-
1
-
-
84862622024
-
FGF21: the center of a transcriptional nexus in metabolic regulation
-
Adams A.C., Kharitonenkov A. FGF21: the center of a transcriptional nexus in metabolic regulation. Curr. Diabetes Rev. 2012, 8:285-293.
-
(2012)
Curr. Diabetes Rev.
, vol.8
, pp. 285-293
-
-
Adams, A.C.1
Kharitonenkov, A.2
-
2
-
-
84870272334
-
FGF21 requires βklotho to act invivo
-
Adams A.C., Cheng C.C., Coskun T., Kharitonenkov A. FGF21 requires βklotho to act invivo. PLoS ONE 2012, 7:e49977.
-
(2012)
PLoS ONE
, vol.7
, pp. e49977
-
-
Adams, A.C.1
Cheng, C.C.2
Coskun, T.3
Kharitonenkov, A.4
-
3
-
-
84905679771
-
The breadth of FGF21's metabolic actions are governed by FGFR1 in adipose tissue
-
Adams A.C., Yang C., Coskun T., Cheng C.C., Gimeno R.E., Luo Y., Kharitonenkov A. The breadth of FGF21's metabolic actions are governed by FGFR1 in adipose tissue. Mol. Metab. 2012, 2:31-37.
-
(2012)
Mol. Metab.
, vol.2
, pp. 31-37
-
-
Adams, A.C.1
Yang, C.2
Coskun, T.3
Cheng, C.C.4
Gimeno, R.E.5
Luo, Y.6
Kharitonenkov, A.7
-
4
-
-
84893643263
-
FGF21: insights into mechanism of action from preclinical studies
-
Antonellis P.J., Kharitonenkov A., Adams A.C. FGF21: insights into mechanism of action from preclinical studies. J.Anim. Sci. 2014, 92:407-413.
-
(2014)
J.Anim. Sci.
, vol.92
, pp. 407-413
-
-
Antonellis, P.J.1
Kharitonenkov, A.2
Adams, A.C.3
-
5
-
-
70350322694
-
Fibroblast growth factor 21-deficient mice demonstrate impaired adaptation to ketosis
-
Badman M.K., Koester A., Flier J.S., Kharitonenkov A., Maratos-Flier E. Fibroblast growth factor 21-deficient mice demonstrate impaired adaptation to ketosis. Endocrinology 2009, 150:4931-4940.
-
(2009)
Endocrinology
, vol.150
, pp. 4931-4940
-
-
Badman, M.K.1
Koester, A.2
Flier, J.S.3
Kharitonenkov, A.4
Maratos-Flier, E.5
-
6
-
-
79751503329
-
Brown adipose tissue activity controls triglyceride clearance
-
Bartelt A., Bruns O.T., Reimer R., Hohenberg H., Ittrich H., Peldschus K., Kaul M.G., Tromsdorf U.I., Weller H., Waurisch C., et al. Brown adipose tissue activity controls triglyceride clearance. Nat. Med. 2011, 17:200-205.
-
(2011)
Nat. Med.
, vol.17
, pp. 200-205
-
-
Bartelt, A.1
Bruns, O.T.2
Reimer, R.3
Hohenberg, H.4
Ittrich, H.5
Peldschus, K.6
Kaul, M.G.7
Tromsdorf, U.I.8
Weller, H.9
Waurisch, C.10
-
7
-
-
84883167011
-
Cellular mechanisms by which FGF21 improves insulin sensitivity in male mice
-
Camporez J.P., Jornayvaz F.R., Petersen M.C., Pesta D., Guigni B.A., Serr J., Zhang D., Kahn M., Samuel V.T., Jurczak M.J., Shulman G.I. Cellular mechanisms by which FGF21 improves insulin sensitivity in male mice. Endocrinology 2013, 154:3099-3109.
-
(2013)
Endocrinology
, vol.154
, pp. 3099-3109
-
-
Camporez, J.P.1
Jornayvaz, F.R.2
Petersen, M.C.3
Pesta, D.4
Guigni, B.A.5
Serr, J.6
Zhang, D.7
Kahn, M.8
Samuel, V.T.9
Jurczak, M.J.10
Shulman, G.I.11
-
8
-
-
0347989317
-
Brown adipose tissue: function and physiological significance
-
Cannon B., Nedergaard J. Brown adipose tissue: function and physiological significance. Physiol. Rev. 2004, 84:277-359.
-
(2004)
Physiol. Rev.
, vol.84
, pp. 277-359
-
-
Cannon, B.1
Nedergaard, J.2
-
9
-
-
79960743932
-
Brown adipose tissue responds to cold and adrenergic stimulation by induction of FGF21
-
Chartoumpekis D.V., Habeos I.G., Ziros P.G., Psyrogiannis A.I., Kyriazopoulou V.E., Papavassiliou A.G. Brown adipose tissue responds to cold and adrenergic stimulation by induction of FGF21. Mol. Med. 2011, 17:736-740.
-
(2011)
Mol. Med.
, vol.17
, pp. 736-740
-
-
Chartoumpekis, D.V.1
Habeos, I.G.2
Ziros, P.G.3
Psyrogiannis, A.I.4
Kyriazopoulou, V.E.5
Papavassiliou, A.G.6
-
10
-
-
84911896533
-
Brown adipose tissue improves whole-body glucose homeostasis and insulin sensitivity in humans
-
Chondronikola M., Volpi E., Børsheim E., Porter C., Annamalai P., Enerbäck S., Lidell M.E., Saraf M.K., Labbe S.M., Hurren N.M., et al. Brown adipose tissue improves whole-body glucose homeostasis and insulin sensitivity in humans. Diabetes 2014, 63:4089-4099.
-
(2014)
Diabetes
, vol.63
, pp. 4089-4099
-
-
Chondronikola, M.1
Volpi, E.2
Børsheim, E.3
Porter, C.4
Annamalai, P.5
Enerbäck, S.6
Lidell, M.E.7
Saraf, M.K.8
Labbe, S.M.9
Hurren, N.M.10
-
11
-
-
57349098220
-
Fibroblast growth factor 21 corrects obesity in mice
-
Coskun T., Bina H.A., Schneider M.A., Dunbar J.D., Hu C.C., Chen Y., Moller D.E., Kharitonenkov A. Fibroblast growth factor 21 corrects obesity in mice. Endocrinology 2008, 149:6018-6027.
-
(2008)
Endocrinology
, vol.149
, pp. 6018-6027
-
-
Coskun, T.1
Bina, H.A.2
Schneider, M.A.3
Dunbar, J.D.4
Hu, C.C.5
Chen, Y.6
Moller, D.E.7
Kharitonenkov, A.8
-
12
-
-
84865741904
-
βKlotho is required for fibroblast growth factor 21 effects on growth and metabolism
-
Ding X., Boney-Montoya J., Owen B.M., Bookout A.L., Coate K.C., Mangelsdorf D.J., Kliewer S.A. βKlotho is required for fibroblast growth factor 21 effects on growth and metabolism. Cell Metab. 2012, 16:387-393.
-
(2012)
Cell Metab.
, vol.16
, pp. 387-393
-
-
Ding, X.1
Boney-Montoya, J.2
Owen, B.M.3
Bookout, A.L.4
Coate, K.C.5
Mangelsdorf, D.J.6
Kliewer, S.A.7
-
13
-
-
84893849860
-
Interplay between FGF21 and insulin action in the liver regulates metabolism
-
Emanuelli B., Vienberg S.G., Smyth G., Cheng C., Stanford K.I., Arumugam M., Michael M.D., Adams A.C., Kharitonenkov A., Kahn C.R. Interplay between FGF21 and insulin action in the liver regulates metabolism. J.Clin. Invest. 2014, 124:515-527.
-
(2014)
J.Clin. Invest.
, vol.124
, pp. 515-527
-
-
Emanuelli, B.1
Vienberg, S.G.2
Smyth, G.3
Cheng, C.4
Stanford, K.I.5
Arumugam, M.6
Michael, M.D.7
Adams, A.C.8
Kharitonenkov, A.9
Kahn, C.R.10
-
14
-
-
1842409029
-
Mice lacking mitochondrial uncoupling protein are cold-sensitive but not obese
-
Enerbäck S., Jacobsson A., Simpson E.M., Guerra C., Yamashita H., Harper M.E., Kozak L.P. Mice lacking mitochondrial uncoupling protein are cold-sensitive but not obese. Nature 1997, 387:90-94.
-
(1997)
Nature
, vol.387
, pp. 90-94
-
-
Enerbäck, S.1
Jacobsson, A.2
Simpson, E.M.3
Guerra, C.4
Yamashita, H.5
Harper, M.E.6
Kozak, L.P.7
-
15
-
-
58749091645
-
UCP1 ablation induces obesity and abolishes diet-induced thermogenesis in mice exempt from thermal stress by living at thermoneutrality
-
Feldmann H.M., Golozoubova V., Cannon B., Nedergaard J. UCP1 ablation induces obesity and abolishes diet-induced thermogenesis in mice exempt from thermal stress by living at thermoneutrality. Cell Metab. 2009, 9:203-209.
-
(2009)
Cell Metab.
, vol.9
, pp. 203-209
-
-
Feldmann, H.M.1
Golozoubova, V.2
Cannon, B.3
Nedergaard, J.4
-
16
-
-
84863012022
-
FGF21 regulates PGC-1α and browning of white adipose tissues in adaptive thermogenesis
-
Fisher F.M., Kleiner S., Douris N., Fox E.C., Mepani R.J., Verdeguer F., Wu J., Kharitonenkov A., Flier J.S., Maratos-Flier E., Spiegelman B.M. FGF21 regulates PGC-1α and browning of white adipose tissues in adaptive thermogenesis. Genes Dev. 2012, 26:271-281.
-
(2012)
Genes Dev.
, vol.26
, pp. 271-281
-
-
Fisher, F.M.1
Kleiner, S.2
Douris, N.3
Fox, E.C.4
Mepani, R.J.5
Verdeguer, F.6
Wu, J.7
Kharitonenkov, A.8
Flier, J.S.9
Maratos-Flier, E.10
Spiegelman, B.M.11
-
17
-
-
84455199475
-
Lack of overt FGF21 resistance in two mouse models of obesity and insulin resistance
-
Hale C., Chen M.M., Stanislaus S., Chinookoswong N., Hager T., Wang M., Véniant M.M., Xu J. Lack of overt FGF21 resistance in two mouse models of obesity and insulin resistance. Endocrinology 2012, 153:69-80.
-
(2012)
Endocrinology
, vol.153
, pp. 69-80
-
-
Hale, C.1
Chen, M.M.2
Stanislaus, S.3
Chinookoswong, N.4
Hager, T.5
Wang, M.6
Véniant, M.M.7
Xu, J.8
-
18
-
-
84887431711
-
Brown and beige fat: development, function and therapeutic potential
-
Harms M., Seale P. Brown and beige fat: development, function and therapeutic potential. Nat. Med. 2013, 19:1252-1263.
-
(2013)
Nat. Med.
, vol.19
, pp. 1252-1263
-
-
Harms, M.1
Seale, P.2
-
19
-
-
84877272187
-
An FGF21-adiponectin-ceramide axis controls energy expenditure and insulin action in mice
-
Holland W.L., Adams A.C., Brozinick J.T., Bui H.H., Miyauchi Y., Kusminski C.M., Bauer S.M., Wade M., Singhal E., Cheng C.C., et al. An FGF21-adiponectin-ceramide axis controls energy expenditure and insulin action in mice. Cell Metab. 2013, 17:790-797.
-
(2013)
Cell Metab.
, vol.17
, pp. 790-797
-
-
Holland, W.L.1
Adams, A.C.2
Brozinick, J.T.3
Bui, H.H.4
Miyauchi, Y.5
Kusminski, C.M.6
Bauer, S.M.7
Wade, M.8
Singhal, E.9
Cheng, C.C.10
-
20
-
-
77249099832
-
Hepatic FGF21 expression is induced at birth via PPARalpha in response to milk intake and contributes to thermogenic activation of neonatal brown fat
-
Hondares E., Rosell M., Gonzalez F.J., Giralt M., Iglesias R., Villarroya F. Hepatic FGF21 expression is induced at birth via PPARalpha in response to milk intake and contributes to thermogenic activation of neonatal brown fat. Cell Metab. 2010, 11:206-212.
-
(2010)
Cell Metab.
, vol.11
, pp. 206-212
-
-
Hondares, E.1
Rosell, M.2
Gonzalez, F.J.3
Giralt, M.4
Iglesias, R.5
Villarroya, F.6
-
21
-
-
79953886306
-
Thermogenic activation induces FGF21 expression and release in brown adipose tissue
-
Hondares E., Iglesias R., Giralt A., Gonzalez F.J., Giralt M., Mampel T., Villarroya F. Thermogenic activation induces FGF21 expression and release in brown adipose tissue. J.Biol. Chem. 2011, 286:12983-12990.
-
(2011)
J.Biol. Chem.
, vol.286
, pp. 12983-12990
-
-
Hondares, E.1
Iglesias, R.2
Giralt, A.3
Gonzalez, F.J.4
Giralt, M.5
Mampel, T.6
Villarroya, F.7
-
22
-
-
34249686631
-
Endocrine regulation of the fasting response by PPARalpha-mediated induction of fibroblast growth factor 21
-
Inagaki T., Dutchak P., Zhao G., Ding X., Gautron L., Parameswara V., Li Y., Goetz R., Mohammadi M., Esser V., et al. Endocrine regulation of the fasting response by PPARalpha-mediated induction of fibroblast growth factor 21. Cell Metab. 2007, 5:415-425.
-
(2007)
Cell Metab.
, vol.5
, pp. 415-425
-
-
Inagaki, T.1
Dutchak, P.2
Zhao, G.3
Ding, X.4
Gautron, L.5
Parameswara, V.6
Li, Y.7
Goetz, R.8
Mohammadi, M.9
Esser, V.10
-
23
-
-
84897109882
-
Inventing new medicines: the FGF21 story
-
Kharitonenkov A., Adams A.C. Inventing new medicines: the FGF21 story. Mol. Metab. 2014, 3:221-229.
-
(2014)
Mol. Metab.
, vol.3
, pp. 221-229
-
-
Kharitonenkov, A.1
Adams, A.C.2
-
24
-
-
20444435873
-
FGF-21 as a novel metabolic regulator
-
Kharitonenkov A., Shiyanova T.L., Koester A., Ford A.M., Micanovic R., Galbreath E.J., Sandusky G.E., Hammond L.J., Moyers J.S., Owens R.A., et al. FGF-21 as a novel metabolic regulator. J.Clin. Invest. 2005, 115:1627-1635.
-
(2005)
J.Clin. Invest.
, vol.115
, pp. 1627-1635
-
-
Kharitonenkov, A.1
Shiyanova, T.L.2
Koester, A.3
Ford, A.M.4
Micanovic, R.5
Galbreath, E.J.6
Sandusky, G.E.7
Hammond, L.J.8
Moyers, J.S.9
Owens, R.A.10
-
25
-
-
84896710569
-
Functional thermogenic beige adipogenesis is inducible in human neck fat
-
Lee P., Werner C.D., Kebebew E., Celi F.S. Functional thermogenic beige adipogenesis is inducible in human neck fat. Int. J. Obes. (Lond.) 2014, 38:170-176.
-
(2014)
Int. J. Obes. (Lond.)
, vol.38
, pp. 170-176
-
-
Lee, P.1
Werner, C.D.2
Kebebew, E.3
Celi, F.S.4
-
26
-
-
84877260638
-
Adiponectin mediates the metabolic effects of FGF21 on glucose homeostasis and insulin sensitivity in mice
-
Lin Z., Tian H., Lam K.S., Lin S., Hoo R.C., Konishi M., Itoh N., Wang Y., Bornstein S.R., Xu A., Li X. Adiponectin mediates the metabolic effects of FGF21 on glucose homeostasis and insulin sensitivity in mice. Cell Metab. 2013, 17:779-789.
-
(2013)
Cell Metab.
, vol.17
, pp. 779-789
-
-
Lin, Z.1
Tian, H.2
Lam, K.S.3
Lin, S.4
Hoo, R.C.5
Konishi, M.6
Itoh, N.7
Wang, Y.8
Bornstein, S.R.9
Xu, A.10
Li, X.11
-
27
-
-
84855440149
-
Metabolic disease drug discovery-"hitting the target" is easier said than done
-
Moller D.E. Metabolic disease drug discovery-"hitting the target" is easier said than done. Cell Metab. 2012, 15:19-24.
-
(2012)
Cell Metab.
, vol.15
, pp. 19-24
-
-
Moller, D.E.1
-
28
-
-
55549118918
-
Mesoderm-specific transcript is associated with fat mass expansion in response to a positive energy balance
-
Nikonova L., Koza R.A., Mendoza T., Chao P.M., Curley J.P., Kozak L.P. Mesoderm-specific transcript is associated with fat mass expansion in response to a positive energy balance. FASEB J. 2008, 22:3925-3937.
-
(2008)
FASEB J.
, vol.22
, pp. 3925-3937
-
-
Nikonova, L.1
Koza, R.A.2
Mendoza, T.3
Chao, P.M.4
Curley, J.P.5
Kozak, L.P.6
-
29
-
-
79960945989
-
Different metabolic responses of human brown adipose tissue to activation by cold and insulin
-
Orava J., Nuutila P., Lidell M.E., Oikonen V., Noponen T., Viljanen T., Scheinin M., Taittonen M., Niemi T., Enerbäck S., Virtanen K.A. Different metabolic responses of human brown adipose tissue to activation by cold and insulin. Cell Metab. 2011, 14:272-279.
-
(2011)
Cell Metab.
, vol.14
, pp. 272-279
-
-
Orava, J.1
Nuutila, P.2
Lidell, M.E.3
Oikonen, V.4
Noponen, T.5
Viljanen, T.6
Scheinin, M.7
Taittonen, M.8
Niemi, T.9
Enerbäck, S.10
Virtanen, K.A.11
-
30
-
-
84908018672
-
FGF21 acts centrally to induce sympathetic nerve activity, energy expenditure, and weight loss
-
Owen B.M., Ding X., Morgan D.A., Coate K.C., Bookout A.L., Rahmouni K., Kliewer S.A., Mangelsdorf D.J. FGF21 acts centrally to induce sympathetic nerve activity, energy expenditure, and weight loss. Cell Metab. 2014, 20:670-677.
-
(2014)
Cell Metab.
, vol.20
, pp. 670-677
-
-
Owen, B.M.1
Ding, X.2
Morgan, D.A.3
Coate, K.C.4
Bookout, A.L.5
Rahmouni, K.6
Kliewer, S.A.7
Mangelsdorf, D.J.8
-
31
-
-
84873854027
-
Brown adipose tissue regulates glucose homeostasis and insulin sensitivity
-
Stanford K.I., Middelbeek R.J., Townsend K.L., An D., Nygaard E.B., Hitchcox K.M., Markan K.R., Nakano K., Hirshman M.F., Tseng Y.H., Goodyear L.J. Brown adipose tissue regulates glucose homeostasis and insulin sensitivity. J.Clin. Invest. 2013, 123:215-223.
-
(2013)
J.Clin. Invest.
, vol.123
, pp. 215-223
-
-
Stanford, K.I.1
Middelbeek, R.J.2
Townsend, K.L.3
An, D.4
Nygaard, E.B.5
Hitchcox, K.M.6
Markan, K.R.7
Nakano, K.8
Hirshman, M.F.9
Tseng, Y.H.10
Goodyear, L.J.11
-
34
-
-
84863637593
-
FGF21 promotes metabolic homeostasis via white adipose and leptin in mice
-
Véniant M.M., Hale C., Helmering J., Chen M.M., Stanislaus S., Busby J., Vonderfecht S., Xu J., Lloyd D.J. FGF21 promotes metabolic homeostasis via white adipose and leptin in mice. PLoS ONE 2012, 7:e40164.
-
(2012)
PLoS ONE
, vol.7
, pp. e40164
-
-
Véniant, M.M.1
Hale, C.2
Helmering, J.3
Chen, M.M.4
Stanislaus, S.5
Busby, J.6
Vonderfecht, S.7
Xu, J.8
Lloyd, D.J.9
-
35
-
-
84860850964
-
BMP8B increases brown adipose tissue thermogenesis through both central and peripheral actions
-
Whittle A.J., Carobbio S., Martins L., Slawik M., Hondares E., Vázquez M.J., Morgan D., Csikasz R.I., Gallego R., Rodriguez-Cuenca S., et al. BMP8B increases brown adipose tissue thermogenesis through both central and peripheral actions. Cell 2012, 149:871-885.
-
(2012)
Cell
, vol.149
, pp. 871-885
-
-
Whittle, A.J.1
Carobbio, S.2
Martins, L.3
Slawik, M.4
Hondares, E.5
Vázquez, M.J.6
Morgan, D.7
Csikasz, R.I.8
Gallego, R.9
Rodriguez-Cuenca, S.10
-
36
-
-
84901496215
-
Fibroblast growth factor 21, the endocrine FGF pathway and novel treatments for metabolic syndrome
-
Zhang J., Li Y. Fibroblast growth factor 21, the endocrine FGF pathway and novel treatments for metabolic syndrome. Drug Discov. Today 2014, 19:579-589.
-
(2014)
Drug Discov. Today
, vol.19
, pp. 579-589
-
-
Zhang, J.1
Li, Y.2
|