ROR nuclear receptors. J Biol Rhythms 2005; 20: 391-403.
    • (2005) J Biol Rhythms , vol.20 , pp. 391-403
    • Guillaumond, F.1    Dardente, H.2    Giguère, V.3    Cermakian, N.4
  • 154
    • 52649158231 scopus 로고    scopus 로고
    • Dual modification of BMAL1 by SUMO2/3 and ubiquitin promotes circadian activation of the CLOCK/BMAL1 complex
    • Lee J, Lee Y, Lee MJ, et al. Dual modification of BMAL1 by SUMO2/3 and ubiquitin promotes circadian activation of the CLOCK/BMAL1 complex. Mol Cell Biol 2008; 28: 6056-65.
    • (2008) Mol Cell Biol , vol.28 , pp. 6056-6065
    • Lee, J.1    Lee, Y.2    Lee, M.J.3
  • 155
    • 47749140333 scopus 로고    scopus 로고
    • SIRT1 regulates circadian clock gene expression through PER2 deacetylation
    • Asher G, Gatfield D, Stratmann M, et al. SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell 2008; 134: 317-28.
    • (2008) Cell , vol.134 , pp. 317-328
    • Asher, G.1    Gatfield, D.2    Stratmann, M.3
  • 156
    • 47549102014 scopus 로고    scopus 로고
    • SIRT1 is a circadian deacetylase for core clock components
    • Belden WJ, Dunlap JC. SIRT1 is a circadian deacetylase for core clock components. Cell 2008; 134: 212-4.
    • (2008) Cell , vol.134 , pp. 212-214
    • Belden, W.J.1    Dunlap, J.C.2
  • 157
    • 33749319064 scopus 로고    scopus 로고
    • Differential effects of PER2 phosphorylation: Molecular basis for the human familial advanced sleep phase syndrome (FASPS)
    • Vanselow K, Vanselow JT, Westermark PO, et al. Differential effects of PER2 phosphorylation: molecular basis for the human familial advanced sleep phase syndrome (FASPS). Genes Dev 2006; 20: 2660-72.
    • (2006) Genes Dev , vol.20 , pp. 2660-2672
    • Vanselow, K.1    Vanselow, J.T.2    Westermark, P.O.3
  • 158
    • 70350128135 scopus 로고    scopus 로고
    • AMPK regulates the circadian clock by cryptochrome phosphorylation and degradation
    • Lamia K a, Sachdeva UM, DiTacchio L, et al. AMPK regulates the circadian clock by cryptochrome phosphorylation and degradation. Science 2009; 326: 437-40.
    • (2009) Science , vol.326 , pp. 437-440
    • Lamia, K.1    Sachdeva, U.M.2    DiTacchio, L.3
  • 160
    • 84964039394 scopus 로고    scopus 로고
    • Nucleolar localization and circadian regulation of Per2S, a novel splicing variant of the Period 2 gene
    • Avitabile D, Genovese L, Ponti D, et al. Nucleolar localization and circadian regulation of Per2S, a novel splicing variant of the Period 2 gene. Cell Mol Life Sci 2013; 1.
    • (2013) Cell Mol Life Sci , pp. 1
    • Avitabile, D.1    Genovese, L.2    Ponti, D.3
  • 162
    • 79251566511 scopus 로고    scopus 로고
    • Circadian clocks in human red blood cells
    • O’Neill JS, Reddy AB. Circadian clocks in human red blood cells. Nature 2011; 469: 498-503.
    • (2011) Nature , vol.469 , pp. 498-503
    • O’Neill, J.S.1    Reddy, A.B.2
  • 163
    • 84901262708 scopus 로고    scopus 로고
    • Peroxiredoxin 2 nuclear levels are regulated by circadian clock synchronization in human keratinocytes
    • Avitabile D, Ranieri D, Nicolussi A, et al. Peroxiredoxin 2 nuclear levels are regulated by circadian clock synchronization in human keratinocytes. Int J Biochem Cell Biol 2014; 53: 24-34.
    • (2014) Int J Biochem Cell Biol , vol.53 , pp. 24-34
    • Avitabile, D.1    Ranieri, D.2    Nicolussi, A.3
  • 164
    • 84864309100 scopus 로고    scopus 로고
    • Clocks, metabolism, and the epigenome
    • Feng D, Lazar MA. Clocks, metabolism, and the epigenome. Mol Cell 2012; 47: 158-67.
    • (2012) Mol Cell , vol.47 , pp. 158-167
    • Feng, D.1    Lazar, M.A.2
  • 165
    • 18444414586 scopus 로고    scopus 로고
    • Coordinated transcription of key pathways in the mouse by the circadian clock
    • Panda S, Antoch MP, Miller BH, et al. Coordinated transcription of key pathways in the mouse by the circadian clock. Cell 2002; 109: 307-20.
    • (2002) Cell , vol.109 , pp. 307-320
    • Panda, S.1    Antoch, M.P.2    Miller, B.H.3
  • 166
    • 33744515807 scopus 로고    scopus 로고
    • Circadian orchestration of the hepatic proteome
    • Reddy AB, Karp NA, Maywood ES, et al. Circadian orchestration of the hepatic proteome. Curr Biol 2006; 16: 1107-15.
    • (2006) Curr Biol , vol.16 , pp. 1107-1115
    • Reddy, A.B.1    Karp, N.A.2    Maywood, E.S.3
  • 167
    • 84861324365 scopus 로고    scopus 로고
    • Circadian desynchrony promotes metabolic disruption in a mouse model of shiftwork
    • Barclay JL, Husse J, Bode B, et al. Circadian desynchrony promotes metabolic disruption in a mouse model of shiftwork. PLoS One 2012; 7: e37150.
    • (2012) PLoS One , vol.7 , pp. e37150
    • Barclay, J.L.1    Husse, J.2    Bode, B.3
  • 169
    • 84879001061 scopus 로고    scopus 로고
    • Bmal1 and β-cell clock are required for adaptation to circadian disruption, and their loss of function leads to oxidative stress-induced β-cell failure in mice
    • Lee J, Moulik M, Fang Z, et al. Bmal1 and β-cell clock are required for adaptation to circadian disruption, and their loss of function leads to oxidative stress-induced β-cell failure in mice. Mol Cell Biol 2013; 33: 2327-38.
    • (2013) Mol Cell Biol , vol.33 , pp. 2327-2338
    • Lee, J.1    Moulik, M.2    Fang, Z.3
  • 170
    • 77954848215 scopus 로고    scopus 로고
    • Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes
    • Marcheva B, Ramsey KM, Buhr ED, et al. Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes. Nature 2010; 466: 627-31.
    • (2010) Nature , vol.466 , pp. 627-631
    • Marcheva, B.1    Ramsey, K.M.2    Buhr, E.D.3
  • 171
    • 20844461135 scopus 로고    scopus 로고
    • Obesity and metabolic syndrome in circadian Clock mutant mice
    • Turek FW, Joshu C, Kohsaka A, et al. Obesity and metabolic syndrome in circadian Clock mutant mice. Science 2005; 308: 1043-5.
    • (2005) Science , vol.308 , pp. 1043-1045
    • Turek, F.W.1    Joshu, C.2    Kohsaka, A.3
  • 172
    • 85047689162 scopus 로고    scopus 로고
    • Circadian clock functioning is linked to acute stress reactivity in rats
    • Weibel L, Maccari S, Van Reeth O. Circadian clock functioning is linked to acute stress reactivity in rats. J Biol Rhythms 2002; 17: 438-46.
    • (2002) J Biol Rhythms , vol.17 , pp. 438-446
    • Weibel, L.1    Maccari, S.2    Van Reeth, O.3
  • 173
    • 84891440383 scopus 로고    scopus 로고
    • ROS Stress Resets Circadian Clocks to Coordinate Pro-Survival Signals
    • Tamaru T, Hattori M, Ninomiya Y, et al. ROS Stress Resets Circadian Clocks to Coordinate Pro-Survival Signals. PLoS One 2013; 8: e82006.
    • (2013) PLoS One , vol.8 , pp. e82006
    • Tamaru, T.1    Hattori, M.2    Ninomiya, Y.3
  • 174
    • 80052527071 scopus 로고    scopus 로고
    • Synchronization of Circadian Per2 Rhythms and HSF1-BMAL1: CLOCK Interaction in Mouse Fibroblasts after Short-Term Heat Shock Pulse
    • Tamaru T, Hattori M, Honda K, Benjamin I, Ozawa T, Takamatsu K. Synchronization of Circadian Per2 Rhythms and HSF1-BMAL1: CLOCK Interaction in Mouse Fibroblasts after Short-Term Heat Shock Pulse. PLoS One 2011; 6: e24521.
    • (2011) PLoS One , vol.6 , pp. e24521
    • Tamaru, T.1    Hattori, M.2    Honda, K.3    Benjamin, I.4    Ozawa, T.5    Takamatsu, K.6
  • 175
    • 84860663922 scopus 로고    scopus 로고
    • Adora2b-elicited Per2 stabilization promotes a HIF-dependent metabolic switch crucial for myocardial adaptation to ischemia
    • Borchers CH, Buttrick PM, Eckle T, et al. Adora2b-elicited Per2 stabilization promotes a HIF-dependent metabolic switch crucial for myocardial adaptation to ischemia. Nat Med 2012; 18: 774-82.
    • (2012) Nat Med , vol.18 , pp. 774-782
    • Borchers, C.H.1    Buttrick, P.M.2    Eckle, T.3
  • 176
    • 33747157406 scopus 로고    scopus 로고
    • Nuclear receptor expression links the circadian clock to metabolism
    • Yang X, Downes M, Yu RT, et al. Nuclear receptor expression links the circadian clock to metabolism. Cell 2006; 126: 801-10.
    • (2006) Cell , vol.126 , pp. 801-810
    • Yang, X.1    Downes, M.2    Yu, R.T.3
  • 177
    • 15944382729 scopus 로고    scopus 로고
    • CLOCK is involved in the circadian transactivation of peroxisome-proliferator-activated receptor alpha (PPARalpha) in mice
    • Oishi K, Shirai H, Ishida N. CLOCK is involved in the circadian transactivation of peroxisome-proliferator-activated receptor alpha (PPARalpha) in mice. Biochem J 2005; 386: 575-81.
    • (2005) Biochem J , vol.386 , pp. 575-581
    • Oishi, K.1    Shirai, H.2    Ishida, N.3
  • 178
    • 33746591126 scopus 로고    scopus 로고
    • Reciprocal regulation of brain and muscle Arnt-like protein 1 and peroxisome proliferator-activated receptor alpha defines a novel positive feedback loop in the rodent liver circadian clock
    • Canaple L, Rambaud J, Dkhissi-Benyahya O, et al. Reciprocal regulation of brain and muscle Arnt-like protein 1 and peroxisome proliferator-activated receptor alpha defines a novel positive feedback loop in the rodent liver circadian clock. Mol Endocrinol 2006; 20: 1715-27.
    • (2006) Mol Endocrinol , vol.20 , pp. 1715-1727
    • Canaple, L.1    Rambaud, J.2    Dkhissi-Benyahya, O.3
  • 179
    • 76749139528 scopus 로고    scopus 로고
    • The mammalian clock component PERIOD2 coordinates circadian output by interaction with nuclear receptors
    • Schmutz I, Ripperger JA, Baeriswyl-Aebischer S, Albrecht U. The mammalian clock component PERIOD2 coordinates circadian output by interaction with nuclear receptors. Genes Dev 2010; 24: 345-57.
    • (2010) Genes Dev , vol.24 , pp. 345-357
    • Schmutz, I.1    Ripperger, J.A.2    Baeriswyl-Aebischer, S.3    Albrecht, U.4
  • 180
    • 76449100708 scopus 로고    scopus 로고
    • PPARs: Diverse regulators in energy metabolism and metabolic diseases
    • Wang Y-X. PPARs: diverse regulators in energy metabolism and metabolic diseases. Cell Res 2010; 20: 124-37.
    • (2010) Cell Res , vol.20 , pp. 124-137
    • Wang, Y.-X.1
  • 181
    • 84896289942 scopus 로고    scopus 로고
    • PPARs Integrate the Mammalian Clock and Energy Metabolism
    • Chen L, Yang G. PPARs Integrate the Mammalian Clock and Energy Metabolism. PPAR Res 2014; 2014: 653017.
    • (2014) PPAR Res , vol.2014 , pp. 653017
    • Chen, L.1    Yang, G.2
  • 182
    • 34447321069 scopus 로고    scopus 로고
    • Roles of PPARs on regulating myocardial energy and lipid homeostasis
    • Yang Q, Li Y. Roles of PPARs on regulating myocardial energy and lipid homeostasis. J Mol Med (Berl) 2007; 85: 697-706.
    • (2007) J Mol Med (Berl) , vol.85 , pp. 697-706
    • Yang, Q.1    Li, Y.2
  • 183
    • 84949115392 scopus 로고    scopus 로고
    • Circadian rhythms, Wnt/beta-catenin pathway and PPAR alpha/gamma profiles in diseases with primary or secondary cardiac dysfunction
    • Lecarpentier Y, Claes V, Duthoit G, Hébert J-L. Circadian rhythms, Wnt/beta-catenin pathway and PPAR alpha/gamma profiles in diseases with primary or secondary cardiac dysfunction. Front Physiol 2014; 5.
    • (2014) Front Physiol , pp. 5
    • Lecarpentier, Y.1    Claes, V.2    Duthoit, G.3    Hãbert, J.-L.4
  • 184
    • 84870553909 scopus 로고    scopus 로고
    • Circadian oscillations of protein-coding and regulatory RNAs in a highly dynamic mammalian liver epigenome
    • Vollmers C, Schmitz RJ, Nathanson J, Yeo G, Ecker JR, Panda S. Circadian oscillations of protein-coding and regulatory RNAs in a highly dynamic mammalian liver epigenome. Cell Metab 2012; 16: 833-45.
    • (2012) Cell Metab , vol.16 , pp. 833-845
    • Vollmers, C.1    Schmitz, R.J.2    Nathanson, J.3    Yeo, G.4    Ecker, J.R.5    Panda, S.6
  • 185
    • 33646145721 scopus 로고    scopus 로고
    • Circadian regulator CLOCK is a histone acetyltransferase
    • Doi M, Hirayama J, Sassone-Corsi P. Circadian regulator CLOCK is a histone acetyltransferase. Cell 2006; 125: 497-508.
    • (2006) Cell , vol.125 , pp. 497-508
    • Doi, M.1    Hirayama, J.2    Sassone-Corsi, P.3
  • 186
    • 37249053976 scopus 로고    scopus 로고
    • CLOCK-mediated acetylation of BMAL1 controls circadian function
    • Hirayama J, Sahar S, Grimaldi B, et al. CLOCK-mediated acetylation of BMAL1 controls circadian function. Nature 2007; 450: 1086-90.
    • (2007) Nature , vol.450 , pp. 1086-1090
    • Hirayama, J.1    Sahar, S.2    Grimaldi, B.3
  • 188
    • 47549088250 scopus 로고    scopus 로고
    • The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control
    • Nakahata Y, Kaluzova M, Grimaldi B, et al. The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control. Cell 2008; 134: 329-40.
    • (2008) Cell , vol.134 , pp. 329-340
    • Nakahata, Y.1    Kaluzova, M.2    Grimaldi, B.3
  • 192
    • 84890015150 scopus 로고    scopus 로고
    • Circadian clock proteins regulate neuronal redox homeostasis and neurodegeneration
    • Musiek ES, Lim MM, Yang G, et al. Circadian clock proteins regulate neuronal redox homeostasis and neurodegeneration. J Clin Invest 2013; 123: 5389-400.
    • (2013) J Clin Invest , vol.123 , pp. 5389-5400
    • Musiek, E.S.1    Lim, M.M.2    Yang, G.3
  • 193
    • 84930952587 scopus 로고    scopus 로고
    • Circadian Redox and Metabolic Oscillations in Mammalian Systems
    • O’Neill JS, Feeney K. Circadian Redox and Metabolic Oscillations in Mammalian Systems. Antioxid Redox Signal 2013; 00.
    • (2013) Antioxid Redox Signal , pp. 00
    • O’Neill, J.S.1    Feeney, K.2
  • 194
    • 84884170817 scopus 로고    scopus 로고
    • Regulation of circadian clocks by redox homeostasis
    • Stangherlin A, Reddy AB. Regulation of circadian clocks by redox homeostasis. J Biol Chem 2013; 288: 26505-11.
    • (2013) J Biol Chem , vol.288 , pp. 26505-26511
    • Stangherlin, A.1    Reddy, A.B.2
  • 195
    • 84879183900 scopus 로고    scopus 로고
    • Circadian rhythm connections to oxidative stress: Implications for human health
    • Wilking M, Ndiaye M, Mukhtar H, Ahmad N. Circadian rhythm connections to oxidative stress: implications for human health. Antioxid Redox Signal 2013; 19: 192-208.
    • (2013) Antioxid Redox Signal , vol.19 , pp. 192-208
    • Wilking, M.1    Ndiaye, M.2    Mukhtar, H.3    Ahmad, N.4
  • 196
  • 197
    • 0141876062 scopus 로고    scopus 로고
    • Circadian rhythms, oxidative stress, and antioxidative defense mechanisms
    • Hardeland R, Coto-Montes A, Poeggeler B. Circadian rhythms, oxidative stress, and antioxidative defense mechanisms. Chronobiol Int 2003; 20: 921-62.
    • (2003) Chronobiol Int , vol.20 , pp. 921-962
    • Hardeland, R.1    Coto-Montes, A.2    Poeggeler, B.3
  • 198
    • 84930952587 scopus 로고    scopus 로고
    • Circadian redox and metabolic oscillations in mammalian systems
    • O’Neill JS, Feeney KA. Circadian redox and metabolic oscillations in mammalian systems. Antioxid Redox Signal 2013; 1: 1-61.
    • (2013) Antioxid Redox Signal , vol.1 , pp. 1-61
    • O’Neill, J.S.1    Feeney, K.A.2
  • 199
  • 200
    • 0035919479 scopus 로고    scopus 로고
    • Regulation of clock and NPAS2 DNA binding by the redox state of NAD cofactors
    • Rutter J, Reick M, Wu LC, McKnight SL. Regulation of clock and NPAS2 DNA binding by the redox state of NAD cofactors. Science 2001; 293: 510-4.
    • (2001) Science , vol.293 , pp. 510-514
    • Rutter, J.1    Reick, M.2    Wu, L.C.3    McKnight, S.L.4
  • 201
    • 84901262708 scopus 로고    scopus 로고
    • Peroxiredoxin 2 nuclear levels are regulated by circadian clock synchronization in human keratinocytes
    • Avitabile D, Ranieri D, Nicolussi A, et al. Peroxiredoxin 2 nuclear levels are regulated by circadian clock synchronization in human keratinocytes. Int J Biochem Cell Biol 2014.
    • (2014) Int J Biochem Cell Biol
    • Avitabile, D.1    Ranieri, D.2    Nicolussi, A.3
  • 202
    • 79957938567 scopus 로고    scopus 로고
    • Peroxiredoxin 2 in the nucleus and cytoplasm distinctly regulates androgen receptor activity in prostate cancer cells
    • Shiota M, Yokomizo A, Kashiwagi E, et al. Peroxiredoxin 2 in the nucleus and cytoplasm distinctly regulates androgen receptor activity in prostate cancer cells. Free Radic Biol Med 2011; 51: 78-87.
    • (2011) Free Radic Biol Med , vol.51 , pp. 78-87
    • Shiota, M.1    Yokomizo, A.2    Kashiwagi, E.3
  • 203
    • 84930944459 scopus 로고    scopus 로고
    • Nuclear redox imbalance affects circadian oscillation in HaCaT keratinocytes
    • Ranieri D, Avitabile D, Shiota M, et al. Nuclear redox imbalance affects circadian oscillation in HaCaT keratinocytes. Int J Biochem Cell Biol 2015; 65: 113-24.
    • (2015) Int J Biochem Cell Biol , vol.65 , pp. 113-124
    • Ranieri, D.1    Avitabile, D.2    Shiota, M.3
  • 204
    • 77956197958 scopus 로고    scopus 로고
    • MicroRNA-122 modulates the rhythmic expression profile of the circadian deadenylase Nocturnin in mouse liver
    • Kojima S, Gatfield D, Esau CC, Green CB. MicroRNA-122 modulates the rhythmic expression profile of the circadian deadenylase Nocturnin in mouse liver. PLoS One 2010; 5.
    • (2010) PLoS One , pp. 5
    • Kojima, S.1    Gatfield, D.2    Esau, C.C.3    Green, C.B.4
  • 205
    • 78751686549 scopus 로고    scopus 로고
    • miRNA-132 orchestrates chromatin remodeling and translational control of the circadian clock
    • Alvarez-Saavedra M, Antoun G, Yanagiya A, et al. miRNA-132 orchestrates chromatin remodeling and translational control of the circadian clock. Hum Mol Genet 2011; 20: 731-51.
    • (2011) Hum Mol Genet , vol.20 , pp. 731-751
    • Alvarez-Saavedra, M.1    Antoun, G.2    Yanagiya, A.3
  • 206
    • 38149102267 scopus 로고    scopus 로고
    • Revealing a role of microRNAs in the regulation of the biological clock
    • Cheng HYM, Obrietan K. Revealing a role of microRNAs in the regulation of the biological clock. Cell Cycle 2007; 6: 3034-8.
    • (2007) Cell Cycle , vol.6 , pp. 3034-3038
    • Cheng, H.Y.M.1    Obrietan, K.2
  • 207
    • 78149416322 scopus 로고    scopus 로고
    • MicroRNA mir-16 is anti-proliferative in enterocytes and exhibits diurnal rhythmicity in intestinal crypts
    • Balakrishnan A, Stearns AT, Park PJ, et al. MicroRNA mir-16 is anti-proliferative in enterocytes and exhibits diurnal rhythmicity in intestinal crypts. Exp Cell Res 2010; 316: 3512-21.
    • (2010) Exp Cell Res , vol.316 , pp. 3512-3521
    • Balakrishnan, A.1    Stearns, A.T.2    Park, P.J.3
  • 208
    • 84863694435 scopus 로고    scopus 로고
    • Posttranscriptional Upregulation by MicroRNAs
    • Vasudevan S. Posttranscriptional Upregulation by MicroRNAs. Wiley Interdiscip Rev RNA 2012; 3: 311-30.
    • (2012) Wiley Interdiscip Rev RNA , vol.3 , pp. 311-330
    • Vasudevan, S.1
  • 209
    • 58249088751 scopus 로고    scopus 로고
    • MicroRNAs: Target recognition and regulatory functions
    • Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell 2009; 136: 215-33.
    • (2009) Cell , vol.136 , pp. 215-233
    • Bartel, D.P.1
  • 210
    • 78751477191 scopus 로고    scopus 로고
    • Gene silencing by microRNAs: Contributions of translational repression and mRNA decay
    • Huntzinger E, Izaurralde E. Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nat Rev Genet 2011; 12: 99-110.
    • (2011) Nat Rev Genet , vol.12 , pp. 99-110
    • Huntzinger, E.1    Izaurralde, E.2
  • 211
    • 61849137222 scopus 로고    scopus 로고
    • Many roads to maturity: MicroRNA biogenesis pathways and their regulation
    • Winter J, Jung S, Keller S, Gregory RI, Diederichs S. Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat Cell Biol 2009; 11: 228-34.
    • (2009) Nat Cell Biol , vol.11 , pp. 228-234
    • Winter, J.1    Jung, S.2    Keller, S.3    Gregory, R.I.4    Diederichs, S.5
  • 212
    • 80053489232 scopus 로고    scopus 로고
    • MicroRNAs: A potential interface between the circadian clock and human health
    • Hansen KF, Sakamoto K, Obrietan K. MicroRNAs: a potential interface between the circadian clock and human health. Genome Med 2011; 3: 10.
    • (2011) Genome Med , vol.3 , pp. 10
    • Hansen, K.F.1    Sakamoto, K.2    Obrietan, K.3
  • 213
    • 70349093118 scopus 로고    scopus 로고
    • A role for microRNAs in the Drosophila circadian clock
    • Kadener S, Menet JS, Sugino K, et al. A role for microRNAs in the Drosophila circadian clock. Genes Dev 2009; 23: 2179-91.
    • (2009) Genes Dev , vol.23 , pp. 2179-2191
    • Kadener, S.1    Menet, J.S.2    Sugino, K.3
  • 214
    • 34249713720 scopus 로고    scopus 로고
    • microRNA modulation of circadian-clock period and entrainment
    • Cheng H-YM, Papp JW, Varlamova O, et al. microRNA modulation of circadian-clock period and entrainment. Neuron 2007; 54: 813-29.
    • (2007) Neuron , vol.54 , pp. 813-829
    • Cheng, H.-Y.M.1    Papp, J.W.2    Varlamova, O.3
  • 215
    • 66149167562 scopus 로고    scopus 로고
    • Integration of microRNA miR-122 in hepatic circadian gene expression
    • Gatfield D, Le Martelot G, Vejnar CE, et al. Integration of microRNA miR-122 in hepatic circadian gene expression. Genes Dev 2009; 23: 1313-26.
    • (2009) Genes Dev , vol.23 , pp. 1313-1326
    • Gatfield, D.1    Le Martelot, G.2    Vejnar, C.E.3
  • 216
    • 33645075443 scopus 로고    scopus 로고
    • miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting
    • Esau C, Davis S, Murray SF, et al. miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab 2006; 3: 87-98.
    • (2006) Cell Metab , vol.3 , pp. 87-98
    • Esau, C.1    Davis, S.2    Murray, S.F.3
  • 217
    • 40249106014 scopus 로고    scopus 로고
    • Antagonism of microRNA-122 in mice by systemically administered LNAantimiR leads to up-regulation of a large set of predicted target mRNAs in the liver
    • Elmén J, Lindow M, Silahtaroglu A, et al. Antagonism of microRNA-122 in mice by systemically administered LNAantimiR leads to up-regulation of a large set of predicted target mRNAs in the liver. Nucleic Acids Res 2008; 36: 1153-62.
    • (2008) Nucleic Acids Res , vol.36 , pp. 1153-1162
    • Elmén, J.1    Lindow, M.2    Silahtaroglu, A.3
  • 218
    • 83055184184 scopus 로고    scopus 로고
    • The circadian molecular clock creates epidermal stem cell heterogeneity
    • Janich P, Pascual G, Merlos-Suárez A, et al. The circadian molecular clock creates epidermal stem cell heterogeneity. Nature 2011; 480: 209-14.
    • (2011) Nature , vol.480 , pp. 209-214
    • Janich, P.1    Pascual, G.2    Merlos-Suárez, A.3
  • 219
    • 68949169031 scopus 로고    scopus 로고
    • MicroRNA-23b cluster microRNAs regulate transforming growth factor-beta/bone morphogenetic protein signaling and liver stem cell differentiation by targeting Smads
    • Rogler CE, LeVoci L, Ader T, et al. MicroRNA-23b cluster microRNAs regulate transforming growth factor-beta/bone morphogenetic protein signaling and liver stem cell differentiation by targeting Smads. Hepatology 2009; 50: 575-84.
    • (2009) Hepatology , vol.50 , pp. 575-584
    • Rogler, C.E.1    LeVoci, L.2    Ader, T.3
  • 220
    • 84964694333 scopus 로고    scopus 로고
    • A long noncoding RNA perturbs the circadian rhythm of hepatoma cells to facilitate hepatocarcinogenesis
    • Cui M, Zheng M, Sun B, Wang Y, Ye L, Zhang X. A long noncoding RNA perturbs the circadian rhythm of hepatoma cells to facilitate hepatocarcinogenesis. Neoplasia 2015; 17: 79-88.
    • (2015) Neoplasia , vol.17 , pp. 79-88
    • Cui, M.1    Zheng, M.2    Sun, B.3    Wang, Y.4    Ye, L.5    Zhang, X.6
  • 221
    • 67649933366 scopus 로고    scopus 로고
    • Eukaryotic snoRNAs: A paradigm for gene expression flexibility
    • Dieci G, Preti M, Montanini B. Eukaryotic snoRNAs: a paradigm for gene expression flexibility. Genomics 2009; 94: 83-8.
    • (2009) Genomics , vol.94 , pp. 83-88
    • Dieci, G.1    Preti, M.2    Montanini, B.3
  • 222
    • 62349089764 scopus 로고    scopus 로고
    • Exploring the transcriptional landscape of plant circadian rhythms using genome tiling arrays
    • Hazen SP, Naef F, Quisel T, et al. Exploring the transcriptional landscape of plant circadian rhythms using genome tiling arrays. Genome Biol 2009; 10: R17.
    • (2009) Genome Biol , vol.10 , pp. R17
    • Hazen, S.P.1    Naef, F.2    Quisel, T.3
  • 223
    • 84861441546 scopus 로고    scopus 로고
    • Deep sequencing the circadian and diurnal transcriptome of Drosophila brain
    • Hughes ME, Grant GR, Paquin C, Qian J, Nitabach MN. Deep sequencing the circadian and diurnal transcriptome of Drosophila brain. Genome Res 2012; 22: 1266-81.
    • (2012) Genome Res , vol.22 , pp. 1266-1281
    • Hughes, M.E.1    Grant, G.R.2    Paquin, C.3    Qian, J.4    Nitabach, M.N.5
  • 225
    • 0034098476 scopus 로고    scopus 로고
    • Large-scale cDNA analysis reveals phased gene expression patterns during preimplantation mouse development
    • Ko MS, Kitchen JR, Wang X, et al. Large-scale cDNA analysis reveals phased gene expression patterns during preimplantation mouse development. Development 2000; 127: 1737-49.
    • (2000) Development , vol.127 , pp. 1737-1749
    • Ko, M.S.1    Kitchen, J.R.2    Wang, X.3
  • 226
    • 0035853525 scopus 로고    scopus 로고
    • Molecular mechanisms of the biological clock in cultured fibroblasts
    • Yagita K, Tamanini F, van Der Horst GT, Okamura H. Molecular mechanisms of the biological clock in cultured fibroblasts. Science 2001; 292: 278-81.
    • (2001) Science , vol.292 , pp. 278-281
    • Yagita, K.1    Tamanini, F.2    van Der Horst, G.T.3    Okamura, H.4
  • 227
    • 79951973328 scopus 로고    scopus 로고
    • An unexpected role for the clock protein timeless in developmental apoptosis
    • O’Reilly LP, Watkins SC, Smithgall TE. An unexpected role for the clock protein timeless in developmental apoptosis. PLoS One 2011; 6: e17157.
    • (2011) PLoS One , vol.6 , pp. e17157
    • O’Reilly, L.P.1    Watkins, S.C.2    Smithgall, T.E.3
  • 228
    • 77649244048 scopus 로고    scopus 로고
    • Development of the circadian oscillator during differentiation of mouse embryonic stem cells in vitro
    • Yagita K, Horie K, Koinuma S, et al. Development of the circadian oscillator during differentiation of mouse embryonic stem cells in vitro. Proc Natl Acad Sci USA 2010; 107: 3846-51.
    • (2010) Proc Natl Acad Sci USA , vol.107 , pp. 3846-3851
    • Yagita, K.1    Horie, K.2    Koinuma, S.3
  • 229
    • 84926326956 scopus 로고    scopus 로고
    • Development of circadian oscillators in neurosphere cultures during adult neurogenesis
    • Malik A, Jamasbi RJ, Kondratov RV, Geusz ME. Development of circadian oscillators in neurosphere cultures during adult neurogenesis. PLoS One 2015; 10: e0122937.
    • (2015) PLoS One , vol.10 , pp. e0122937
    • Malik, A.1    Jamasbi, R.J.2    Kondratov, R.V.3    Geusz, M.E.4
  • 230
    • 84912569226 scopus 로고    scopus 로고
    • Transcriptional program of Kpna2/Importin-α2 regulates cellular differentiationcoupled circadian clock development in mammalian cells
    • Umemura Y, Koike N, Matsumoto T, et al. Transcriptional program of Kpna2/Importin-α2 regulates cellular differentiationcoupled circadian clock development in mammalian cells. Proc Natl Acad Sci USA 2014; 111: E5039-48.
    • (2014) Proc Natl Acad Sci USA , vol.111 , pp. E5039-E5048
    • Umemura, Y.1    Koike, N.2    Matsumoto, T.3
  • 231
  • 232
    • 84904070917 scopus 로고    scopus 로고
    • Circadian control of tissue homeostasis and adult stem cells
    • Janich P, Meng Q-J, Benitah SA. Circadian control of tissue homeostasis and adult stem cells. Curr Opin Cell Biol 2014; 31C: 8-15.
    • (2014) Curr Opin Cell Biol , vol.31 C , pp. 8-15
    • Janich, P.1    Meng, Q.-J.2    Benitah, S.A.3
  • 233
    • 84878726282 scopus 로고    scopus 로고
    • Local circadian clock gates cell cycle progression of transient amplifying cells during regenerative hair cycling
    • Plikus MV, Vollmers C, de la Cruz D, et al. Local circadian clock gates cell cycle progression of transient amplifying cells during regenerative hair cycling. Proc Natl Acad Sci USA 2013; 110: E2106-15.
    • (2013) Proc Natl Acad Sci USA , vol.110 , pp. E2106-E2115
    • Plikus, M.V.1    Vollmers, C.2    de la Cruz, D.3
  • 234
    • 84890125390 scopus 로고    scopus 로고
    • Human epidermal stem cell function is regulated by circadian oscillations
    • Janich P, Toufighi K, Solanas G, et al. Human epidermal stem cell function is regulated by circadian oscillations. Cell Stem Cell 2013; 13: 745-53.
    • (2013) Cell Stem Cell , vol.13 , pp. 745-753
    • Janich, P.1    Toufighi, K.2    Solanas, G.3
  • 235
    • 84863572695 scopus 로고    scopus 로고
    • Krüppel-like factor 9 is a circadian transcription factor in human epidermis that controls proliferation of keratinocytes
    • Spörl F, Korge S, Jürchott K, et al. Krüppel-like factor 9 is a circadian transcription factor in human epidermis that controls proliferation of keratinocytes. Proc Natl Acad Sci USA 2012; 109: 10903-8.
    • (2012) Proc Natl Acad Sci USA , vol.109 , pp. 10903-10908
    • Spörl, F.1    Korge, S.2    Jürchott, K.3
  • 236
    • 0035004799 scopus 로고    scopus 로고
    • Circadian expression of clock genes in human oral mucosa and skin: Association with specific cell-cycle phases
    • Bjarnason GA, Jordan RC, Wood PA, et al. Circadian expression of clock genes in human oral mucosa and skin: association with specific cell-cycle phases. Am J Pathol 2001; 158: 1793-801.
    • (2001) Am J Pathol , vol.158 , pp. 1793-1801
    • Bjarnason, G.A.1    Jordan, R.C.2    Wood, P.A.3
  • 237
    • 84863895758 scopus 로고    scopus 로고
    • Brain and muscle Arnt-like protein-1 (BMAL1) controls circadian cell proliferation and susceptibility to UVB-induced DNA damage in the epidermis
    • Andersen B, Kumar V, Liu Q, et al. Brain and muscle Arnt-like protein-1 (BMAL1) controls circadian cell proliferation and susceptibility to UVB-induced DNA damage in the epidermis. Proc Natl Acad Sci 2012; 109: 11758-63.
    • (2012) Proc Natl Acad Sci , vol.109 , pp. 11758-11763
    • Andersen, B.1    Kumar, V.2    Liu, Q.3
  • 238
    • 84866753021 scopus 로고    scopus 로고
    • Effect of circadian clock mutations on DNA damage response in mammalian cells
    • Gaddameedhi S, Reardon JT, Ye R, Ozturk N, Sancar A. Effect of circadian clock mutations on DNA damage response in mammalian cells. Cell Cycle 2012; 11: 3481-91.
    • (2012) Cell Cycle , vol.11 , pp. 3481-3491
    • Gaddameedhi, S.1    Reardon, J.T.2    Ye, R.3    Ozturk, N.4    Sancar, A.5
  • 241
    • 83055184184 scopus 로고    scopus 로고
    • The circadian molecular clock creates epidermal stem cell heterogeneity
    • Janich P, Pascual G, Merlos-Suarez A, et al. The circadian molecular clock creates epidermal stem cell heterogeneity. Nature 2011; 480: 209-14.
    • (2011) Nature , vol.480 , pp. 209-214
    • Janich, P.1    Pascual, G.2    Merlos-Suarez, A.3
  • 242
    • 0141889955 scopus 로고    scopus 로고
    • Control mechanism of the circadian clock for timing of cell division in vivo
    • Matsuo T, Yamaguchi S, Mitsui S, Emi A, Shimoda F, Okamura H. Control mechanism of the circadian clock for timing of cell division in vivo. Science 2003; 302: 255-9.
    • (2003) Science , vol.302 , pp. 255-259
    • Matsuo, T.1    Yamaguchi, S.2    Mitsui, S.3    Emi, A.4    Shimoda, F.5    Okamura, H.6
  • 243
    • 84876966547 scopus 로고    scopus 로고
    • The circadian clock gates the intestinal stem cell regenerative state
    • Karpowicz P, Zhang Y, Hogenesch JB, Emery P, Perrimon N. The circadian clock gates the intestinal stem cell regenerative state. Cell Rep 2013; 3: 996-1004.
    • (2013) Cell Rep , vol.3 , pp. 996-1004
    • Karpowicz, P.1    Zhang, Y.2    Hogenesch, J.B.3    Emery, P.4    Perrimon, N.5
  • 244
    • 84888436613 scopus 로고    scopus 로고
    • The circadian molecular clock regulates adult hippocampal neurogenesis by controlling the timing of cell-cycle entry and exit
    • Bouchard-Cannon P, Mendoza-Viveros L, Yuen A, Kærn M, Cheng H-YM. The circadian molecular clock regulates adult hippocampal neurogenesis by controlling the timing of cell-cycle entry and exit. Cell Rep 2013; 5: 961-73.
    • (2013) Cell Rep , vol.5 , pp. 961-973
    • Bouchard-Cannon, P.1    Mendoza-Viveros, L.2    Yuen, A.3    Kærn, M.4    Cheng, H.-Y.M.5
  • 245
    • 84862828852 scopus 로고    scopus 로고
    • Smad3 and Snail show circadian expression in human gingival fibroblasts, human mesenchymal stem cell, and in mouse liver
    • Sato F, Sato H, Jin D, et al. Smad3 and Snail show circadian expression in human gingival fibroblasts, human mesenchymal stem cell, and in mouse liver. Biochem Biophys Res Commun 2012; 419: 441-6.
    • (2012) Biochem Biophys Res Commun , vol.419 , pp. 441-446
    • Sato, F.1    Sato, H.2    Jin, D.3
  • 247
    • 78650501389 scopus 로고    scopus 로고
    • CLOCK and BMAL1 regulate MyoD and are necessary for maintenance of skeletal muscle phenotype and function
    • Andrews JL, Zhang X, McCarthy JJ, et al. CLOCK and BMAL1 regulate MyoD and are necessary for maintenance of skeletal muscle phenotype and function. Proc Natl Acad Sci USA 2010; 107: 19090-5.
    • (2010) Proc Natl Acad Sci USA , vol.107 , pp. 19090-19095
    • Andrews, J.L.1    Zhang, X.2    McCarthy, J.J.3
  • 248
    • 84879864816 scopus 로고    scopus 로고
    • Brain and muscle Arnt-like 1 is a key regulator of myogenesis
    • Chatterjee S, Nam D, Guo B, et al. Brain and muscle Arnt-like 1 is a key regulator of myogenesis. J Cell Sci 2013; 126: 2213-24.
    • (2013) J Cell Sci , vol.126 , pp. 2213-2224
    • Chatterjee, S.1    Nam, D.2    Guo, B.3
  • 249
    • 39749164920 scopus 로고    scopus 로고
    • Haematopoietic stem cell release is regulated by circadian oscillations
    • Méndez-Ferrer S, Lucas D, Battista M, Frenette PS. Haematopoietic stem cell release is regulated by circadian oscillations. Nature 2008; 452: 442-7.
    • (2008) Nature , vol.452 , pp. 442-447
    • Méndez-Ferrer, S.1    Lucas, D.2    Battista, M.3    Frenette, P.S.4
  • 250
    • 52949116088 scopus 로고    scopus 로고
    • Mobilized Hematopoietic Stem Cell Yield Depends on Species-Specific Circadian Timing
    • Lucas D, Battista M, Shi PA, Isola L, Frenette PS. Mobilized Hematopoietic Stem Cell Yield Depends on Species-Specific Circadian Timing. Cell Stem Cell 2008; 3: 364-6.
    • (2008) Cell Stem Cell , vol.3 , pp. 364-366
    • Lucas, D.1    Battista, M.2    Shi, P.A.3    Isola, L.4    Frenette, P.S.5
  • 251
    • 84875861460 scopus 로고    scopus 로고
    • GSK3α regulates physiological migration of stem/progenitor cells via cytoskeletal rearrangement
    • Lapid K, Itkin T, D’Uva G, et al. GSK3α regulates physiological migration of stem/progenitor cells via cytoskeletal rearrangement. J Clin Invest 2013; 123: 1705-17.
    • (2013) J Clin Invest , vol.123 , pp. 1705-1717
    • Lapid, K.1    Itkin, T.2    D’Uva, G.3
  • 252
    • 84947950879 scopus 로고    scopus 로고
    • Circadian and circannual variations in cord blood hematopoietic cell composition
    • Servais S, Baudoux E, Brichard B, et al. Circadian and circannual variations in cord blood hematopoietic cell composition. Haematologica 2014.
    • (2014) Haematologica
    • Servais, S.1    Baudoux, E.2    Brichard, B.3
  • 253
    • 84887275003 scopus 로고    scopus 로고
    • TH17 Cell Differentiation Is Regulated by the Circadian Clock
    • Yu X, Rollins D, Ruhn KA, et al. TH17 Cell Differentiation Is Regulated by the Circadian Clock. Science (80-) 2013; 342: 727-30.
    • (2013) Science (80-) , vol.342 , pp. 727-730
    • Yu, X.1    Rollins, D.2    Ruhn, K.A.3
  • 255
    • 84857388082 scopus 로고    scopus 로고
    • The circadian clock controls toll-like receptor 9-mediated innate and adaptive immunity
    • Silver AC, Arjona A, Walker WE, Fikrig E. The circadian clock controls toll-like receptor 9-mediated innate and adaptive immunity. Immunity 2012; 36: 251-61.
    • (2012) Immunity , vol.36 , pp. 251-261
    • Silver, A.C.1    Arjona, A.2    Walker, W.E.3    Fikrig, E.4
  • 256
    • 78650657344 scopus 로고    scopus 로고
    • Dysregulation of inflammatory responses by chronic circadian disruption
    • Castanon-Cervantes O, Wu M, Ehlen JC, et al. Dysregulation of inflammatory responses by chronic circadian disruption. J Immunol 2010; 185: 5796-805.
    • (2010) J Immunol , vol.185 , pp. 5796-5805
    • Castanon-Cervantes, O.1    Wu, M.2    Ehlen, J.C.3
  • 257
    • 84905727517 scopus 로고    scopus 로고
    • An epithelial circadian clock controls pulmonary inflammation and glucocorticoid action
    • Gibbs J, Ince L, Matthews L, et al. An epithelial circadian clock controls pulmonary inflammation and glucocorticoid action. Nat Med 2014; 20: 919-26.
    • (2014) Nat Med , vol.20 , pp. 919-926
    • Gibbs, J.1    Ince, L.2    Matthews, L.3
  • 258
    • 84963993295 scopus 로고    scopus 로고
    • IgEdependent activation of human mast cells and fMLP-mediated activation of human eosinophils is controlled by the circadian clock
    • Baumann A, Feilhauer K, Bischoff SC, Froy O, Lorentz A. IgEdependent activation of human mast cells and fMLP-mediated activation of human eosinophils is controlled by the circadian clock. Mol Immunol 2014.
    • (2014) Mol Immunol
    • Baumann, A.1    Feilhauer, K.2    Bischoff, S.C.3    Froy, O.4    Lorentz, A.5
  • 259
    • 84891081290 scopus 로고    scopus 로고
    • A circadian clock gene, Reverb α, modulates the inflammatory function of macrophages through the negative regulation of Ccl2 expression
    • Sato S, Sakurai T, Ogasawara J, et al. A circadian clock gene, Reverb α, modulates the inflammatory function of macrophages through the negative regulation of Ccl2 expression. J Immunol 2014; 192: 407-17.
    • (2014) J Immunol , vol.192 , pp. 407-417
    • Sato, S.1    Sakurai, T.2    Ogasawara, J.3
  • 260
    • 84885845476 scopus 로고    scopus 로고
    • Impaired cholesterol metabolism and enhanced atherosclerosis in clock Mutant Mice
    • Pan X, Jiang XC, Hussain MM. Impaired cholesterol metabolism and enhanced atherosclerosis in clock Mutant Mice. Circulation 2013; 128: 1758-69.
    • (2013) Circulation , vol.128 , pp. 1758-1769
    • Pan, X.1    Jiang, X.C.2    Hussain, M.M.3
  • 261
    • 0034730493 scopus 로고    scopus 로고
    • Resetting of circadian time in peripheral tissues by glucocorticoid signaling
    • Balsalobre A, Brown SA, Marcacci L, et al. Resetting of circadian time in peripheral tissues by glucocorticoid signaling. Science 2000; 289: 2344-7.
    • (2000) Science , vol.289 , pp. 2344-2347
    • Balsalobre, A.1    Brown, S.A.2    Marcacci, L.3
  • 262
    • 0034687223 scopus 로고    scopus 로고
    • Multiple signaling pathways elicit circadian gene expression in cultured Rat-1 fibroblasts
    • Balsalobre A, Marcacci L, Schibler U. Multiple signaling pathways elicit circadian gene expression in cultured Rat-1 fibroblasts. Curr Biol 2000; 10: 1291-4.
    • (2000) Curr Biol , vol.10 , pp. 1291-1294
    • Balsalobre, A.1    Marcacci, L.2    Schibler, U.3
  • 263
    • 84863230433 scopus 로고    scopus 로고
    • Lithium impacts on the amplitude and period of the molecular circadian clockwork
    • Li J, Lu W-Q, Beesley S, Loudon ASI, Meng Q-J. Lithium impacts on the amplitude and period of the molecular circadian clockwork. PLoS One 2012; 7: e33292.
    • (2012) PLoS One , vol.7 , pp. e33292
    • Li, J.1    Lu, W.-Q.2    Beesley, S.3    Loudon, A.S.I.4    Meng, Q.-J.5
  • 264
    • 84865558040 scopus 로고    scopus 로고
    • Identification of small molecule activators of cryptochrome
    • Hirota T, Lee JW, St John PC, et al. Identification of small molecule activators of cryptochrome. Science 2012; 337: 1094-7.
    • (2012) Science , vol.337 , pp. 1094-1097
    • Hirota, T.1    Lee, J.W.2    St John, P.C.3
  • 265
    • 0036405341 scopus 로고    scopus 로고
    • Temperature effect on entrainment, phase shifting, and amplitude of circadian clocks and its molecular bases
    • Rensing L, Ruoff P. Temperature effect on entrainment, phase shifting, and amplitude of circadian clocks and its molecular bases. Chronobiol Int 2002; 19: 807-64.
    • (2002) Chronobiol Int , vol.19 , pp. 807-864
    • Rensing, L.1    Ruoff, P.2
  • 266
    • 54949092479 scopus 로고    scopus 로고
    • Controlling osteogenesis and adipogenesis of mesenchymal stromal cells by regulating a circadian clock protein with laser irradiation
    • Kushibiki T, Awazu K. Controlling osteogenesis and adipogenesis of mesenchymal stromal cells by regulating a circadian clock protein with laser irradiation. Int J Med Sci 2008; 5: 319-26.
    • (2008) Int J Med Sci , vol.5 , pp. 319-326
    • Kushibiki, T.1    Awazu, K.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.