-
1
-
-
18144423534
-
Structural basis for fibroblast growth factor receptor activation
-
Mohammadi M, Olsen SK, Ibrahimi OA. Structural basis for fibroblast growth factor receptor activation. Cytokine Growth Factor Rev (2005) 16:107-37. doi:10.1016/j.cytogfr.2005.01.008
-
(2005)
Cytokine Growth Factor Rev
, vol.16
, pp. 107-137
-
-
Mohammadi, M.1
Olsen, S.K.2
Ibrahimi, O.A.3
-
2
-
-
61649100307
-
The FGF family: biology, pathophysiology and therapy
-
Beenken A, Mohammadi M. The FGF family: biology, pathophysiology and therapy. Nat Rev Drug Discov (2009) 8:235-53. doi:10.1038/nrd2792
-
(2009)
Nat Rev Drug Discov
, vol.8
, pp. 235-253
-
-
Beenken, A.1
Mohammadi, M.2
-
3
-
-
84861047531
-
A PPARγ-FGF1 axis is required for adaptive adipose remodelling and metabolic homeostasis
-
Jonker JW, Suh JM, Atkins AR, Ahmadian M, Li P, Whyte J, et al. A PPARγ-FGF1 axis is required for adaptive adipose remodelling and metabolic homeostasis. Nature (2012) 485:391-4. doi:10.1038/nature10998
-
(2012)
Nature
, vol.485
, pp. 391-394
-
-
Jonker, J.W.1
Suh, J.M.2
Atkins, A.R.3
Ahmadian, M.4
Li, P.5
Whyte, J.6
-
4
-
-
20444435873
-
FGF-21 as a novel metabolic regulator
-
Kharitonenkov A, Shiyanova TL, Koester A, Ford AM, Micanovic R, Galbreath EJ, et al. FGF-21 as a novel metabolic regulator. J Clin Invest (2005) 115:1627-35. doi:10.1172/JCI23606
-
(2005)
J Clin Invest
, vol.115
, pp. 1627-1635
-
-
Kharitonenkov, A.1
Shiyanova, T.L.2
Koester, A.3
Ford, A.M.4
Micanovic, R.5
Galbreath, E.J.6
-
5
-
-
18344394556
-
Transgenic mice expressing human fibroblast growth factor-19 display increased metabolic rate and decreased adiposity
-
Tomlinson E, Fu L, John L, Hultgren B. Transgenic mice expressing human fibroblast growth factor-19 display increased metabolic rate and decreased adiposity. Endocrinology (2002) 143:1741-7. doi:10.1210/endo.143.5.8850
-
(2002)
Endocrinology
, vol.143
, pp. 1741-1747
-
-
Tomlinson, E.1
Fu, L.2
John, L.3
Hultgren, B.4
-
6
-
-
1642416884
-
Targeted ablation of Fgf23 demonstrates an essential physiological role of FGF23 in phosphate and vitamin D metabolism
-
Shimada T, Kakitani M, Yamazaki Y, Hasegawa H, Takeuchi Y, Fujita T, et al. Targeted ablation of Fgf23 demonstrates an essential physiological role of FGF23 in phosphate and vitamin D metabolism. J Clin Invest (2004) 113:561-8. doi:10.1172/JCI200419081
-
(2004)
J Clin Invest
, vol.113
, pp. 561-568
-
-
Shimada, T.1
Kakitani, M.2
Yamazaki, Y.3
Hasegawa, H.4
Takeuchi, Y.5
Fujita, T.6
-
7
-
-
84870568785
-
Circulating fibroblast growth factors as metabolic regulators-a critical appraisal
-
Angelin B, Larsson TE, Rudling M. Circulating fibroblast growth factors as metabolic regulators-a critical appraisal. Cell Metab (2012) 16:693-705. doi:10.1016/j.cmet.2012.11.001
-
(2012)
Cell Metab
, vol.16
, pp. 693-705
-
-
Angelin, B.1
Larsson, T.E.2
Rudling, M.3
-
8
-
-
84901012661
-
Roles of FGFs as adipokines in adipose tissue development, remodeling, and metabolism
-
Ohta H, Itoh N. Roles of FGFs as adipokines in adipose tissue development, remodeling, and metabolism. Front Endocrinol (2014) 5:18. doi:10.3389/fendo.2014.00018
-
(2014)
Front Endocrinol
, vol.5
, pp. 18
-
-
Ohta, H.1
Itoh, N.2
-
9
-
-
27844546989
-
Fibroblast growth factor 15 functions as an enterohepatic signal to regulate bile acid homeostasis
-
Inagaki T, Choi M, Moschetta A, Peng L, Cummins CL, McDonald JG, et al. Fibroblast growth factor 15 functions as an enterohepatic signal to regulate bile acid homeostasis. Cell Metab (2005) 2:217-25. doi:10.1016/j.cmet.2005.09.001
-
(2005)
Cell Metab
, vol.2
, pp. 217-225
-
-
Inagaki, T.1
Choi, M.2
Moschetta, A.3
Peng, L.4
Cummins, C.L.5
McDonald, J.G.6
-
10
-
-
34249686631
-
Endocrine regulation of the fasting response by PPARalpha-mediated induction of fibroblast growth factor 21
-
Inagaki T, Dutchak P, Zhao G, Ding X, Gautron L, Parameswara V, et al. Endocrine regulation of the fasting response by PPARalpha-mediated induction of fibroblast growth factor 21. Cell Metab (2007) 5:415-25. doi:10.1016/j.cmet.2007.05.003
-
(2007)
Cell Metab
, vol.5
, pp. 415-425
-
-
Inagaki, T.1
Dutchak, P.2
Zhao, G.3
Ding, X.4
Gautron, L.5
Parameswara, V.6
-
11
-
-
79953129095
-
FGF19 as a postprandial, insulin-independent activator of hepatic protein and glycogen synthesis
-
Kir S, Beddow SA, Samuel VT, Miller P, Previs SF, Suino-Powell K, et al. FGF19 as a postprandial, insulin-independent activator of hepatic protein and glycogen synthesis. Science (2011) 331:1621-4. doi:10.1126/science.1198363
-
(2011)
Science
, vol.331
, pp. 1621-1624
-
-
Kir, S.1
Beddow, S.A.2
Samuel, V.T.3
Miller, P.4
Previs, S.F.5
Suino-Powell, K.6
-
12
-
-
84455199475
-
Lack of overt FGF21 resistance in two mouse models of obesity and insulin resistance
-
Hale C, Chen MM, Stanislaus S, Chinookoswong N, Hager T, Wang M, et al. Lack of overt FGF21 resistance in two mouse models of obesity and insulin resistance. Endocrinology (2012) 153:69-80. doi:10.1210/en.2010-1262
-
(2012)
Endocrinology
, vol.153
, pp. 69-80
-
-
Hale, C.1
Chen, M.M.2
Stanislaus, S.3
Chinookoswong, N.4
Hager, T.5
Wang, M.6
-
13
-
-
67650263853
-
Free fatty acids link metabolism and regulation of the insulin-sensitizing fibroblast growth factor-21
-
Mai K, Andres J, Biedasek K, Weicht J, Bobbert T, Sabath M, et al. Free fatty acids link metabolism and regulation of the insulin-sensitizing fibroblast growth factor-21. Diabetes (2009) 58:1532-8. doi:10.2337/db08-1775
-
(2009)
Diabetes
, vol.58
, pp. 1532-1538
-
-
Mai, K.1
Andres, J.2
Biedasek, K.3
Weicht, J.4
Bobbert, T.5
Sabath, M.6
-
14
-
-
84892162004
-
Stressed liver and muscle call on adipocytes with FGF21
-
Luo Y, McKeehan WL. Stressed liver and muscle call on adipocytes with FGF21. Front Endocrinol (2013) 4:194. doi:10.3389/fendo.2013.00194
-
(2013)
Front Endocrinol
, vol.4
, pp. 194
-
-
Luo, Y.1
McKeehan, W.L.2
-
15
-
-
84920483737
-
Tissue-specific actions of the metabolic hormones FGF15/19 and FGF21
-
Owen BM, Mangelsdorf DJ, Kliewer SA. Tissue-specific actions of the metabolic hormones FGF15/19 and FGF21. Trends Endocrinol Metab (2014) 26:22-9. doi:10.1016/j.tem.2014.10.002
-
(2014)
Trends Endocrinol Metab
, vol.26
, pp. 22-29
-
-
Owen, B.M.1
Mangelsdorf, D.J.2
Kliewer, S.A.3
-
16
-
-
84906826372
-
Endocrinization of FGF1 produces a neomorphic and potent insulin sensitizer
-
Suh JM, Jonker JW, Ahmadian M, Goetz R, Lackey D, Osborn O, et al. Endocrinization of FGF1 produces a neomorphic and potent insulin sensitizer. Nature (2014) 513:436-9. doi:10.1038/nature13540
-
(2014)
Nature
, vol.513
, pp. 436-439
-
-
Suh, J.M.1
Jonker, J.W.2
Ahmadian, M.3
Goetz, R.4
Lackey, D.5
Osborn, O.6
-
17
-
-
2542505481
-
Fibroblast growth factor 19 increases metabolic rate and reverses dietary and leptin-deficient diabetes
-
Fu L, John LM, Adams SH, Yu XX, Tomlinson E, Renz M, et al. Fibroblast growth factor 19 increases metabolic rate and reverses dietary and leptin-deficient diabetes. Endocrinology (2004) 145:2594-603. doi:10.1210/en.2003-1671
-
(2004)
Endocrinology
, vol.145
, pp. 2594-2603
-
-
Fu, L.1
John, L.M.2
Adams, S.H.3
Yu, X.X.4
Tomlinson, E.5
Renz, M.6
-
18
-
-
84905679771
-
The breadth of FGF21's metabolic actions are governed by FGFR1 in adipose tissue
-
Adams AC, Yang C, Coskun T, Cheng CC, Gimeno RE, Luo Y, et al. The breadth of FGF21's metabolic actions are governed by FGFR1 in adipose tissue. Mol Metab (2013) 2:31-7. doi:10.1016/j.molmet.2012.08.007
-
(2013)
Mol Metab
, vol.2
, pp. 31-37
-
-
Adams, A.C.1
Yang, C.2
Coskun, T.3
Cheng, C.C.4
Gimeno, R.E.5
Luo, Y.6
-
19
-
-
84908018672
-
FGF21 acts centrally to induce sympathetic nerve activity, energy expenditure, and weight loss
-
Owen BM, Ding X, Morgan DA, Coate KC, Bookout AL, Rahmouni K, et al. FGF21 acts centrally to induce sympathetic nerve activity, energy expenditure, and weight loss. Cell Metab (2014) 20:670-7. doi:10.1016/j.cmet.2014.07.012
-
(2014)
Cell Metab
, vol.20
, pp. 670-677
-
-
Owen, B.M.1
Ding, X.2
Morgan, D.A.3
Coate, K.C.4
Bookout, A.L.5
Rahmouni, K.6
-
20
-
-
84940440284
-
FGF21, energy expenditure and weight loss-how much brown fat do you need?
-
Straub L, Wolfrum C. FGF21, energy expenditure and weight loss-how much brown fat do you need? Mol Metab (2015) 4:605-9. doi:10.1016/j.molmet.2015.06.008
-
(2015)
Mol Metab
, vol.4
, pp. 605-609
-
-
Straub, L.1
Wolfrum, C.2
-
21
-
-
33750587755
-
Fibroblast growth factor-21 improves pancreatic beta-cell function and survival by activation of extracellular signal-regulated kinase 1/2 and Akt signaling pathways
-
Wente W, Efanov AM, Brenner M, Kharitonenkov A, Köter A, Sandusky GE, et al. Fibroblast growth factor-21 improves pancreatic beta-cell function and survival by activation of extracellular signal-regulated kinase 1/2 and Akt signaling pathways. Diabetes (2006) 55:2470-8. doi:10.2337/db05-1435
-
(2006)
Diabetes
, vol.55
, pp. 2470-2478
-
-
Wente, W.1
Efanov, A.M.2
Brenner, M.3
Kharitonenkov, A.4
Köter, A.5
Sandusky, G.E.6
-
22
-
-
79952120254
-
Direct effects of FGF21 on glucose uptake in human skeletal muscle: implications for type 2 diabetes and obesity
-
Mashili FL, Austin RL, Deshmukh AS, Fritz T, Caidahl K, Bergdahl K, et al. Direct effects of FGF21 on glucose uptake in human skeletal muscle: implications for type 2 diabetes and obesity. Diabetes Metab Res Rev (2011) 27:286-97. doi:10.1002/dmrr.1177
-
(2011)
Diabetes Metab Res Rev
, vol.27
, pp. 286-297
-
-
Mashili, F.L.1
Austin, R.L.2
Deshmukh, A.S.3
Fritz, T.4
Caidahl, K.5
Bergdahl, K.6
-
23
-
-
36148970418
-
The fasting polypeptide FGF21 can enter brain from blood
-
Hsuchou H, Pan W, Kastin AJ. The fasting polypeptide FGF21 can enter brain from blood. Peptides (2007) 28:2382-6. doi:10.1016/j.peptides.2007.10.007
-
(2007)
Peptides
, vol.28
, pp. 2382-2386
-
-
Hsuchou, H.1
Pan, W.2
Kastin, A.J.3
-
24
-
-
84887447664
-
FGF19 action in the brain induces insulin-independent glucose lowering
-
Morton GJ, Matsen ME, Bracy DP, Meek TH, Nguyen HT, Stefanovski D, et al. FGF19 action in the brain induces insulin-independent glucose lowering. J Clin Invest (2013) 123:4799-808. doi:10.1172/JCI70710
-
(2013)
J Clin Invest
, vol.123
, pp. 4799-4808
-
-
Morton, G.J.1
Matsen, M.E.2
Bracy, D.P.3
Meek, T.H.4
Nguyen, H.T.5
Stefanovski, D.6
-
25
-
-
0024587298
-
Central action of acidic fibroblast growth factor in feeding regulation
-
Hanai K, Oomura Y, Kai Y, Nishikawa K, Shimizu N, Morita H, et al. Central action of acidic fibroblast growth factor in feeding regulation. Am J Physiol (1989) 256:R217-23.
-
(1989)
Am J Physiol
, vol.256
, pp. R217-R223
-
-
Hanai, K.1
Oomura, Y.2
Kai, Y.3
Nishikawa, K.4
Shimizu, N.5
Morita, H.6
-
26
-
-
77949328590
-
FGF19-induced hepatocyte proliferation is mediated through FGFR4 activation
-
Wu X, Ge H, Lemon B, Vonderfecht S, Weiszmann J, Hecht R, et al. FGF19-induced hepatocyte proliferation is mediated through FGFR4 activation. J Biol Chem (2010) 285:5165-70. doi:10.1074/jbc.M109.068783
-
(2010)
J Biol Chem
, vol.285
, pp. 5165-5170
-
-
Wu, X.1
Ge, H.2
Lemon, B.3
Vonderfecht, S.4
Weiszmann, J.5
Hecht, R.6
-
27
-
-
84874903440
-
Rational design of a fibroblast growth factor 21-based clinical candidate, LY2405319
-
Kharitonenkov A, Beals JM, Micanovic R, Strifler BA, Rathnachalam R, Wroblewski VJ, et al. Rational design of a fibroblast growth factor 21-based clinical candidate, LY2405319. PLoS One (2013) 8:e58575. doi:10.1371/journal.pone.0058575
-
(2013)
PLoS One
, vol.8
-
-
Kharitonenkov, A.1
Beals, J.M.2
Micanovic, R.3
Strifler, B.A.4
Rathnachalam, R.5
Wroblewski, V.J.6
-
28
-
-
84883481988
-
The effects of LY2405319, an FGF21 analog, in obese human subjects with type 2 diabetes
-
Gaich G, Chien JY, Fu H, Glass LC, Deeg MA, Holland WL, et al. The effects of LY2405319, an FGF21 analog, in obese human subjects with type 2 diabetes. Cell Metab (2013) 18:333-40. doi:10.1016/j.cmet.2013.08.005
-
(2013)
Cell Metab
, vol.18
, pp. 333-340
-
-
Gaich, G.1
Chien, J.Y.2
Fu, H.3
Glass, L.C.4
Deeg, M.A.5
Holland, W.L.6
-
29
-
-
77957376253
-
Research resource: comprehensive expression atlas of the fibroblast growth factor system in adult mouse
-
Fon Tacer K, Bookout AL, Ding X, Kurosu H, John GB, Wang L, et al. Research resource: comprehensive expression atlas of the fibroblast growth factor system in adult mouse. Mol Endocrinol (2010) 24:2050-64. doi:10.1210/me.2010-0142
-
(2010)
Mol Endocrinol
, vol.24
, pp. 2050-2064
-
-
Fon Tacer, K.1
Bookout, A.L.2
Ding, X.3
Kurosu, H.4
John, G.B.5
Wang, L.6
-
30
-
-
0035958277
-
Identification of a new fibroblast growth factor receptor, FGFR5
-
Sleeman M, Fraser J, McDonald M, Yuan S, White D, Grandison P, et al. Identification of a new fibroblast growth factor receptor, FGFR5. Gene (2001) 271:171-82. doi:10.1016/S0378-1119(01)00518-2
-
(2001)
Gene
, vol.271
, pp. 171-182
-
-
Sleeman, M.1
Fraser, J.2
McDonald, M.3
Yuan, S.4
White, D.5
Grandison, P.6
-
31
-
-
18144383021
-
Cellular signaling by fibroblast growth factor receptors
-
Eswarakumar V, Lax I, Schlessinger J. Cellular signaling by fibroblast growth factor receptors. Cytokine Growth Factor Rev (2005) 16:139-49. doi:10.1016/j.cytogfr.2005.01.001
-
(2005)
Cytokine Growth Factor Rev
, vol.16
, pp. 139-149
-
-
Eswarakumar, V.1
Lax, I.2
Schlessinger, J.3
-
32
-
-
2542482608
-
Towards a resolution of the stoichiometry of the fibroblast growth factor (FGF)-FGF receptor-heparin complex
-
Harmer NJ, Ilag LL, Mulloy B, Pellegrini L, Robinson CV, Blundell TL. Towards a resolution of the stoichiometry of the fibroblast growth factor (FGF)-FGF receptor-heparin complex. J Mol Biol (2004) 339:821-34. doi:10.1016/j.jmb.2004.04.031
-
(2004)
J Mol Biol
, vol.339
, pp. 821-834
-
-
Harmer, N.J.1
Ilag, L.L.2
Mulloy, B.3
Pellegrini, L.4
Robinson, C.V.5
Blundell, T.L.6
-
33
-
-
77955814651
-
Hormone-like (endocrine) Fgfs: their evolutionary history and roles in development, metabolism, and disease
-
Itoh N. Hormone-like (endocrine) Fgfs: their evolutionary history and roles in development, metabolism, and disease. Cell Tissue Res (2010) 342:1-11. doi:10.1007/s00441-010-1024-2
-
(2010)
Cell Tissue Res
, vol.342
, pp. 1-11
-
-
Itoh, N.1
-
34
-
-
49649122544
-
Direct binding of integrin alphavbeta3 to FGF1 plays a role in FGF1 signaling
-
Mori S, Wu C-Y, Yamaji S, Saegusa J, Shi B, Ma Z, et al. Direct binding of integrin alphavbeta3 to FGF1 plays a role in FGF1 signaling. J Biol Chem (2008) 283:18066-75. doi:10.1074/jbc.M801213200
-
(2008)
J Biol Chem
, vol.283
, pp. 18066-18075
-
-
Mori, S.1
Wu, C.-Y.2
Yamaji, S.3
Saegusa, J.4
Shi, B.5
Ma, Z.6
-
35
-
-
0030608611
-
Alphavbeta3 integrin mediates the cell-adhesive capacity and biological activity of basic fibroblast growth factor (FGF-2) in cultured endothelial cells
-
Rusnati M, Tanghetti E, Dell'Era P, Gualandris A, Presta M. Alphavbeta3 integrin mediates the cell-adhesive capacity and biological activity of basic fibroblast growth factor (FGF-2) in cultured endothelial cells. Mol Biol Cell (1997) 8:2449-61. doi:10.1091/mbc.8.12.2449
-
(1997)
Mol Biol Cell
, vol.8
, pp. 2449-2461
-
-
Rusnati, M.1
Tanghetti, E.2
Dell'Era, P.3
Gualandris, A.4
Presta, M.5
-
36
-
-
34247565954
-
Molecular insights into the klotho-dependent, endocrine mode of action of fibroblast growth factor 19 subfamily members
-
Goetz R, Beenken A, Ibrahimi OA, Kalinina J, Olsen SK, Eliseenkova AV, et al. Molecular insights into the klotho-dependent, endocrine mode of action of fibroblast growth factor 19 subfamily members. Mol Cell Biol (2007) 27:3417-28. doi:10.1128/MCB.02249-06
-
(2007)
Mol Cell Biol
, vol.27
, pp. 3417-3428
-
-
Goetz, R.1
Beenken, A.2
Ibrahimi, O.A.3
Kalinina, J.4
Olsen, S.K.5
Eliseenkova, A.V.6
-
37
-
-
34249697012
-
BetaKlotho is required for metabolic activity of fibroblast growth factor 21
-
Ogawa Y, Kurosu H, Yamamoto M, Nandi A, Rosenblatt KP, Goetz R, et al. BetaKlotho is required for metabolic activity of fibroblast growth factor 21. Proc Natl Acad Sci U S A (2007) 104:7432-7. doi:10.1073/pnas.0701600104
-
(2007)
Proc Natl Acad Sci U S A
, vol.104
, pp. 7432-7437
-
-
Ogawa, Y.1
Kurosu, H.2
Yamamoto, M.3
Nandi, A.4
Rosenblatt, K.P.5
Goetz, R.6
-
38
-
-
84863338708
-
Differential specificity of endocrine FGF19 and FGF21 to FGFR1 and FGFR4 in complex with KLB
-
Yang C, Jin C, Li X, Wang F, McKeehan WL, Luo Y. Differential specificity of endocrine FGF19 and FGF21 to FGFR1 and FGFR4 in complex with KLB. PLoS One (2012) 7:e33870. doi:10.1371/journal.pone.0033870
-
(2012)
PLoS One
, vol.7
-
-
Yang, C.1
Jin, C.2
Li, X.3
Wang, F.4
McKeehan, W.L.5
Luo, Y.6
-
39
-
-
33744937606
-
Receptor specificity of the fibroblast growth factor family. The complete mammalian FGF family
-
Zhang X, Ibrahimi OA, Olsen SK, Umemori H, Mohammadi M, Ornitz DM. Receptor specificity of the fibroblast growth factor family. The complete mammalian FGF family. J Biol Chem (2006) 281:15694-700. doi:10.1074/jbc.M601252200
-
(2006)
J Biol Chem
, vol.281
, pp. 15694-15700
-
-
Zhang, X.1
Ibrahimi, O.A.2
Olsen, S.K.3
Umemori, H.4
Mohammadi, M.5
Ornitz, D.M.6
-
41
-
-
0026731562
-
Point mutation of an FGF receptor abolishes phosphatidylinositol turnover and Ca2+ flux but not mitogenesis
-
Peters KG, Marie J, Wilson E, Ives HE, Escobedo J, Del Rosario M, et al. Point mutation of an FGF receptor abolishes phosphatidylinositol turnover and Ca2+ flux but not mitogenesis. Nature (1992) 358:678-81. doi:10.1038/358678a0
-
(1992)
Nature
, vol.358
, pp. 678-681
-
-
Peters, K.G.1
Marie, J.2
Wilson, E.3
Ives, H.E.4
Escobedo, J.5
Del Rosario, M.6
-
42
-
-
0030706168
-
A lipid-anchored Grb2-binding protein that links FGF-receptor activation to the Ras/MAPK signaling pathway
-
Kouhara H, Hadari Y, Spivak-Kroizman T, Schilling J, Bar-Sagi D, Lax I, et al. A lipid-anchored Grb2-binding protein that links FGF-receptor activation to the Ras/MAPK signaling pathway. Cell (1997) 89:693-702. doi:10.1016/S0092-8674(00)80252-4
-
(1997)
Cell
, vol.89
, pp. 693-702
-
-
Kouhara, H.1
Hadari, Y.2
Spivak-Kroizman, T.3
Schilling, J.4
Bar-Sagi, D.5
Lax, I.6
-
43
-
-
44449108785
-
Regulation of growth factor signaling by FRS2 family docking/scaffold adaptor proteins
-
Gotoh N. Regulation of growth factor signaling by FRS2 family docking/scaffold adaptor proteins. Cancer Sci (2008) 99:1319-25. doi:10.1111/j.1349-7006.2008.00840.x
-
(2008)
Cancer Sci
, vol.99
, pp. 1319-1325
-
-
Gotoh, N.1
-
44
-
-
0034612592
-
Transformation and stat activation by derivatives of FGFR1, FGFR3, and FGFR4
-
Hart KC, Robertson SC, Kanemitsu MY, Meyer AN, Tynan JA, Donoghue DJ. Transformation and stat activation by derivatives of FGFR1, FGFR3, and FGFR4. Oncogene (2000) 19:3309-20. doi:10.1038/sj.onc.1203650
-
(2000)
Oncogene
, vol.19
, pp. 3309-3320
-
-
Hart, K.C.1
Robertson, S.C.2
Kanemitsu, M.Y.3
Meyer, A.N.4
Tynan, J.A.5
Donoghue, D.J.6
-
45
-
-
84865422329
-
TNF-α represses β-klotho expression and impairs FGF21 action in adipose cells: involvement of JNK1 in the FGF21 pathway
-
Díaz-Delfín J, Hondares E, Iglesias R, Giralt M, Caelles C, Villarroya F. TNF-α represses β-klotho expression and impairs FGF21 action in adipose cells: involvement of JNK1 in the FGF21 pathway. Endocrinology (2012) 153:4238-45. doi:10.1210/en.2012-1193
-
(2012)
Endocrinology
, vol.153
, pp. 4238-4245
-
-
Díaz-Delfín, J.1
Hondares, E.2
Iglesias, R.3
Giralt, M.4
Caelles, C.5
Villarroya, F.6
-
46
-
-
84891684837
-
High glucose represses β-klotho expression and impairs fibroblast growth factor 21 action in mouse pancreatic islets: involvement of peroxisome proliferator-activated receptor γ signaling
-
So WY, Cheng Q, Chen L, Evans-Molina C, Xu A, Lam KSL, et al. High glucose represses β-klotho expression and impairs fibroblast growth factor 21 action in mouse pancreatic islets: involvement of peroxisome proliferator-activated receptor γ signaling. Diabetes (2013) 62:3751-9. doi:10.2337/db13-0645
-
(2013)
Diabetes
, vol.62
, pp. 3751-3759
-
-
So, W.Y.1
Cheng, Q.2
Chen, L.3
Evans-Molina, C.4
Xu, A.5
Lam, K.S.L.6
-
47
-
-
41649109108
-
BetaKlotho is required for fibroblast growth factor (FGF) 21 signaling through FGF receptor (FGFR) 1c and FGFR3c
-
Suzuki M, Uehara Y, Motomura-Matsuzaka K, Oki J, Koyama Y, Kimura M, et al. BetaKlotho is required for fibroblast growth factor (FGF) 21 signaling through FGF receptor (FGFR) 1c and FGFR3c. Mol Endocrinol (2008) 22:1006-14. doi:10.1210/me.2007-0313
-
(2008)
Mol Endocrinol
, vol.22
, pp. 1006-1014
-
-
Suzuki, M.1
Uehara, Y.2
Motomura-Matsuzaka, K.3
Oki, J.4
Koyama, Y.5
Kimura, M.6
-
48
-
-
84863012459
-
Fibroblast growth factor-21 regulates PPARγ activity and the antidiabetic actions of thiazolidinediones
-
Dutchak PA, Katafuchi T, Bookout AL, Choi JH, Yu RT, Mangelsdorf DJ, et al. Fibroblast growth factor-21 regulates PPARγ activity and the antidiabetic actions of thiazolidinediones. Cell (2012) 148:556-67. doi:10.1016/j.cell.2011.11.062
-
(2012)
Cell
, vol.148
, pp. 556-567
-
-
Dutchak, P.A.1
Katafuchi, T.2
Bookout, A.L.3
Choi, J.H.4
Yu, R.T.5
Mangelsdorf, D.J.6
-
49
-
-
76749118930
-
Ectopic recombination in the central and peripheral nervous system by aP2/FABP4-Cre mice: implications for metabolism research
-
Martens K, Bottelbergs A, Baes M. Ectopic recombination in the central and peripheral nervous system by aP2/FABP4-Cre mice: implications for metabolism research. FEBS Lett (2010) 584:1054-8. doi:10.1016/j.febslet.2010.01.061
-
(2010)
FEBS Lett
, vol.584
, pp. 1054-1058
-
-
Martens, K.1
Bottelbergs, A.2
Baes, M.3
-
50
-
-
84883778996
-
FGF21 regulates metabolism and circadian behavior by acting on the nervous system
-
Bookout AL, de Groot MHM, Owen BM, Lee S, Gautron L, Lawrence HL, et al. FGF21 regulates metabolism and circadian behavior by acting on the nervous system. Nat Med (2013) 19:1147-52. doi:10.1038/nm.3249
-
(2013)
Nat Med
, vol.19
, pp. 1147-1152
-
-
Bookout, A.L.1
de Groot, M.H.M.2
Owen, B.M.3
Lee, S.4
Gautron, L.5
Lawrence, H.L.6
-
51
-
-
77954277205
-
Fibroblast growth factor 21 action in the brain increases energy expenditure and insulin sensitivity in obese rats
-
Sarruf DA, Thaler JP, Morton GJ, German J, Fischer JD, Ogimoto K, et al. Fibroblast growth factor 21 action in the brain increases energy expenditure and insulin sensitivity in obese rats. Diabetes (2010) 59:1817-24. doi:10.2337/db09-1878
-
(2010)
Diabetes
, vol.59
, pp. 1817-1824
-
-
Sarruf, D.A.1
Thaler, J.P.2
Morton, G.J.3
German, J.4
Fischer, J.D.5
Ogimoto, K.6
-
52
-
-
77952758675
-
Mapping of the fibroblast growth factors in human white adipose tissue
-
Mejhert N, Galitzky J, Pettersson AT, Bambace C, Blomqvist L, Bouloumié A, et al. Mapping of the fibroblast growth factors in human white adipose tissue. J Clin Endocrinol Metab (2010) 95:2451-7. doi:10.1210/jc.2009-2049
-
(2010)
J Clin Endocrinol Metab
, vol.95
, pp. 2451-2457
-
-
Mejhert, N.1
Galitzky, J.2
Pettersson, A.T.3
Bambace, C.4
Blomqvist, L.5
Bouloumié, A.6
-
53
-
-
9444289881
-
Fibroblast growth factor 1, a key regulator of human adipogenesis
-
Hutley L, Shurety W, Newell F, McGeary R, Pelton N, Grant J, et al. Fibroblast growth factor 1: a key regulator of human adipogenesis. Diabetes (2004) 53:3097-106. doi:10.2337/diabetes.53.12.3097
-
(2004)
Diabetes
, vol.53
, pp. 3097-3106
-
-
Hutley, L.1
Shurety, W.2
Newell, F.3
McGeary, R.4
Pelton, N.5
Grant, J.6
-
54
-
-
33845611030
-
Characterization of the transcriptional and functional effects of fibroblast growth factor-1 on human preadipocyte differentiation
-
Newell FS, Su H, Tornqvist H, Whitehead JP, Prins JB, Hutley LJ. Characterization of the transcriptional and functional effects of fibroblast growth factor-1 on human preadipocyte differentiation. FASEB J (2006) 20:2615-7. doi:10.1096/fj.05-5710fje
-
(2006)
FASEB J
, vol.20
, pp. 2615-2617
-
-
Newell, F.S.1
Su, H.2
Tornqvist, H.3
Whitehead, J.P.4
Prins, J.B.5
Hutley, L.J.6
-
55
-
-
41949092558
-
Fibroblast growth factor regulation of neovascularization
-
Murakami M, Simons M. Fibroblast growth factor regulation of neovascularization. Curr Opin Hematol (2008) 15:215-20. doi:10.1097/MOH.0b013e3282f97d98
-
(2008)
Curr Opin Hematol
, vol.15
, pp. 215-220
-
-
Murakami, M.1
Simons, M.2
-
56
-
-
70149120326
-
Selective activation of FGFR4 by an FGF19 variant does not improve glucose metabolism in ob/ob mice
-
Wu X, Ge H, Lemon B, Weiszmann J, Gupte J, Hawkins N, et al. Selective activation of FGFR4 by an FGF19 variant does not improve glucose metabolism in ob/ob mice. Proc Natl Acad Sci U S A (2009) 106:14379-84. doi:10.1073/pnas.0907812106
-
(2009)
Proc Natl Acad Sci U S A
, vol.106
, pp. 14379-14384
-
-
Wu, X.1
Ge, H.2
Lemon, B.3
Weiszmann, J.4
Gupte, J.5
Hawkins, N.6
-
57
-
-
84861657962
-
Fundamentals of FGF19 & FGF21 action in vitro and in vivo
-
Adams AC, Coskun T, Rovira ARI, Schneider MA, Raches DW, Micanovic R, et al. Fundamentals of FGF19 & FGF21 action in vitro and in vivo. PLoS One (2012) 7:e38438. doi:10.1371/journal.pone.0038438
-
(2012)
PLoS One
, vol.7
-
-
Adams, A.C.1
Coskun, T.2
Rovira, A.R.I.3
Schneider, M.A.4
Raches, D.W.5
Micanovic, R.6
-
58
-
-
79952803104
-
FGF19 regulates cell proliferation, glucose and bile acid metabolism via FGFR4-dependent and independent pathways
-
Wu A-L, Coulter S, Liddle C, Wong A, Eastham-Anderson J, French DM, et al. FGF19 regulates cell proliferation, glucose and bile acid metabolism via FGFR4-dependent and independent pathways. PLoS One (2011) 6:e17868. doi:10.1371/journal.pone.0017868
-
(2011)
PLoS One
, vol.6
-
-
Wu, A.-L.1
Coulter, S.2
Liddle, C.3
Wong, A.4
Eastham-Anderson, J.5
French, D.M.6
-
59
-
-
84867898251
-
Control of lipid metabolism by adipocyte FGFR1-mediated adipohepatic communication during hepatic stress
-
Yang C, Wang C, Ye M, Jin C, He W, Wang F, et al. Control of lipid metabolism by adipocyte FGFR1-mediated adipohepatic communication during hepatic stress. Nutr Metab (Lond) (2012) 9:94. doi:10.1186/1743-7075-9-94
-
(2012)
Nutr Metab (Lond)
, vol.9
, pp. 94
-
-
Yang, C.1
Wang, C.2
Ye, M.3
Jin, C.4
He, W.5
Wang, F.6
-
60
-
-
57349098220
-
Fibroblast growth factor 21 corrects obesity in mice
-
Coskun T, Bina HA, Schneider MA, Dunbar JD, Hu CC, Chen Y, et al. Fibroblast growth factor 21 corrects obesity in mice. Endocrinology (2008) 149:6018-27. doi:10.1210/en.2008-0816
-
(2008)
Endocrinology
, vol.149
, pp. 6018-6027
-
-
Coskun, T.1
Bina, H.A.2
Schneider, M.A.3
Dunbar, J.D.4
Hu, C.C.5
Chen, Y.6
-
61
-
-
84877272187
-
An FGF21-adiponectin-ceramide axis controls energy expenditure and insulin action in mice
-
Holland WL, Adams AC, Brozinick JT, Bui HH, Miyauchi Y, Kusminski CM, et al. An FGF21-adiponectin-ceramide axis controls energy expenditure and insulin action in mice. Cell Metab (2013) 17:790-7. doi:10.1016/j.cmet.2013.03.019
-
(2013)
Cell Metab
, vol.17
, pp. 790-797
-
-
Holland, W.L.1
Adams, A.C.2
Brozinick, J.T.3
Bui, H.H.4
Miyauchi, Y.5
Kusminski, C.M.6
-
62
-
-
84877260638
-
Adiponectin mediates the metabolic effects of FGF21 on glucose homeostasis and insulin sensitivity in mice
-
Lin Z, Tian H, Lam KSL, Lin S, Hoo RCL, Konishi M, et al. Adiponectin mediates the metabolic effects of FGF21 on glucose homeostasis and insulin sensitivity in mice. Cell Metab (2013) 17:779-89. doi:10.1016/j.cmet.2013.04.005
-
(2013)
Cell Metab
, vol.17
, pp. 779-789
-
-
Lin, Z.1
Tian, H.2
Lam, K.S.L.3
Lin, S.4
Hoo, R.C.L.5
Konishi, M.6
-
63
-
-
84865741904
-
ßKlotho is required for fibroblast growth factor 21 effects on growth and metabolism
-
Ding X, Boney-Montoya J, Owen BM, Bookout AL, Coate KC, Mangelsdorf DJ, et al. ßKlotho is required for fibroblast growth factor 21 effects on growth and metabolism. Cell Metab (2012) 16:387-93. doi:10.1016/j.cmet.2012.08.002
-
(2012)
Cell Metab
, vol.16
, pp. 387-393
-
-
Ding, X.1
Boney-Montoya, J.2
Owen, B.M.3
Bookout, A.L.4
Coate, K.C.5
Mangelsdorf, D.J.6
-
65
-
-
84893849860
-
Interplay between FGF21 and insulin action in the liver regulates metabolism
-
Emanuelli B, Vienberg SG, Smyth G, Cheng C, Stanford KI, Arumugam M, et al. Interplay between FGF21 and insulin action in the liver regulates metabolism. J Clin Invest (2014) 124:515-27. doi:10.1172/JCI67353
-
(2014)
J Clin Invest
, vol.124
, pp. 515-527
-
-
Emanuelli, B.1
Vienberg, S.G.2
Smyth, G.3
Cheng, C.4
Stanford, K.I.5
Arumugam, M.6
-
66
-
-
33845407972
-
Molecular determinants of FGF-21 activity-synergy and cross-talk with PPARγ signaling
-
Moyers JS, Shiyanova TL, Mehrbod F, Dunbar JD, Noblitt TW, Otto KA, et al. Molecular determinants of FGF-21 activity-synergy and cross-talk with PPARγ signaling. J Cell Physiol (2007) 6:1-6. doi:10.1002/jcp.20847
-
(2007)
J Cell Physiol
, vol.6
, pp. 1-6
-
-
Moyers, J.S.1
Shiyanova, T.L.2
Mehrbod, F.3
Dunbar, J.D.4
Noblitt, T.W.5
Otto, K.A.6
-
67
-
-
84883615750
-
Downstream signaling pathways in mouse adipose tissues following acute in vivo administration of fibroblast growth factor 21
-
Muise ES, Souza S, Chi A, Tan Y, Zhao X, Liu F, et al. Downstream signaling pathways in mouse adipose tissues following acute in vivo administration of fibroblast growth factor 21. PLoS One (2013) 8:e73011. doi:10.1371/journal.pone.0073011
-
(2013)
PLoS One
, vol.8
-
-
Muise, E.S.1
Souza, S.2
Chi, A.3
Tan, Y.4
Zhao, X.5
Liu, F.6
-
68
-
-
80053428117
-
Fibroblast growth factor 21 induces glucose transporter-1 expression through activation of the serum response factor/Ets-like protein-1 in adipocytes
-
Ge X, Chen C, Hui X, Wang Y, Lam KSL, Xu A. Fibroblast growth factor 21 induces glucose transporter-1 expression through activation of the serum response factor/Ets-like protein-1 in adipocytes. J Biol Chem (2011) 286:34533-41. doi:10.1074/jbc.M111.248591
-
(2011)
J Biol Chem
, vol.286
, pp. 34533-34541
-
-
Ge, X.1
Chen, C.2
Hui, X.3
Wang, Y.4
Lam, K.S.L.5
Xu, A.6
-
69
-
-
77955434383
-
Fibroblast growth factor 21 regulates energy metabolism by activating the AMPK-SIRT1-PGC-1alpha pathway
-
Chau MDL, Gao J, Yang Q, Wu Z, Gromada J. Fibroblast growth factor 21 regulates energy metabolism by activating the AMPK-SIRT1-PGC-1alpha pathway. Proc Natl Acad Sci U S A (2010) 107:12553-8. doi:10.1073/pnas.1006962107
-
(2010)
Proc Natl Acad Sci U S A
, vol.107
, pp. 12553-12558
-
-
Chau, M.D.L.1
Gao, J.2
Yang, Q.3
Wu, Z.4
Gromada, J.5
-
70
-
-
84874347069
-
Therapeutic prospects of metabolically active brown adipose tissue in humans
-
Betz MJ, Enerbäck S. Therapeutic prospects of metabolically active brown adipose tissue in humans. Front Endocrinol (2011) 2:86. doi:10.3389/fendo.2011.00086
-
(2011)
Front Endocrinol
, vol.2
, pp. 86
-
-
Betz, M.J.1
Enerbäck, S.2
-
71
-
-
79960743932
-
Brown adipose tissue responds to cold and adrenergic stimulation by induction of FGF21
-
Chartoumpekis DV, Habeos IG, Ziros PG, Psyrogiannis AI, Kyriazopoulou VE, Papavassiliou AG. Brown adipose tissue responds to cold and adrenergic stimulation by induction of FGF21. Mol Med (2011) 17:736-40. doi:10.2119/molmed.2011.00075
-
(2011)
Mol Med
, vol.17
, pp. 736-740
-
-
Chartoumpekis, D.V.1
Habeos, I.G.2
Ziros, P.G.3
Psyrogiannis, A.I.4
Kyriazopoulou, V.E.5
Papavassiliou, A.G.6
-
72
-
-
84863012022
-
FGF21 regulates PGC-1a and browning of white adipose tissues in adaptive thermogenesis
-
Fisher FM, Kleiner S, Douris N, Fox EC, Mepani RJ, Verdeguer F, et al. FGF21 regulates PGC-1a and browning of white adipose tissues in adaptive thermogenesis. Genes Dev (2012) 26:271-81. doi:10.1101/gad.177857.111
-
(2012)
Genes Dev
, vol.26
, pp. 271-281
-
-
Fisher, F.M.1
Kleiner, S.2
Douris, N.3
Fox, E.C.4
Mepani, R.J.5
Verdeguer, F.6
-
73
-
-
79953886306
-
Thermogenic activation induces FGF21 expression and release in brown adipose tissue
-
Hondares E, Iglesias R, Giralt A, Gonzalez FJ, Giralt M, Mampel T, et al. Thermogenic activation induces FGF21 expression and release in brown adipose tissue. J Biol Chem (2011) 286:12983-90. doi:10.1074/jbc.M110.215889
-
(2011)
J Biol Chem
, vol.286
, pp. 12983-12990
-
-
Hondares, E.1
Iglesias, R.2
Giralt, A.3
Gonzalez, F.J.4
Giralt, M.5
Mampel, T.6
-
74
-
-
77249099832
-
Hepatic FGF21 expression is induced at birth via PPARalpha in response to milk intake and contributes to thermogenic activation of neonatal brown fat
-
Hondares E, Rosell M, Gonzalez FJ, Giralt M, Iglesias R, Villarroya F. Hepatic FGF21 expression is induced at birth via PPARalpha in response to milk intake and contributes to thermogenic activation of neonatal brown fat. Cell Metab (2010) 11:206-12. doi:10.1016/j.cmet.2010.02.001
-
(2010)
Cell Metab
, vol.11
, pp. 206-212
-
-
Hondares, E.1
Rosell, M.2
Gonzalez, F.J.3
Giralt, M.4
Iglesias, R.5
Villarroya, F.6
-
75
-
-
61649127208
-
Fibroblast growth factor 21 reverses hepatic steatosis, increases energy expenditure, and improves insulin sensitivity in diet-induced obese mice
-
Xu J, Lloyd DJ, Hale C, Stanislaus S, Chen M, Sivits G, et al. Fibroblast growth factor 21 reverses hepatic steatosis, increases energy expenditure, and improves insulin sensitivity in diet-induced obese mice. Diabetes (2009) 58:250-9. doi:10.2337/db08-0392
-
(2009)
Diabetes
, vol.58
, pp. 250-259
-
-
Xu, J.1
Lloyd, D.J.2
Hale, C.3
Stanislaus, S.4
Chen, M.5
Sivits, G.6
-
76
-
-
84892721345
-
Hepatic SIRT1 attenuates hepatic steatosis and controls energy balance in mice by inducing fibroblast growth factor 21
-
539-49.e7
-
Li Y, Wong K, Giles A, Jiang J, Lee JW, Adams AC, et al. Hepatic SIRT1 attenuates hepatic steatosis and controls energy balance in mice by inducing fibroblast growth factor 21. Gastroenterology (2014) 146:539-49.e7. doi:10.1053/j.gastro.2013.10.059
-
(2014)
Gastroenterology
, vol.146
-
-
Li, Y.1
Wong, K.2
Giles, A.3
Jiang, J.4
Lee, J.W.5
Adams, A.C.6
-
77
-
-
0027051199
-
Occurrence of brown adipocytes in rat white adipose tissue: molecular and morphological characterization
-
Cousin B, Cinti S, Morroni M, Raimbault S, Ricquier D, Pénicaud L, et al. Occurrence of brown adipocytes in rat white adipose tissue: molecular and morphological characterization. J Cell Sci (1992) 103(Pt 4):931-42.
-
(1992)
J Cell Sci
, vol.103
, pp. 931-942
-
-
Cousin, B.1
Cinti, S.2
Morroni, M.3
Raimbault, S.4
Ricquier, D.5
Pénicaud, L.6
-
78
-
-
84911917697
-
Circulating FGF21 is liver derived and enhances glucose uptake during refeeding and overfeeding
-
Markan KR, Naber MC, Ameka MK, Anderegg MD, Mangelsdorf DJ, Kliewer SA, et al. Circulating FGF21 is liver derived and enhances glucose uptake during refeeding and overfeeding. Diabetes (2014) 63:4057-63. doi:10.2337/db14-0595
-
(2014)
Diabetes
, vol.63
, pp. 4057-4063
-
-
Markan, K.R.1
Naber, M.C.2
Ameka, M.K.3
Anderegg, M.D.4
Mangelsdorf, D.J.5
Kliewer, S.A.6
-
79
-
-
84883167011
-
Cellular mechanisms by which FGF21 improves insulin sensitivity in male mice
-
Camporez JPG, Jornayvaz FR, Petersen MC, Pesta D, Guigni BA, Serr J, et al. Cellular mechanisms by which FGF21 improves insulin sensitivity in male mice. Endocrinology (2013) 154:3099-109. doi:10.1210/en.2013-1191
-
(2013)
Endocrinology
, vol.154
, pp. 3099-3109
-
-
Camporez, J.P.G.1
Jornayvaz, F.R.2
Petersen, M.C.3
Pesta, D.4
Guigni, B.A.5
Serr, J.6
-
80
-
-
84936966693
-
FGF21 does not require interscapular brown adipose tissue and improves liver metabolic profile in animal models of obesity and insulin-resistance
-
Bernardo B, Lu M, Bandyopadhyay G, Li P, Zhou Y, Huang J, et al. FGF21 does not require interscapular brown adipose tissue and improves liver metabolic profile in animal models of obesity and insulin-resistance. Sci Rep (2015) 5:11382. doi:10.1038/srep11382
-
(2015)
Sci Rep
, vol.5
, pp. 11382
-
-
Bernardo, B.1
Lu, M.2
Bandyopadhyay, G.3
Li, P.4
Zhou, Y.5
Huang, J.6
-
81
-
-
84930579383
-
Pharmacologic effects of FGF21 are independent of the "browning" of white adipose tissue
-
Véniant MM, Sivits G, Helmering J, Komorowski R, Lee J, Fan W, et al. Pharmacologic effects of FGF21 are independent of the "browning" of white adipose tissue. Cell Metab (2015) 21:731-8. doi:10.1016/j.cmet.2015.04.019
-
(2015)
Cell Metab
, vol.21
, pp. 731-738
-
-
Véniant, M.M.1
Sivits, G.2
Helmering, J.3
Komorowski, R.4
Lee, J.5
Fan, W.6
-
82
-
-
84929708081
-
Discrete aspects of FGF21 in vivo pharmacology do not require UCP1
-
Samms RJ, Smith DP, Cheng CC, Antonellis PP, Perfield JW 2nd, Kharitonenkov A, et al. Discrete aspects of FGF21 in vivo pharmacology do not require UCP1. Cell Rep (2015) 11:991-9. doi:10.1016/j.celrep.2015.04.046
-
(2015)
Cell Rep
, vol.11
, pp. 991-999
-
-
Samms, R.J.1
Smith, D.P.2
Cheng, C.C.3
Antonellis, P.P.4
Perfield, J.W.5
Kharitonenkov, A.6
-
83
-
-
84952876074
-
FGF21-mediated improvements in glucose clearance require uncoupling protein 1
-
Kwon MM, O'Dwyer SM, Baker RK, Covey SD, Kieffer TJ. FGF21-mediated improvements in glucose clearance require uncoupling protein 1. Cell Rep (2015) 13:1521-7. doi:10.1016/j.celrep.2015.10.021
-
(2015)
Cell Rep
, vol.13
, pp. 1521-1527
-
-
Kwon, M.M.1
O'Dwyer, S.M.2
Baker, R.K.3
Covey, S.D.4
Kieffer, T.J.5
-
84
-
-
0034333526
-
Molecular cloning and expression analyses of mouse betaklotho, which encodes a novel Klotho family protein
-
Ito S, Kinoshita S, Shiraishi N, Nakagawa S, Sekine S, Fujimori T, et al. Molecular cloning and expression analyses of mouse betaklotho, which encodes a novel Klotho family protein. Mech Dev (2000) 98:115-9. doi:10.1016/S0925-4773(00)00439-1
-
(2000)
Mech Dev
, vol.98
, pp. 115-119
-
-
Ito, S.1
Kinoshita, S.2
Shiraishi, N.3
Nakagawa, S.4
Sekine, S.5
Fujimori, T.6
-
85
-
-
34848866633
-
Liver-specific activities of FGF19 require klotho beta
-
Lin BC, Wang M, Blackmore C, Desnoyers LR. Liver-specific activities of FGF19 require klotho beta. J Biol Chem (2007) 282:27277-84. doi:10.1074/jbc.M704244200
-
(2007)
J Biol Chem
, vol.282
, pp. 27277-27284
-
-
Lin, B.C.1
Wang, M.2
Blackmore, C.3
Desnoyers, L.R.4
-
86
-
-
0034685916
-
Elevated cholesterol metabolism and bile acid synthesis in mice lacking membrane tyrosine kinase receptor FGFR4
-
Yu C. Elevated cholesterol metabolism and bile acid synthesis in mice lacking membrane tyrosine kinase receptor FGFR4. J Biol Chem (2000) 275:15482-9. doi:10.1074/jbc.275.20.15482
-
(2000)
J Biol Chem
, vol.275
, pp. 15482-15489
-
-
Yu, C.1
-
87
-
-
84898030895
-
FXR: the key to benefits in bariatric surgery?
-
Kuipers F, Groen AK. FXR: the key to benefits in bariatric surgery? Nat Med (2014) 20:337-8. doi:10.1038/nm.3525
-
(2014)
Nat Med
, vol.20
, pp. 337-338
-
-
Kuipers, F.1
Groen, A.K.2
-
88
-
-
0037663483
-
Definition of a novel growth factor-dependent signal cascade for the suppression of bile acid biosynthesis
-
Holt JA, Luo G, Billin AN, Bisi J, McNeill YY, Kozarsky KF, et al. Definition of a novel growth factor-dependent signal cascade for the suppression of bile acid biosynthesis. Genes Dev (2003) 17:1581-91. doi:10.1101/gad.1083503
-
(2003)
Genes Dev
, vol.17
, pp. 1581-1591
-
-
Holt, J.A.1
Luo, G.2
Billin, A.N.3
Bisi, J.4
McNeill, Y.Y.5
Kozarsky, K.F.6
-
89
-
-
84865540426
-
Mechanism of tissue-specific farnesoid X receptor in suppressing the expression of genes in bile-acid synthesis in mice
-
Kong B, Wang L, Chiang JYL, Zhang Y, Klaassen CD, Guo GL. Mechanism of tissue-specific farnesoid X receptor in suppressing the expression of genes in bile-acid synthesis in mice. Hepatology (2012) 56:1034-43. doi:10.1002/hep.25740
-
(2012)
Hepatology
, vol.56
, pp. 1034-1043
-
-
Kong, B.1
Wang, L.2
Chiang, J.Y.L.3
Zhang, Y.4
Klaassen, C.D.5
Guo, G.L.6
-
90
-
-
34948821192
-
FGFR4 prevents hyperlipidemia and insulin resistance but underlies high-fat diet induced fatty liver
-
Huang X, Yang C, Luo Y, Jin C, Wang F, McKeehan WL. FGFR4 prevents hyperlipidemia and insulin resistance but underlies high-fat diet induced fatty liver. Diabetes (2007) 56:2501-10. doi:10.2337/db07-0648
-
(2007)
Diabetes
, vol.56
, pp. 2501-2510
-
-
Huang, X.1
Yang, C.2
Luo, Y.3
Jin, C.4
Wang, F.5
McKeehan, W.L.6
-
91
-
-
50049116472
-
SREBP activity is regulated by mTORC1 and contributes to Akt-dependent cell growth
-
Porstmann T, Santos CR, Griffiths B, Cully M, Wu M, Leevers S, et al. SREBP activity is regulated by mTORC1 and contributes to Akt-dependent cell growth. Cell Metab (2008) 8:224-36. doi:10.1016/j.cmet.2008.07.007
-
(2008)
Cell Metab
, vol.8
, pp. 224-236
-
-
Porstmann, T.1
Santos, C.R.2
Griffiths, B.3
Cully, M.4
Wu, M.5
Leevers, S.6
-
92
-
-
66149102890
-
The role of FOXO in the regulation of metabolism
-
Gross DN, Wan M, Birnbaum MJ. The role of FOXO in the regulation of metabolism. Curr Diab Rep (2009) 9:208-14. doi:10.1007/s11892-009-0034-5
-
(2009)
Curr Diab Rep
, vol.9
, pp. 208-214
-
-
Gross, D.N.1
Wan, M.2
Birnbaum, M.J.3
-
93
-
-
84860221360
-
FGF19 signaling cascade suppresses APOA gene expression
-
Chennamsetty I, Claudel T, Kostner KM, Trauner M, Kostner GM. FGF19 signaling cascade suppresses APOA gene expression. Arterioscler Thromb Vasc Biol (2012) 32:1220-7. doi:10.1161/ATVBAHA.111.243055
-
(2012)
Arterioscler Thromb Vasc Biol
, vol.32
, pp. 1220-1227
-
-
Chennamsetty, I.1
Claudel, T.2
Kostner, K.M.3
Trauner, M.4
Kostner, G.M.5
-
94
-
-
0036086285
-
A mouse model of hepatocellular carcinoma: ectopic expression of fibroblast growth factor 19 in skeletal muscle of transgenic mice
-
Nicholes K, Guillet S, Tomlinson E, Hillan K, Wright B, Frantz GD, et al. A mouse model of hepatocellular carcinoma: ectopic expression of fibroblast growth factor 19 in skeletal muscle of transgenic mice. Am J Pathol (2002) 160:2295-307. doi:10.1016/S0002-9440(10)61177-7
-
(2002)
Am J Pathol
, vol.160
, pp. 2295-2307
-
-
Nicholes, K.1
Guillet, S.2
Tomlinson, E.3
Hillan, K.4
Wright, B.5
Frantz, G.D.6
-
95
-
-
84925507991
-
Intestinal FXR agonism promotes adipose tissue browning and reduces obesity and insulin resistance
-
Fang S, Suh JM, Reilly SM, Yu E, Osborn O, Lackey D, et al. Intestinal FXR agonism promotes adipose tissue browning and reduces obesity and insulin resistance. Nat Med (2015) 21:159-65. doi:10.1038/nm.3760
-
(2015)
Nat Med
, vol.21
, pp. 159-165
-
-
Fang, S.1
Suh, J.M.2
Reilly, S.M.3
Yu, E.4
Osborn, O.5
Lackey, D.6
-
96
-
-
79960726293
-
Integrated regulation of hepatic metabolism by fibroblast growth factor 21 (FGF21) in vivo
-
Fisher FM, Estall JL, Adams AC, Antonellis PJ, Bina HA, Flier JS, et al. Integrated regulation of hepatic metabolism by fibroblast growth factor 21 (FGF21) in vivo. Endocrinology (2011) 152:2996-3004. doi:10.1210/en.2011-0281
-
(2011)
Endocrinology
, vol.152
, pp. 2996-3004
-
-
Fisher, F.M.1
Estall, J.L.2
Adams, A.C.3
Antonellis, P.J.4
Bina, H.A.5
Flier, J.S.6
-
97
-
-
12344277552
-
Diabetes, obesity, and the brain
-
Schwartz MW, Porte D. Diabetes, obesity, and the brain. Science (2005) 307:375-9. doi:10.1126/science.1104344
-
(2005)
Science
, vol.307
, pp. 375-379
-
-
Schwartz, M.W.1
Porte, D.2
-
98
-
-
84887347937
-
Cooperation between brain and islet in glucose homeostasis and diabetes
-
Schwartz MW, Seeley RJ, Tschöp MH, Woods SC, Morton GJ, Myers MG, et al. Cooperation between brain and islet in glucose homeostasis and diabetes. Nature (2013) 503:59-66. doi:10.1038/nature12709
-
(2013)
Nature
, vol.503
, pp. 59-66
-
-
Schwartz, M.W.1
Seeley, R.J.2
Tschöp, M.H.3
Woods, S.C.4
Morton, G.J.5
Myers, M.G.6
-
99
-
-
0026596005
-
A new brain glucosensor and its physiological significance
-
Oomura Y, Sasaki K, Suzuki K, Muto T, Li AJ, Ogita Z, et al. A new brain glucosensor and its physiological significance. Am J Clin Nutr (1992) 55:278S-82S.
-
(1992)
Am J Clin Nutr
, vol.55
, pp. 278S-282S
-
-
Oomura, Y.1
Sasaki, K.2
Suzuki, K.3
Muto, T.4
Li, A.J.5
Ogita, Z.6
-
100
-
-
84871694003
-
Fibroblast growth factor-19 action in the brain reduces food intake and body weight and improves glucose tolerance in male rats
-
Ryan KK, Kohli R, Gutierrez-Aguilar R, Gaitonde SG, Woods SC, Seeley RJ. Fibroblast growth factor-19 action in the brain reduces food intake and body weight and improves glucose tolerance in male rats. Endocrinology (2013) 154:9-15. doi:10.1210/en.2012-1891
-
(2013)
Endocrinology
, vol.154
, pp. 9-15
-
-
Ryan, K.K.1
Kohli, R.2
Gutierrez-Aguilar, R.3
Gaitonde, S.G.4
Woods, S.C.5
Seeley, R.J.6
-
101
-
-
0034090265
-
Blood-brain barrier transport of 125I-labeled basic fibroblast growth factor
-
Deguchi Y, Naito T, Yuge T, Furukawa A, Yamada S, Pardridge WM, et al. Blood-brain barrier transport of 125I-labeled basic fibroblast growth factor. Pharm Res (2000) 17:63-9. doi:10.1023/A:1007570509232
-
(2000)
Pharm Res
, vol.17
, pp. 63-69
-
-
Deguchi, Y.1
Naito, T.2
Yuge, T.3
Furukawa, A.4
Yamada, S.5
Pardridge, W.M.6
-
102
-
-
84887075902
-
Fibroblast growth factor 19 entry into brain
-
Hsuchou H, Pan W, Kastin AJ. Fibroblast growth factor 19 entry into brain. Fluids Barriers CNS (2013) 10:32. doi:10.1186/2045-8118-10-32
-
(2013)
Fluids Barriers CNS
, vol.10
, pp. 32
-
-
Hsuchou, H.1
Pan, W.2
Kastin, A.J.3
-
103
-
-
0028214223
-
Effects of fibroblast growth factors and related peptides on food intake by rats
-
Sasaki K, Li A-J, Oomura Y, Muto T, Hanai K, Tooyama I, et al. Effects of fibroblast growth factors and related peptides on food intake by rats. Physiol Behav (1994) 56:211-8. doi:10.1016/0031-9384(94)90186-4
-
(1994)
Physiol Behav
, vol.56
, pp. 211-218
-
-
Sasaki, K.1
Li, A.-J.2
Oomura, Y.3
Muto, T.4
Hanai, K.5
Tooyama, I.6
-
104
-
-
0026068011
-
Effects of fibroblast growth factors and platelet-derived growth factor on food intake in rats
-
Sasaki K, Oomura Y, Suzuki K, Muto T, Hanai K, Tooyama I, et al. Effects of fibroblast growth factors and platelet-derived growth factor on food intake in rats. Brain Res Bull (1991) 27:327-32. doi:10.1016/0361-9230(91)90120-9
-
(1991)
Brain Res Bull
, vol.27
, pp. 327-332
-
-
Sasaki, K.1
Oomura, Y.2
Suzuki, K.3
Muto, T.4
Hanai, K.5
Tooyama, I.6
-
105
-
-
0029940787
-
Fibroblast growth factor receptor-1 in the lateral hypothalamic area regulates food intake
-
Li AJ, Oomura Y, Hori T, Aou S, Sasaki K, Kimura H, et al. Fibroblast growth factor receptor-1 in the lateral hypothalamic area regulates food intake. Exp Neurol (1996) 137:318-23. doi:10.1006/exnr.1996.0032
-
(1996)
Exp Neurol
, vol.137
, pp. 318-323
-
-
Li, A.J.1
Oomura, Y.2
Hori, T.3
Aou, S.4
Sasaki, K.5
Kimura, H.6
-
106
-
-
0029449937
-
Actions of acidic fibroblast growth factor fragments on food intake in rats
-
Sasaki K, Oomura Y, Li AJ, Hanai K, Tooyama I, Kimura H, et al. Actions of acidic fibroblast growth factor fragments on food intake in rats. Obes Res (1995) 3(Suppl 5):697S-706S. doi:10.1002/j.1550-8528.1995.tb00488.x
-
(1995)
Obes Res
, vol.3
, pp. 697S-706S
-
-
Sasaki, K.1
Oomura, Y.2
Li, A.J.3
Hanai, K.4
Tooyama, I.5
Kimura, H.6
-
107
-
-
0034923955
-
Feeding suppression by fibroblast growth factor-1 is accompanied by selective induction of heat shock protein 27 in hypothalamic astrocytes
-
Suzuki S, Li AJ, Ishisaki A, Hou X, Hasegawa M, Fukumura M, et al. Feeding suppression by fibroblast growth factor-1 is accompanied by selective induction of heat shock protein 27 in hypothalamic astrocytes. Eur J Neurosci (2001) 13:2299-308. doi:10.1046/j.0953-816x.2001.01606.x
-
(2001)
Eur J Neurosci
, vol.13
, pp. 2299-2308
-
-
Suzuki, S.1
Li, A.J.2
Ishisaki, A.3
Hou, X.4
Hasegawa, M.5
Fukumura, M.6
-
108
-
-
0026786651
-
Enhancement of slow wave sleep parallel to the satiating effect of acidic fibroblast growth factor in rats
-
De Saint Hilaire Z, Nicolaïdis S. Enhancement of slow wave sleep parallel to the satiating effect of acidic fibroblast growth factor in rats. Brain Res Bull (1992) 29:525-8. doi:10.1016/0361-9230(92)90094-E
-
(1992)
Brain Res Bull
, vol.29
, pp. 525-528
-
-
De Saint Hilaire, Z.1
Nicolaïdis, S.2
-
109
-
-
84928790920
-
FGF1 and FGF19 reverse diabetes by suppression of the hypothalamic-pituitary-adrenal axis
-
Perry RJ, Lee S, Ma L, Zhang D, Schlessinger J, Shulman GI. FGF1 and FGF19 reverse diabetes by suppression of the hypothalamic-pituitary-adrenal axis. Nat Commun (2015) 6:6980. doi:10.1038/ncomms7980
-
(2015)
Nat Commun
, vol.6
, pp. 6980
-
-
Perry, R.J.1
Lee, S.2
Ma, L.3
Zhang, D.4
Schlessinger, J.5
Shulman, G.I.6
-
110
-
-
84922331368
-
Glucocorticoids regulate the metabolic hormone FGF21 in a feed-forward loop
-
Patel R, Bookout AL, Magomedova L, Owen BM, Consiglio GP, Shimizu M, et al. Glucocorticoids regulate the metabolic hormone FGF21 in a feed-forward loop. Mol Endocrinol (2015) 29:213-23. doi:10.1210/me.2014-1259
-
(2015)
Mol Endocrinol
, vol.29
, pp. 213-223
-
-
Patel, R.1
Bookout, A.L.2
Magomedova, L.3
Owen, B.M.4
Consiglio, G.P.5
Shimizu, M.6
-
111
-
-
0024992271
-
Central effects of CRF on metabolism and energy balance
-
Rothwell NJ. Central effects of CRF on metabolism and energy balance. Neurosci Biobehav Rev (1990) 14:263-71. doi:10.1016/S0149-7634(05)80037-5
-
(1990)
Neurosci Biobehav Rev
, vol.14
, pp. 263-271
-
-
Rothwell, N.J.1
-
112
-
-
0032991511
-
Signaling through fibroblast growth factor receptor 2b plays a key role in the development of the exocrine pancreas
-
Miralles F, Czernichow P, Ozaki K, Itoh N, Scharfmann R. Signaling through fibroblast growth factor receptor 2b plays a key role in the development of the exocrine pancreas. Proc Natl Acad Sci U S A (1999) 96:6267-72. doi:10.1073/pnas.96.11.6267
-
(1999)
Proc Natl Acad Sci U S A
, vol.96
, pp. 6267-6272
-
-
Miralles, F.1
Czernichow, P.2
Ozaki, K.3
Itoh, N.4
Scharfmann, R.5
-
113
-
-
0034649608
-
Attenuation of FGF signalling in mouse beta-cells leads to diabetes
-
Hart AW, Baeza N, Apelqvist A, Edlund H. Attenuation of FGF signalling in mouse beta-cells leads to diabetes. Nature (2000) 408:864-8. doi:10.1038/35048589
-
(2000)
Nature
, vol.408
, pp. 864-868
-
-
Hart, A.W.1
Baeza, N.2
Apelqvist, A.3
Edlund, H.4
-
114
-
-
0037382330
-
Expression and misexpression of members of the FGF and TGFbeta families of growth factors in the developing mouse pancreas
-
Dichmann DS, Miller CP, Jensen J, Scott Heller R, Serup P. Expression and misexpression of members of the FGF and TGFbeta families of growth factors in the developing mouse pancreas. Dev Dyn (2003) 226:663-74. doi:10.1002/dvdy.10270
-
(2003)
Dev Dyn
, vol.226
, pp. 663-674
-
-
Dichmann, D.S.1
Miller, C.P.2
Jensen, J.3
Scott Heller, R.4
Serup, P.5
-
115
-
-
0036896505
-
Malonyl-CoA signaling, lipid partitioning, and glucolipotoxicity: role in beta-cell adaptation and failure in the etiology of diabetes
-
Prentki M, Joly E, El-Assaad W, Roduit R. Malonyl-CoA signaling, lipid partitioning, and glucolipotoxicity: role in beta-cell adaptation and failure in the etiology of diabetes. Diabetes (2002) 51(Suppl 3):S405-13. doi:10.2337/diabetes.51.2007.S405
-
(2002)
Diabetes
, vol.51
, pp. S405-S413
-
-
Prentki, M.1
Joly, E.2
El-Assaad, W.3
Roduit, R.4
-
116
-
-
84870502374
-
Autofluorescence imaging of living pancreatic islets reveals fibroblast growth factor-21 (FGF21)-induced metabolism
-
Sun MY, Yoo E, Green BJ, Altamentova SM, Kilkenny DM, Rocheleau JV. Autofluorescence imaging of living pancreatic islets reveals fibroblast growth factor-21 (FGF21)-induced metabolism. Biophys J (2012) 103:2379-88. doi:10.1016/j.bpj.2012.10.028
-
(2012)
Biophys J
, vol.103
, pp. 2379-2388
-
-
Sun, M.Y.1
Yoo, E.2
Green, B.J.3
Altamentova, S.M.4
Kilkenny, D.M.5
Rocheleau, J.V.6
-
117
-
-
0035911638
-
A novel fibroblast growth factor receptor-5 preferentially expressed in the pancreas
-
Kim I, Moon S-O, Yu K-H, Kim U-H, Koh GY. A novel fibroblast growth factor receptor-5 preferentially expressed in the pancreas. Biochim Biophys Acta (2001) 1518:152-6. doi:10.1016/S0167-4781(00)00282-7
-
(2001)
Biochim Biophys Acta
, vol.1518
, pp. 152-156
-
-
Kim, I.1
Moon, S.-O.2
Yu, K.-H.3
Kim, U.-H.4
Koh, G.Y.5
-
118
-
-
84879054546
-
Fibroblast growth factor receptor like-1 (FGFRL1) interacts with SHP-1 phosphatase at insulin secretory granules and induces beta-cell ERK1/2 protein activation
-
Silva PN, Altamentova SM, Kilkenny DM, Rocheleau JV. Fibroblast growth factor receptor like-1 (FGFRL1) interacts with SHP-1 phosphatase at insulin secretory granules and induces beta-cell ERK1/2 protein activation. J Biol Chem (2013) 288:17859-70. doi:10.1074/jbc.M112.440677
-
(2013)
J Biol Chem
, vol.288
, pp. 17859-17870
-
-
Silva, P.N.1
Altamentova, S.M.2
Kilkenny, D.M.3
Rocheleau, J.V.4
-
119
-
-
0030821282
-
A role for FGF-6 in skeletal muscle regeneration
-
Floss T, Arnold HH, Braun T. A role for FGF-6 in skeletal muscle regeneration. Genes Dev (1997) 11:2040-51. doi:10.1101/gad.11.16.2040
-
(1997)
Genes Dev
, vol.11
, pp. 2040-2051
-
-
Floss, T.1
Arnold, H.H.2
Braun, T.3
-
120
-
-
0942287279
-
Embryonic myogenesis pathways in muscle regeneration
-
Zhao P, Hoffman EP. Embryonic myogenesis pathways in muscle regeneration. Dev Dyn (2004) 229:380-92. doi:10.1002/dvdy.10457
-
(2004)
Dev Dyn
, vol.229
, pp. 380-392
-
-
Zhao, P.1
Hoffman, E.P.2
-
121
-
-
69249093921
-
Fibroblast growth factor 21 controls glycemia via regulation of hepatic glucose flux and insulin sensitivity
-
Berglund ED, Li CY, Bina HA, Lynes SE, Michael MD, Shanafelt AB, et al. Fibroblast growth factor 21 controls glycemia via regulation of hepatic glucose flux and insulin sensitivity. Endocrinology (2009) 150:4084-93. doi:10.1210/en.2009-0221
-
(2009)
Endocrinology
, vol.150
, pp. 4084-4093
-
-
Berglund, E.D.1
Li, C.Y.2
Bina, H.A.3
Lynes, S.E.4
Michael, M.D.5
Shanafelt, A.B.6
-
122
-
-
84864281810
-
Fibroblast growth factor-21 protects human skeletal muscle myotubes from palmitate-induced insulin resistance by inhibiting stress kinase and NF-κB
-
Lee MS, Choi S-E, Ha ES, An S-Y, Kim TH, Han SJ, et al. Fibroblast growth factor-21 protects human skeletal muscle myotubes from palmitate-induced insulin resistance by inhibiting stress kinase and NF-κB. Metabolism (2012) 61:1142-51. doi:10.1016/j.metabol.2012.01.012
-
(2012)
Metabolism
, vol.61
, pp. 1142-1151
-
-
Lee, M.S.1
Choi, S.-E.2
Ha, E.S.3
An, S.-Y.4
Kim, T.H.5
Han, S.J.6
-
123
-
-
54849438574
-
FGF21 is an Akt-regulated myokine
-
Izumiya Y, Bina HA, Ouchi N, Akasaki Y, Kharitonenkov A, Walsh K. FGF21 is an Akt-regulated myokine. FEBS Lett (2008) 582:3805-10. doi:10.1016/j.febslet.2008.10.021
-
(2008)
FEBS Lett
, vol.582
, pp. 3805-3810
-
-
Izumiya, Y.1
Bina, H.A.2
Ouchi, N.3
Akasaki, Y.4
Kharitonenkov, A.5
Walsh, K.6
-
124
-
-
84861655836
-
Exercise increases serum fibroblast growth factor 21 (FGF21) levels
-
Cuevas-Ramos D, Almeda-Valdés P, Meza-Arana CE, Brito-Córdova G, Gómez-Pérez FJ, Mehta R, et al. Exercise increases serum fibroblast growth factor 21 (FGF21) levels. PLoS One (2012) 7:e38022. doi:10.1371/journal.pone.0038022
-
(2012)
PLoS One
, vol.7
-
-
Cuevas-Ramos, D.1
Almeda-Valdés, P.2
Meza-Arana, C.E.3
Brito-Córdova, G.4
Gómez-Pérez, F.J.5
Mehta, R.6
-
125
-
-
73249138414
-
Fibroblast growth factor-21 is induced in human skeletal muscles by hyperinsulinemia
-
Hojman P, Pedersen M, Nielsen AR, Krogh-Madsen R, Yfanti C, Akerstrom T, et al. Fibroblast growth factor-21 is induced in human skeletal muscles by hyperinsulinemia. Diabetes (2009) 58:2797-801. doi:10.2337/db09-0713
-
(2009)
Diabetes
, vol.58
, pp. 2797-2801
-
-
Hojman, P.1
Pedersen, M.2
Nielsen, A.R.3
Krogh-Madsen, R.4
Yfanti, C.5
Akerstrom, T.6
-
126
-
-
77957743736
-
Mitochondrial myopathy induces a starvation-like response
-
Tyynismaa H, Carroll CJ, Raimundo N, Ahola-Erkkilä S, Wenz T, Ruhanen H, et al. Mitochondrial myopathy induces a starvation-like response. Hum Mol Genet (2010) 19:3948-58. doi:10.1093/hmg/ddq310
-
(2010)
Hum Mol Genet
, vol.19
, pp. 3948-3958
-
-
Tyynismaa, H.1
Carroll, C.J.2
Raimundo, N.3
Ahola-Erkkilä, S.4
Wenz, T.5
Ruhanen, H.6
-
127
-
-
80051667626
-
FGF-21 as a biomarker for muscle-manifesting mitochondrial respiratory chain deficiencies: a diagnostic study
-
Suomalainen A, Elo JM, Pietiläinen KH, Hakonen AH, Sevastianova K, Korpela M, et al. FGF-21 as a biomarker for muscle-manifesting mitochondrial respiratory chain deficiencies: a diagnostic study. Lancet Neurol (2011) 10:806-18. doi:10.1016/S1474-4422(11)70155-7
-
(2011)
Lancet Neurol
, vol.10
, pp. 806-818
-
-
Suomalainen, A.1
Elo, J.M.2
Pietiläinen, K.H.3
Hakonen, A.H.4
Sevastianova, K.5
Korpela, M.6
-
128
-
-
84875327535
-
Expression of fibroblast growth factor-21 in muscle is associated with lipodystrophy, insulin resistance and lipid disturbances in patients with HIV
-
Lindegaard B, Hvid T, Grøndahl T, Frosig C, Gerstoft J, Hojman P, et al. Expression of fibroblast growth factor-21 in muscle is associated with lipodystrophy, insulin resistance and lipid disturbances in patients with HIV. PLoS One (2013) 8:e55632. doi:10.1371/journal.pone.0055632
-
(2013)
PLoS One
, vol.8
-
-
Lindegaard, B.1
Hvid, T.2
Grøndahl, T.3
Frosig, C.4
Gerstoft, J.5
Hojman, P.6
-
129
-
-
84890389860
-
Elevated FGF21 secretion, PGC-1a and ketogenic enzyme expression are hallmarks of iron-sulfur cluster depletion in human skeletal muscle
-
Crooks DR, Natarajan TG, Jeong SY, Chen C, Park SY, Huang H, et al. Elevated FGF21 secretion, PGC-1a and ketogenic enzyme expression are hallmarks of iron-sulfur cluster depletion in human skeletal muscle. Hum Mol Genet (2014) 23:24-39. doi:10.1093/hmg/ddt393
-
(2014)
Hum Mol Genet
, vol.23
, pp. 24-39
-
-
Crooks, D.R.1
Natarajan, T.G.2
Jeong, S.Y.3
Chen, C.4
Park, S.Y.5
Huang, H.6
-
130
-
-
84884536419
-
Pathophysiological roles of FGF signaling in the heart
-
Itoh N, Ohta H. Pathophysiological roles of FGF signaling in the heart. Front Physiol (2013) 4:247. doi:10.3389/fphys.2013.00247
-
(2013)
Front Physiol
, vol.4
, pp. 247
-
-
Itoh, N.1
Ohta, H.2
-
131
-
-
84879666287
-
Fibroblast growth factor 21 protects against cardiac hypertrophy in mice
-
Planavila A, Redondo I, Hondares E, Vinciguerra M, Munts C, Iglesias R, et al. Fibroblast growth factor 21 protects against cardiac hypertrophy in mice. Nat Commun (2013) 4:2019. doi:10.1038/ncomms3019
-
(2013)
Nat Commun
, vol.4
, pp. 2019
-
-
Planavila, A.1
Redondo, I.2
Hondares, E.3
Vinciguerra, M.4
Munts, C.5
Iglesias, R.6
-
132
-
-
84863116228
-
Fibroblast growth factor 21 promotes bone loss by potentiating the effects of peroxisome proliferator-activated receptor γ
-
Wei W, Dutchak PA, Wang X, Ding X, Wang X, Bookout AL, et al. Fibroblast growth factor 21 promotes bone loss by potentiating the effects of peroxisome proliferator-activated receptor γ. Proc Natl Acad Sci U S A (2012) 109:3143-8. doi:10.1073/pnas.1200797109
-
(2012)
Proc Natl Acad Sci U S A
, vol.109
, pp. 3143-3148
-
-
Wei, W.1
Dutchak, P.A.2
Wang, X.3
Ding, X.4
Wang, X.5
Bookout, A.L.6
-
133
-
-
84868326394
-
Pharmacokinetic properties of 2nd-generation fibroblast growth factor-1 mutants for therapeutic application
-
Xia X, Babcock JP, Blaber SI, Harper KM, Blaber M. Pharmacokinetic properties of 2nd-generation fibroblast growth factor-1 mutants for therapeutic application. PLoS One (2012) 7:e48210. doi:10.1371/journal.pone.0048210
-
(2012)
PLoS One
, vol.7
-
-
Xia, X.1
Babcock, J.P.2
Blaber, S.I.3
Harper, K.M.4
Blaber, M.5
-
134
-
-
0032562232
-
Induction of neoangiogenesis in ischemic myocardium by human growth factors?: first clinical results of a new treatment of coronary heart disease
-
Schumacher B, Pecher P, von Specht BU, Stegmann T. Induction of neoangiogenesis in ischemic myocardium by human growth factors?: first clinical results of a new treatment of coronary heart disease. Circulation (1998) 97:645-50. doi:10.1161/01.CIR.97.7.645
-
(1998)
Circulation
, vol.97
, pp. 645-650
-
-
Schumacher, B.1
Pecher, P.2
von Specht, B.U.3
Stegmann, T.4
-
135
-
-
0016704918
-
Purification of a fibroblast growth factor from bovine pituitary
-
Gospodarowicz D. Purification of a fibroblast growth factor from bovine pituitary. J Biol Chem (1975) 250:2515-20.
-
(1975)
J Biol Chem
, vol.250
, pp. 2515-2520
-
-
Gospodarowicz, D.1
-
136
-
-
0025129942
-
Recovery of mitogenic activity of a growth factor mutant with a nuclear translocation sequence
-
Imamura T, Engleka K, Zhan X, Tokita Y, Forough R, Roeder D, et al. Recovery of mitogenic activity of a growth factor mutant with a nuclear translocation sequence. Science (1990) 249:1567-70. doi:10.1126/science.1699274
-
(1990)
Science
, vol.249
, pp. 1567-1570
-
-
Imamura, T.1
Engleka, K.2
Zhan, X.3
Tokita, Y.4
Forough, R.5
Roeder, D.6
-
137
-
-
77956330492
-
A novel fibroblast growth factor-1 (FGF1) mutant that acts as an FGF antagonist
-
Yamaji S, Saegusa J, Ieguchi K, Fujita M, Mori S, Takada YK, et al. A novel fibroblast growth factor-1 (FGF1) mutant that acts as an FGF antagonist. PLoS One (2010) 5:e10273. doi:10.1371/journal.pone.0010273
-
(2010)
PLoS One
, vol.5
-
-
Yamaji, S.1
Saegusa, J.2
Ieguchi, K.3
Fujita, M.4
Mori, S.5
Takada, Y.K.6
-
138
-
-
84874555267
-
A dominant-negative FGF1 mutant (the R50E mutant) suppresses tumorigenesis and angiogenesis
-
Mori S, Tran V, Nishikawa K, Kaneda T, Hamada Y, Kawaguchi N, et al. A dominant-negative FGF1 mutant (the R50E mutant) suppresses tumorigenesis and angiogenesis. PLoS One (2013) 8:e57927. doi:10.1371/journal.pone.0057927
-
(2013)
PLoS One
, vol.8
-
-
Mori, S.1
Tran, V.2
Nishikawa, K.3
Kaneda, T.4
Hamada, Y.5
Kawaguchi, N.6
-
139
-
-
77956293010
-
Separating mitogenic and metabolic activities of fibroblast growth factor 19 (FGF19)
-
Wu X, Ge H, Lemon B, Vonderfecht S, Baribault H, Weiszmann J, et al. Separating mitogenic and metabolic activities of fibroblast growth factor 19 (FGF19). Proc Natl Acad Sci U S A (2010) 107:14158-63. doi:10.1073/pnas.1009427107
-
(2010)
Proc Natl Acad Sci U S A
, vol.107
, pp. 14158-14163
-
-
Wu, X.1
Ge, H.2
Lemon, B.3
Vonderfecht, S.4
Baribault, H.5
Weiszmann, J.6
-
140
-
-
57849155278
-
FGF21 N-and C-termini play different roles in receptor interaction and activation
-
Yie J, Hecht R, Patel J, Stevens J, Wang W, Hawkins N, et al. FGF21 N-and C-termini play different roles in receptor interaction and activation. FEBS Lett (2009) 583:19-24. doi:10.1016/j.febslet.2008.11.023
-
(2009)
FEBS Lett
, vol.583
, pp. 19-24
-
-
Yie, J.1
Hecht, R.2
Patel, J.3
Stevens, J.4
Wang, W.5
Hawkins, N.6
-
141
-
-
84870278211
-
Rationale-based engineering of a potent long-acting FGF21 analog for the treatment of type 2 diabetes
-
Hecht R, Li Y-S, Sun J, Belouski E, Hall M, Hager T, et al. Rationale-based engineering of a potent long-acting FGF21 analog for the treatment of type 2 diabetes. PLoS One (2012) 7:e49345. doi:10.1371/journal.pone.0049345
-
(2012)
PLoS One
, vol.7
-
-
Hecht, R.1
Li, Y.-S.2
Sun, J.3
Belouski, E.4
Hall, M.5
Hager, T.6
-
142
-
-
62149139387
-
Different roles of N-and C-termini in the functional activity of FGF21
-
Micanovic R, Raches DW, Dunbar JD, Driver DA, Bina HA, Dickinson CD, et al. Different roles of N-and C-termini in the functional activity of FGF21. J Cell Physiol (2009) 219:227-34. doi:10.1002/jcp.21675
-
(2009)
J Cell Physiol
, vol.219
, pp. 227-234
-
-
Micanovic, R.1
Raches, D.W.2
Dunbar, J.D.3
Driver, D.A.4
Bina, H.A.5
Dickinson, C.D.6
-
143
-
-
84897109882
-
Inventing new medicines: the FGF21 story
-
Kharitonenkov A, Adams AC. Inventing new medicines: the FGF21 story. Mol Metab (2014) 3:221-9. doi:10.1016/j.molmet.2013.12.003
-
(2014)
Mol Metab
, vol.3
, pp. 221-229
-
-
Kharitonenkov, A.1
Adams, A.C.2
-
144
-
-
84901821975
-
FGF21-based pharmacotherapy-potential utility for metabolic disorders
-
Gimeno RE, Moller DE. FGF21-based pharmacotherapy-potential utility for metabolic disorders. Trends Endocrinol Metab (2014) 25:303-11. doi:10.1016/j.tem.2014.03.001
-
(2014)
Trends Endocrinol Metab
, vol.25
, pp. 303-311
-
-
Gimeno, R.E.1
Moller, D.E.2
-
145
-
-
84879389894
-
Polyethylene glycol modified FGF21 engineered to maximize potency and minimize vacuole formation
-
Xu J, Bussiere J, Yie J, Sickmier A, An P, Belouski E, et al. Polyethylene glycol modified FGF21 engineered to maximize potency and minimize vacuole formation. Bioconjug Chem (2013) 24:915-25. doi:10.1021/bc300603k
-
(2013)
Bioconjug Chem
, vol.24
, pp. 915-925
-
-
Xu, J.1
Bussiere, J.2
Yie, J.3
Sickmier, A.4
An, P.5
Belouski, E.6
-
146
-
-
84880426480
-
Development of a novel long-acting antidiabetic FGF21 mimetic by targeted conjugation to a scaffold antibody
-
Huang J, Ishino T, Chen G, Rolzin P, Osothprarop TF, Retting K, et al. Development of a novel long-acting antidiabetic FGF21 mimetic by targeted conjugation to a scaffold antibody. J Pharmacol Exp Ther (2013) 346:270-80. doi:10.1124/jpet.113.204420
-
(2013)
J Pharmacol Exp Ther
, vol.346
, pp. 270-280
-
-
Huang, J.1
Ishino, T.2
Chen, G.3
Rolzin, P.4
Osothprarop, T.F.5
Retting, K.6
-
147
-
-
84891846790
-
Current strategies for inhibiting FGFR activities in clinical applications: opportunities, challenges and toxicological considerations
-
Ho HK, Yeo AHL, Kang TS, Chua BT. Current strategies for inhibiting FGFR activities in clinical applications: opportunities, challenges and toxicological considerations. Drug Discov Today (2014) 19:51-62. doi:10.1016/j.drudis.2013.07.021
-
(2014)
Drug Discov Today
, vol.19
, pp. 51-62
-
-
Ho, H.K.1
Yeo, A.H.L.2
Kang, T.S.3
Chua, B.T.4
-
148
-
-
33947108356
-
Monoclonal antibody antagonists of hypothalamic FGFR1 cause potent but reversible hypophagia and weight loss in rodents and monkeys
-
Sun HD, Malabunga M, Tonra JR, DiRenzo R, Carrick FE, Zheng H, et al. Monoclonal antibody antagonists of hypothalamic FGFR1 cause potent but reversible hypophagia and weight loss in rodents and monkeys. Am J Physiol Endocrinol Metab (2007) 292:E964-76. doi:10.1152/ajpendo.00089.2006
-
(2007)
Am J Physiol Endocrinol Metab
, vol.292
, pp. E964-E976
-
-
Sun, H.D.1
Malabunga, M.2
Tonra, J.R.3
DiRenzo, R.4
Carrick, F.E.5
Zheng, H.6
-
149
-
-
83655165300
-
Amelioration of type 2 diabetes by antibody-mediated activation of fibroblast growth factor receptor 1
-
Wu A-L, Kolumam G, Stawicki S, Chen Y, Li J, Zavala-Solorio J, et al. Amelioration of type 2 diabetes by antibody-mediated activation of fibroblast growth factor receptor 1. Sci Transl Med (2011) 3:113ra126. doi:10.1126/scitranslmed.3002669
-
(2011)
Sci Transl Med
, vol.3
-
-
Wu, A.-L.1
Kolumam, G.2
Stawicki, S.3
Chen, Y.4
Li, J.5
Zavala-Solorio, J.6
-
150
-
-
84870359606
-
Treating diabetes and obesity with an FGF21-mimetic antibody activating the ßKlotho/FGFR1c receptor complex
-
Foltz IN, Hu S, King C, Wu X, Yang C, Wang W, et al. Treating diabetes and obesity with an FGF21-mimetic antibody activating the ßKlotho/FGFR1c receptor complex. Sci Transl Med (2012) 4:162ra153. doi:10.1126/scitranslmed.3004690
-
(2012)
Sci Transl Med
, vol.4
-
-
Foltz, I.N.1
Hu, S.2
King, C.3
Wu, X.4
Yang, C.5
Wang, W.6
-
151
-
-
84876452595
-
FGF21 can be mimicked in vitro and in vivo by a novel anti-FGFR1c/β-klotho bispecific protein
-
Smith R, Duguay A, Bakker A, Li P, Weiszmann J, Thomas MR, et al. FGF21 can be mimicked in vitro and in vivo by a novel anti-FGFR1c/β-klotho bispecific protein. PLoS One (2013) 8:e61432. doi:10.1371/journal.pone.0061432
-
(2013)
PLoS One
, vol.8
-
-
Smith, R.1
Duguay, A.2
Bakker, A.3
Li, P.4
Weiszmann, J.5
Thomas, M.R.6
-
152
-
-
84951573603
-
Sustained brown fat stimulation and insulin sensitization by a humanized bispecific antibody agonist for fibroblast growth factor receptor 1/ßKlotho complex
-
Kolumam G, Chen MZ, Tong R, Zavala-Solorio J, Kates L, van Bruggen N, et al. Sustained brown fat stimulation and insulin sensitization by a humanized bispecific antibody agonist for fibroblast growth factor receptor 1/ßKlotho complex. EBioMedicine (2015) 2:730-43. doi:10.1016/j.ebiom.2015.05.028
-
(2015)
EBioMedicine
, vol.2
, pp. 730-743
-
-
Kolumam, G.1
Chen, M.Z.2
Tong, R.3
Zavala-Solorio, J.4
Kates, L.5
van Bruggen, N.6
-
153
-
-
84913580271
-
Monoclonal antibody targeting of fibroblast growth factor receptor 1c ameliorates obesity and glucose intolerance via central mechanisms
-
Lelliott CJ, Ahnmark A, Admyre T, Ahlstedt I, Irving L, Keyes F, et al. Monoclonal antibody targeting of fibroblast growth factor receptor 1c ameliorates obesity and glucose intolerance via central mechanisms. PLoS One (2014) 9:e112109. doi:10.1371/journal.pone.0112109
-
(2014)
PLoS One
, vol.9
-
-
Lelliott, C.J.1
Ahnmark, A.2
Admyre, T.3
Ahlstedt, I.4
Irving, L.5
Keyes, F.6
|