메뉴 건너뛰기




Volumn 25, Issue 7, 2014, Pages 364-373

MTORC2 in the center of cancer metabolic reprogramming

Author keywords

C Myc; Drug resistance; Epigenetics; Glioblastoma; Metabolic reprogramming; MTORC2

Indexed keywords

EPIDERMAL GROWTH FACTOR RECEPTOR 3; GLUTAMINASE; ISOCITRATE DEHYDROGENASE 1; MAMMALIAN TARGET OF RAPAMYCIN COMPLEX 1; MAMMALIAN TARGET OF RAPAMYCIN COMPLEX 2; REACTIVE OXYGEN METABOLITE; STEROL REGULATORY ELEMENT BINDING PROTEIN 1; MULTIPROTEIN COMPLEX; TARGET OF RAPAMYCIN KINASE; TOR COMPLEX 2;

EID: 84903437266     PISSN: 10432760     EISSN: 18793061     Source Type: Journal    
DOI: 10.1016/j.tem.2014.04.002     Document Type: Review
Times cited : (106)

References (109)
  • 1
    • 79952284127 scopus 로고    scopus 로고
    • Hallmarks of cancer: the next generation
    • Hanahan D., Weinberg R.A. Hallmarks of cancer: the next generation. Cell 2011, 144:646-674.
    • (2011) Cell , vol.144 , pp. 646-674
    • Hanahan, D.1    Weinberg, R.A.2
  • 2
    • 84858604270 scopus 로고    scopus 로고
    • Metabolic reprogramming: a cancer hallmark even Warburg did not anticipate
    • Ward P.S., Thompson C.B. Metabolic reprogramming: a cancer hallmark even Warburg did not anticipate. Cancer Cell 2012, 21:297-308.
    • (2012) Cancer Cell , vol.21 , pp. 297-308
    • Ward, P.S.1    Thompson, C.B.2
  • 3
    • 66249108601 scopus 로고    scopus 로고
    • Understanding the Warburg effect: the metabolic requirements of cell proliferation
    • Vander Heiden M.G., et al. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 2009, 324:1029-1033.
    • (2009) Science , vol.324 , pp. 1029-1033
    • Vander Heiden, M.G.1
  • 4
    • 84860512005 scopus 로고    scopus 로고
    • Links between metabolism and cancer
    • Dang C.V. Links between metabolism and cancer. Genes Dev. 2012, 26:877-890.
    • (2012) Genes Dev. , vol.26 , pp. 877-890
    • Dang, C.V.1
  • 5
    • 84857116578 scopus 로고    scopus 로고
    • Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling
    • Ray P.D., et al. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell. Signal. 2012, 24:981-990.
    • (2012) Cell. Signal. , vol.24 , pp. 981-990
    • Ray, P.D.1
  • 6
    • 13944278132 scopus 로고    scopus 로고
    • Mitochondria, oxidants, and aging
    • Balaban R.S., et al. Mitochondria, oxidants, and aging. Cell 2005, 120:483-495.
    • (2005) Cell , vol.120 , pp. 483-495
    • Balaban, R.S.1
  • 7
    • 84890864301 scopus 로고    scopus 로고
    • A new link between diabetes and cancer: enhanced WNT/β-catenin signaling by high glucose
    • García-Jiménez C., et al. A new link between diabetes and cancer: enhanced WNT/β-catenin signaling by high glucose. J. Mol. Endocrinol. 2014, 52:R51-R66.
    • (2014) J. Mol. Endocrinol. , vol.52
    • García-Jiménez, C.1
  • 8
    • 34447302853 scopus 로고    scopus 로고
    • Hyperglycemia regulates thioredoxin-ROS activity through induction of thioredoxin-interacting protein (TXNIP) in metastatic breast cancer-derived cells MDA-MB-231
    • Turturro F., et al. Hyperglycemia regulates thioredoxin-ROS activity through induction of thioredoxin-interacting protein (TXNIP) in metastatic breast cancer-derived cells MDA-MB-231. BMC Cancer 2007, 7:96.
    • (2007) BMC Cancer , vol.7 , pp. 96
    • Turturro, F.1
  • 9
    • 79251517382 scopus 로고    scopus 로고
    • Regulation of cancer cell metabolism
    • Cairns R.A., et al. Regulation of cancer cell metabolism. Nat. Rev. Cancer 2011, 11:85-95.
    • (2011) Nat. Rev. Cancer , vol.11 , pp. 85-95
    • Cairns, R.A.1
  • 10
    • 75149148563 scopus 로고    scopus 로고
    • Q's next: the diverse functions of glutamine in metabolism, cell biology and cancer
    • DeBerardinis R.J., Cheng T. Q's next: the diverse functions of glutamine in metabolism, cell biology and cancer. Oncogene 2010, 29:313-324.
    • (2010) Oncogene , vol.29 , pp. 313-324
    • DeBerardinis, R.J.1    Cheng, T.2
  • 11
    • 84888866083 scopus 로고    scopus 로고
    • Hooked on fat: the role of lipid synthesis in cancer metabolism and tumour development
    • Baenke F., et al. Hooked on fat: the role of lipid synthesis in cancer metabolism and tumour development. Dis. Model Mech. 2013, 6:1353-1363.
    • (2013) Dis. Model Mech. , vol.6 , pp. 1353-1363
    • Baenke, F.1
  • 12
    • 84881372774 scopus 로고    scopus 로고
    • Cellular fatty acid metabolism and cancer
    • Currie E., et al. Cellular fatty acid metabolism and cancer. Cell Metab. 2013, 18:153-161.
    • (2013) Cell Metab. , vol.18 , pp. 153-161
    • Currie, E.1
  • 13
    • 84877961669 scopus 로고    scopus 로고
    • Sterol regulatory element binding protein-dependent regulation of lipid synthesis supports cell survival and tumor growth
    • Griffiths B., et al. Sterol regulatory element binding protein-dependent regulation of lipid synthesis supports cell survival and tumor growth. Cancer Metab. 2013, 1:3.
    • (2013) Cancer Metab. , vol.1 , pp. 3
    • Griffiths, B.1
  • 14
    • 81255157465 scopus 로고    scopus 로고
    • Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth
    • Nieman K.M., et al. Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth. Nat. Med. 2011, 17:1498-1503.
    • (2011) Nat. Med. , vol.17 , pp. 1498-1503
    • Nieman, K.M.1
  • 15
    • 84876684375 scopus 로고    scopus 로고
    • Sterol regulatory element-binding proteins are essential for the metabolic programming of effector T cells and adaptive immunity
    • Kidani Y., et al. Sterol regulatory element-binding proteins are essential for the metabolic programming of effector T cells and adaptive immunity. Nat. Immunol. 2013, 14:489-499.
    • (2013) Nat. Immunol. , vol.14 , pp. 489-499
    • Kidani, Y.1
  • 16
    • 84867431174 scopus 로고    scopus 로고
    • Rethinking the regulation of cellular metabolism
    • Thompson C.B. Rethinking the regulation of cellular metabolism. Cold Spring Harb. Symp. Quant. Biol. 2011, 76:23-29.
    • (2011) Cold Spring Harb. Symp. Quant. Biol. , vol.76 , pp. 23-29
    • Thompson, C.B.1
  • 17
    • 84884997982 scopus 로고    scopus 로고
    • Emerging landscape of oncogenic signatures across human cancers
    • Ciriello G., et al. Emerging landscape of oncogenic signatures across human cancers. Nat. Genet. 2013, 45:1127-1133.
    • (2013) Nat. Genet. , vol.45 , pp. 1127-1133
    • Ciriello, G.1
  • 18
    • 84859171807 scopus 로고    scopus 로고
    • MYC on the path to cancer
    • Dang C.V. MYC on the path to cancer. Cell 2012, 149:22-35.
    • (2012) Cell , vol.149 , pp. 22-35
    • Dang, C.V.1
  • 19
    • 84875755814 scopus 로고    scopus 로고
    • Influence of metabolism on epigenetics and disease
    • Kaelin W.G., McKnight S.L. Influence of metabolism on epigenetics and disease. Cell 2013, 153:56-69.
    • (2013) Cell , vol.153 , pp. 56-69
    • Kaelin, W.G.1    McKnight, S.L.2
  • 20
    • 84858796262 scopus 로고    scopus 로고
    • IDH mutation impairs histone demethylation and results in a block to cell differentiation
    • Lu C., et al. IDH mutation impairs histone demethylation and results in a block to cell differentiation. Nature 2012, 483:474-478.
    • (2012) Nature , vol.483 , pp. 474-478
    • Lu, C.1
  • 21
    • 84885074034 scopus 로고    scopus 로고
    • The somatic genomic landscape of glioblastoma
    • Brennan C.W., et al. The somatic genomic landscape of glioblastoma. Cell 2013, 155:462-477.
    • (2013) Cell , vol.155 , pp. 462-477
    • Brennan, C.W.1
  • 22
    • 84878800044 scopus 로고    scopus 로고
    • EGFR mutation-induced alternative splicing of Max contributes to growth of glycolytic tumors in brain cancer
    • Babic I., et al. EGFR mutation-induced alternative splicing of Max contributes to growth of glycolytic tumors in brain cancer. Cell Metab. 2013, 17:1000-1008.
    • (2013) Cell Metab. , vol.17 , pp. 1000-1008
    • Babic, I.1
  • 23
    • 69149097363 scopus 로고    scopus 로고
    • The AMPK agonist AICAR inhibits the growth of EGFRvIII-expressing glioblastomas by inhibiting lipogenesis
    • Guo D., et al. The AMPK agonist AICAR inhibits the growth of EGFRvIII-expressing glioblastomas by inhibiting lipogenesis. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:12932-12937.
    • (2009) Proc. Natl. Acad. Sci. U.S.A. , vol.106 , pp. 12932-12937
    • Guo, D.1
  • 24
    • 84887430714 scopus 로고    scopus 로고
    • MTOR complex 2 controls glycolytic metabolism in glioblastoma through FoxO acetylation and upregulation of c-Myc
    • Masui K., et al. mTOR complex 2 controls glycolytic metabolism in glioblastoma through FoxO acetylation and upregulation of c-Myc. Cell Metab. 2013, 18:726-739.
    • (2013) Cell Metab. , vol.18 , pp. 726-739
    • Masui, K.1
  • 25
    • 77649216053 scopus 로고    scopus 로고
    • EGFR signaling through an Akt-SREBP-1-dependent, rapamycin-resistant pathway sensitizes glioblastomas to antilipogenic therapy
    • Guo D., et al. EGFR signaling through an Akt-SREBP-1-dependent, rapamycin-resistant pathway sensitizes glioblastomas to antilipogenic therapy. Sci. Signal. 2009, 2:Ra82.
    • (2009) Sci. Signal. , vol.2
    • Guo, D.1
  • 26
    • 84897019565 scopus 로고    scopus 로고
    • Glioblastoma: from molecular pathology to targeted treatment
    • Cloughesy T.F., et al. Glioblastoma: from molecular pathology to targeted treatment. Annu. Rev. Pathol. 2014, 9:1-25.
    • (2014) Annu. Rev. Pathol. , vol.9 , pp. 1-25
    • Cloughesy, T.F.1
  • 27
    • 84877927481 scopus 로고    scopus 로고
    • MTOR in aging, metabolism, and cancer
    • Cornu M., et al. mTOR in aging, metabolism, and cancer. Curr. Opin. Genet. Dev. 2013, 23:53-62.
    • (2013) Curr. Opin. Genet. Dev. , vol.23 , pp. 53-62
    • Cornu, M.1
  • 28
    • 84880566446 scopus 로고    scopus 로고
    • A growing role for mTOR in promoting anabolic metabolism
    • Howell J.J., et al. A growing role for mTOR in promoting anabolic metabolism. Biochem. Soc. Trans. 2013, 41:906-912.
    • (2013) Biochem. Soc. Trans. , vol.41 , pp. 906-912
    • Howell, J.J.1
  • 29
    • 84859778293 scopus 로고    scopus 로고
    • MTOR signaling in growth control and disease
    • Laplante M., Sabatini D.M. mTOR signaling in growth control and disease. Cell 2012, 149:274-293.
    • (2012) Cell , vol.149 , pp. 274-293
    • Laplante, M.1    Sabatini, D.M.2
  • 30
    • 13844312400 scopus 로고    scopus 로고
    • Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex
    • Sarbassov D.D., et al. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 2005, 307:1098-1101.
    • (2005) Science , vol.307 , pp. 1098-1101
    • Sarbassov, D.D.1
  • 31
    • 84860816141 scopus 로고    scopus 로고
    • Oncogenic EGFR signaling activates an mTORC2-NF-κB pathway that promotes chemotherapy resistance
    • Tanaka K., et al. Oncogenic EGFR signaling activates an mTORC2-NF-κB pathway that promotes chemotherapy resistance. Cancer Discov. 2011, 1:524-538.
    • (2011) Cancer Discov. , vol.1 , pp. 524-538
    • Tanaka, K.1
  • 32
    • 84884592244 scopus 로고    scopus 로고
    • TORC2 signaling pathway guarantees genome stability in the face of DNA strand breaks
    • Shimada K., et al. TORC2 signaling pathway guarantees genome stability in the face of DNA strand breaks. Mol. Cell 2013, 51:829-839.
    • (2013) Mol. Cell , vol.51 , pp. 829-839
    • Shimada, K.1
  • 33
    • 61449245596 scopus 로고    scopus 로고
    • A Drosophila model for EGFR-Ras and PI3K-dependent human glioma
    • Read R.D., et al. A Drosophila model for EGFR-Ras and PI3K-dependent human glioma. PLoS Genet. 2009, 5:e1000374.
    • (2009) PLoS Genet. , vol.5
    • Read, R.D.1
  • 34
    • 0031127305 scopus 로고    scopus 로고
    • Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Balpha
    • Alessi D.R., et al. Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Balpha. Curr. Biol. 1997, 7:261-269.
    • (1997) Curr. Biol. , vol.7 , pp. 261-269
    • Alessi, D.R.1
  • 35
    • 68149132193 scopus 로고    scopus 로고
    • Striking the balance between PTEN and PDK1: it all depends on the cell context
    • Iwanami A., et al. Striking the balance between PTEN and PDK1: it all depends on the cell context. Genes Dev. 1997, 23:1699-1704.
    • (1997) Genes Dev. , vol.23 , pp. 1699-1704
    • Iwanami, A.1
  • 36
    • 79955546330 scopus 로고    scopus 로고
    • Protor-1 is required for efficient mTORC2-mediated activation of SGK1 in the kidney
    • Pearce L.R., et al. Protor-1 is required for efficient mTORC2-mediated activation of SGK1 in the kidney. Biochem. J. 2011, 436:169-179.
    • (2011) Biochem. J. , vol.436 , pp. 169-179
    • Pearce, L.R.1
  • 37
    • 79960470913 scopus 로고    scopus 로고
    • MTOR complex 2 signaling and functions
    • Oh W.J., Jacinto E. mTOR complex 2 signaling and functions. Cell Cycle 2011, 10:2305-2316.
    • (2011) Cell Cycle , vol.10 , pp. 2305-2316
    • Oh, W.J.1    Jacinto, E.2
  • 38
    • 78649712949 scopus 로고    scopus 로고
    • MTORC2 can associate with ribosomes to promote cotranslational phosphorylation and stability of nascent Akt polypeptide
    • Oh W.J., et al. mTORC2 can associate with ribosomes to promote cotranslational phosphorylation and stability of nascent Akt polypeptide. EMBO J. 2010, 29:3939-3951.
    • (2010) EMBO J. , vol.29 , pp. 3939-3951
    • Oh, W.J.1
  • 39
    • 79952293503 scopus 로고    scopus 로고
    • Activation of mTORC2 by association with the ribosome
    • Zinzalla V., et al. Activation of mTORC2 by association with the ribosome. Cell 2011, 144:757-768.
    • (2011) Cell , vol.144 , pp. 757-768
    • Zinzalla, V.1
  • 40
    • 75749105049 scopus 로고    scopus 로고
    • MTORC1-activated S6K1 phosphorylates Rictor on threonine 1135 and regulates mTORC2 signaling
    • Julien L.A., et al. mTORC1-activated S6K1 phosphorylates Rictor on threonine 1135 and regulates mTORC2 signaling. Mol. Cell. Biol. 2010, 30:908-921.
    • (2010) Mol. Cell. Biol. , vol.30 , pp. 908-921
    • Julien, L.A.1
  • 41
    • 84887228819 scopus 로고    scopus 로고
    • Sin1 phosphorylation impairs mTORC2 complex integrity and inhibits downstream Akt signaling to suppress tumorigenesis
    • Liu P., et al. Sin1 phosphorylation impairs mTORC2 complex integrity and inhibits downstream Akt signaling to suppress tumorigenesis. Nat. Cell Biol. 2013, 15:1340-1350.
    • (2013) Nat. Cell Biol. , vol.15 , pp. 1340-1350
    • Liu, P.1
  • 42
    • 84878796897 scopus 로고    scopus 로고
    • Dynamic adipocyte phosphoproteome reveals that Akt directly regulates mTORC2
    • Humphrey S.J., et al. Dynamic adipocyte phosphoproteome reveals that Akt directly regulates mTORC2. Cell Metab. 2013, 17:1009-1020.
    • (2013) Cell Metab. , vol.17 , pp. 1009-1020
    • Humphrey, S.J.1
  • 43
    • 84898596335 scopus 로고    scopus 로고
    • Dual phosphorylation of Sin1 at T86 and T398 negatively regulates mTORC2 complex integrity and activity
    • Liu P., et al. Dual phosphorylation of Sin1 at T86 and T398 negatively regulates mTORC2 complex integrity and activity. Protein Cell 2014, 5:171-177.
    • (2014) Protein Cell , vol.5 , pp. 171-177
    • Liu, P.1
  • 44
    • 37449024702 scopus 로고    scopus 로고
    • The biology of cancer: metabolic reprogramming fuels cell growth and proliferation
    • DeBerardinis R.J., et al. The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab. 2008, 7:11-20.
    • (2008) Cell Metab. , vol.7 , pp. 11-20
    • DeBerardinis, R.J.1
  • 45
    • 79955398591 scopus 로고    scopus 로고
    • Otto Warburg's contributions to current concepts of cancer metabolism
    • Koppenol W.H., et al. Otto Warburg's contributions to current concepts of cancer metabolism. Nat. Rev. Cancer 2011, 11:325-337.
    • (2011) Nat. Rev. Cancer , vol.11 , pp. 325-337
    • Koppenol, W.H.1
  • 46
    • 78649711427 scopus 로고    scopus 로고
    • The control of the metabolic switch in cancers by oncogenes and tumor suppressor genes
    • Levine A.J., Puzio-Kuter A.M. The control of the metabolic switch in cancers by oncogenes and tumor suppressor genes. Science 2010, 330:1340-1344.
    • (2010) Science , vol.330 , pp. 1340-1344
    • Levine, A.J.1    Puzio-Kuter, A.M.2
  • 47
    • 84881056831 scopus 로고    scopus 로고
    • MYC, metabolism, cell growth, and tumorigenesis
    • Dang C.V. MYC, metabolism, cell growth, and tumorigenesis. Cold Spring Harb. Perspect. Med. 2013, 3:a014217.
    • (2013) Cold Spring Harb. Perspect. Med. , vol.3
    • Dang, C.V.1
  • 48
    • 79951472912 scopus 로고    scopus 로고
    • The MK5/PRAK kinase and Myc form a negative feedback loop that is disrupted during colorectal tumorigenesis
    • Kress T.R., et al. The MK5/PRAK kinase and Myc form a negative feedback loop that is disrupted during colorectal tumorigenesis. Mol. Cell 2011, 41:445-457.
    • (2011) Mol. Cell , vol.41 , pp. 445-457
    • Kress, T.R.1
  • 49
    • 0030748651 scopus 로고    scopus 로고
    • Phosphorylation and activation of heart 6-phosphofructo-2-kinase by protein kinase B and other protein kinases of the insulin signaling cascades
    • Deprez J., et al. Phosphorylation and activation of heart 6-phosphofructo-2-kinase by protein kinase B and other protein kinases of the insulin signaling cascades. J. Biol. Chem. 1997, 272:17269-17275.
    • (1997) J. Biol. Chem. , vol.272 , pp. 17269-17275
    • Deprez, J.1
  • 50
    • 0034983918 scopus 로고    scopus 로고
    • Inhibition of early apoptotic events by Akt/PKB is dependent on the first committed step of glycolysis and mitochondrial hexokinase
    • Gottlob K., et al. Inhibition of early apoptotic events by Akt/PKB is dependent on the first committed step of glycolysis and mitochondrial hexokinase. Genes Dev. 2001, 15:1406-1418.
    • (2001) Genes Dev. , vol.15 , pp. 1406-1418
    • Gottlob, K.1
  • 51
    • 0029908016 scopus 로고    scopus 로고
    • Expression of a constitutively active Akt Ser/Thr kinase in 3T3-L1 adipocytes stimulates glucose uptake and glucose transporter 4 translocation
    • Kohn A.D., et al. Expression of a constitutively active Akt Ser/Thr kinase in 3T3-L1 adipocytes stimulates glucose uptake and glucose transporter 4 translocation. J. Biol. Chem. 1996, 271:31372-31378.
    • (1996) J. Biol. Chem. , vol.271 , pp. 31372-31378
    • Kohn, A.D.1
  • 52
    • 84860454425 scopus 로고    scopus 로고
    • Hepatic mTORC2 activates glycolysis and lipogenesis through Akt, glucokinase, and SREBP1c
    • Hagiwara A., et al. Hepatic mTORC2 activates glycolysis and lipogenesis through Akt, glucokinase, and SREBP1c. Cell Metab. 2012, 15:725-738.
    • (2012) Cell Metab. , vol.15 , pp. 725-738
    • Hagiwara, A.1
  • 53
    • 70350728803 scopus 로고    scopus 로고
    • MYC-induced cancer cell energy metabolism and therapeutic opportunities
    • Dang C.V., et al. MYC-induced cancer cell energy metabolism and therapeutic opportunities. Clin. Cancer Res. 2009, 15:6479-6483.
    • (2009) Clin. Cancer Res. , vol.15 , pp. 6479-6483
    • Dang, C.V.1
  • 54
    • 53049087909 scopus 로고    scopus 로고
    • Pyruvate dehydrogenase complex activity controls metabolic and malignant phenotype in cancer cells
    • McFate T., et al. Pyruvate dehydrogenase complex activity controls metabolic and malignant phenotype in cancer cells. J. Biol. Chem. 2008, 283:22700-22708.
    • (2008) J. Biol. Chem. , vol.283 , pp. 22700-22708
    • McFate, T.1
  • 55
    • 80555146753 scopus 로고    scopus 로고
    • Hepatic Sirt1 deficiency in mice impairs mTorc2/Akt signaling and results in hyperglycemia, oxidative damage, and insulin resistance
    • Wang R.H., et al. Hepatic Sirt1 deficiency in mice impairs mTorc2/Akt signaling and results in hyperglycemia, oxidative damage, and insulin resistance. J. Clin. Invest. 2011, 121:4477-4490.
    • (2011) J. Clin. Invest. , vol.121 , pp. 4477-4490
    • Wang, R.H.1
  • 56
    • 0038777070 scopus 로고    scopus 로고
    • Properties and regulation of glutamine transporter SN1 by protein kinases SGK and PKB
    • Boehmer C., et al. Properties and regulation of glutamine transporter SN1 by protein kinases SGK and PKB. Biochem. Biophys. Res. Commun. 2003, 306:156-162.
    • (2003) Biochem. Biophys. Res. Commun. , vol.306 , pp. 156-162
    • Boehmer, C.1
  • 57
    • 84873156962 scopus 로고    scopus 로고
    • Mammalian target of rapamycin signalling modulates amino acid uptake by regulating transporter cell surface abundance in primary human trophoblast cells
    • Rosario F.J., et al. Mammalian target of rapamycin signalling modulates amino acid uptake by regulating transporter cell surface abundance in primary human trophoblast cells. J. Physiol. 2013, 591:609-625.
    • (2013) J. Physiol. , vol.591 , pp. 609-625
    • Rosario, F.J.1
  • 58
    • 84856014884 scopus 로고    scopus 로고
    • Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia
    • Metallo C.M., et al. Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature 2011, 481:380-384.
    • (2011) Nature , vol.481 , pp. 380-384
    • Metallo, C.M.1
  • 59
    • 84855987831 scopus 로고    scopus 로고
    • Reductive carboxylation supports growth in tumour cells with defective mitochondria
    • Mullen A.R. Reductive carboxylation supports growth in tumour cells with defective mitochondria. Nature 2011, 481:385-388.
    • (2011) Nature , vol.481 , pp. 385-388
    • Mullen, A.R.1
  • 60
    • 83755178091 scopus 로고    scopus 로고
    • Hypoxia promotes isocitrate dehydrogenase-dependent carboxylation of α-ketoglutarate to citrate to support cell growth and viability
    • Wise D.R., et al. Hypoxia promotes isocitrate dehydrogenase-dependent carboxylation of α-ketoglutarate to citrate to support cell growth and viability. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:19611-19616.
    • (2011) Proc. Natl. Acad. Sci. U.S.A. , vol.108 , pp. 19611-19616
    • Wise, D.R.1
  • 61
    • 84885187437 scopus 로고    scopus 로고
    • A central role for mTOR in lipid homeostasis
    • Lamming D.W., Sabatini D.M. A central role for mTOR in lipid homeostasis. Cell Metab. 2013, 18:465-469.
    • (2013) Cell Metab. , vol.18 , pp. 465-469
    • Lamming, D.W.1    Sabatini, D.M.2
  • 62
    • 84865503043 scopus 로고    scopus 로고
    • Identification of Akt-independent regulation of hepatic lipogenesis by mammalian target of rapamycin (mTOR) complex 2
    • Yuan M., et al. Identification of Akt-independent regulation of hepatic lipogenesis by mammalian target of rapamycin (mTOR) complex 2. J. Biol. Chem. 2012, 287:29579-29588.
    • (2012) J. Biol. Chem. , vol.287 , pp. 29579-29588
    • Yuan, M.1
  • 63
    • 67649867447 scopus 로고    scopus 로고
    • MTOR complex 2 in adipose tissue negatively controls whole-body growth
    • Cybulski N., et al. mTOR complex 2 in adipose tissue negatively controls whole-body growth. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:9902-9907.
    • (2009) Proc. Natl. Acad. Sci. U.S.A. , vol.106 , pp. 9902-9907
    • Cybulski, N.1
  • 64
    • 84872574955 scopus 로고    scopus 로고
    • BSTA promotes mTORC2-mediated phosphorylation of Akt1 to suppress expression of FoxC2 and stimulate adipocyte differentiation
    • Yao Y., et al. BSTA promotes mTORC2-mediated phosphorylation of Akt1 to suppress expression of FoxC2 and stimulate adipocyte differentiation. Sci. Signal. 2013, 6:ra2.
    • (2013) Sci. Signal. , vol.6
    • Yao, Y.1
  • 65
    • 65949103405 scopus 로고    scopus 로고
    • Rictor/TORC2 regulates Caenorhabditis elegans fat storage, body size, and development through sgk-1
    • Jones K.T., et al. Rictor/TORC2 regulates Caenorhabditis elegans fat storage, body size, and development through sgk-1. PLoS Biol. 2009, 7:e60.
    • (2009) PLoS Biol. , vol.7
    • Jones, K.T.1
  • 66
    • 61449244533 scopus 로고    scopus 로고
    • Rictor/TORC2 regulates fat metabolism, feeding, growth, and life span in Caenorhabditis elegans
    • Soukas A.A., et al. Rictor/TORC2 regulates fat metabolism, feeding, growth, and life span in Caenorhabditis elegans. Genes Dev. 2009, 23:496-511.
    • (2009) Genes Dev. , vol.23 , pp. 496-511
    • Soukas, A.A.1
  • 67
    • 84863837081 scopus 로고    scopus 로고
    • Lipid metabolism in cancer
    • Santos C.R., Schulze A. Lipid metabolism in cancer. FEBS J. 2012, 279:2610-2623.
    • (2012) FEBS J. , vol.279 , pp. 2610-2623
    • Santos, C.R.1    Schulze, A.2
  • 68
    • 54249161009 scopus 로고    scopus 로고
    • ATP citrate lyase: activation and therapeutic implications in non-small cell lung cancer
    • Migita T., et al. ATP citrate lyase: activation and therapeutic implications in non-small cell lung cancer. Cancer Res. 2008, 68:8547-8554.
    • (2008) Cancer Res. , vol.68 , pp. 8547-8554
    • Migita, T.1
  • 69
    • 85096836620 scopus 로고    scopus 로고
    • An LXR agonist promotes glioblastoma cell death through inhibition of an EGFR/AKT/SREBP-1/LDLR-dependent pathway
    • Guo D., et al. An LXR agonist promotes glioblastoma cell death through inhibition of an EGFR/AKT/SREBP-1/LDLR-dependent pathway. Cancer Discov. 2011, 2:290-291.
    • (2011) Cancer Discov. , vol.2 , pp. 290-291
    • Guo, D.1
  • 70
    • 84888791736 scopus 로고    scopus 로고
    • 27-Hydroxycholesterol links hypercholesterolemia and breast cancer pathophysiology
    • Nelson E.R., et al. 27-Hydroxycholesterol links hypercholesterolemia and breast cancer pathophysiology. Science 2013, 342:1094-1098.
    • (2013) Science , vol.342 , pp. 1094-1098
    • Nelson, E.R.1
  • 71
    • 66349134748 scopus 로고    scopus 로고
    • Cholesterol feedback: from Schoenheimer's bottle to Scap's MELADL
    • Brown M.S., Goldstein J.L. Cholesterol feedback: from Schoenheimer's bottle to Scap's MELADL. J. Lipid Res. 2009, 50:S15-S27.
    • (2009) J. Lipid Res. , vol.50
    • Brown, M.S.1    Goldstein, J.L.2
  • 72
    • 77955483125 scopus 로고    scopus 로고
    • Activation of a metabolic gene regulatory network downstream of mTOR complex 1
    • Düvel K., et al. Activation of a metabolic gene regulatory network downstream of mTOR complex 1. Mol. Cell 2010, 39:171-183.
    • (2010) Mol. Cell , vol.39 , pp. 171-183
    • Düvel, K.1
  • 73
    • 50049116472 scopus 로고    scopus 로고
    • SREBP activity is regulated by mTORC1 and contributes to Akt-dependent cell growth
    • Porstmann T., et al. SREBP activity is regulated by mTORC1 and contributes to Akt-dependent cell growth. Cell Metab. 2008, 8:224-236.
    • (2008) Cell Metab. , vol.8 , pp. 224-236
    • Porstmann, T.1
  • 74
    • 67650092919 scopus 로고    scopus 로고
    • LXR regulates cholesterol uptake through Idol-dependent ubiquitination of the LDL receptor
    • Zelcer N., et al. LXR regulates cholesterol uptake through Idol-dependent ubiquitination of the LDL receptor. Science 2009, 325:100-104.
    • (2009) Science , vol.325 , pp. 100-104
    • Zelcer, N.1
  • 75
    • 80054046029 scopus 로고    scopus 로고
    • Aerobic glycolysis: meeting the metabolic requirements of cell proliferation
    • Lunt S.Y., Vander Heiden M.G. Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annu. Rev. Cell Dev. Biol. 2011, 27:441-464.
    • (2011) Annu. Rev. Cell Dev. Biol. , vol.27 , pp. 441-464
    • Lunt, S.Y.1    Vander Heiden, M.G.2
  • 76
    • 33751569560 scopus 로고    scopus 로고
    • Pentose phosphate cycle oxidative and nonoxidative balance: a new vulnerable target for overcoming drug resistance in cancer
    • Ramos-Montoya A., et al. Pentose phosphate cycle oxidative and nonoxidative balance: a new vulnerable target for overcoming drug resistance in cancer. Int. J. Cancer 2006, 119:2733-2741.
    • (2006) Int. J. Cancer , vol.119 , pp. 2733-2741
    • Ramos-Montoya, A.1
  • 77
    • 84890972420 scopus 로고    scopus 로고
    • Chemical genetics of rapamycin-insensitive TORC2 in S. cerevisiae
    • Kliegman J.I., et al. Chemical genetics of rapamycin-insensitive TORC2 in S. cerevisiae. Cell Rep. 2013, 5:1725-1736.
    • (2013) Cell Rep. , vol.5 , pp. 1725-1736
    • Kliegman, J.I.1
  • 78
    • 84869009687 scopus 로고    scopus 로고
    • How cancer metabolism is tuned for proliferation and vulnerable to disruption
    • Schulze A., Harris A.L. How cancer metabolism is tuned for proliferation and vulnerable to disruption. Nature 2012, 491:364-373.
    • (2012) Nature , vol.491 , pp. 364-373
    • Schulze, A.1    Harris, A.L.2
  • 79
    • 0033595011 scopus 로고    scopus 로고
    • Protein kinase B/Akt-mediated phosphorylation promotes nuclear exclusion of the winged helix transcription factor FKHR1
    • Biggs W.H., et al. Protein kinase B/Akt-mediated phosphorylation promotes nuclear exclusion of the winged helix transcription factor FKHR1. Proc. Natl. Acad. Sci. U.S.A. 1999, 96:7421-7426.
    • (1999) Proc. Natl. Acad. Sci. U.S.A. , vol.96 , pp. 7421-7426
    • Biggs, W.H.1
  • 80
    • 3543028648 scopus 로고    scopus 로고
    • Myc-induced proliferation and transformation require Akt-mediated phosphorylation of FoxO proteins
    • Bouchard C., et al. Myc-induced proliferation and transformation require Akt-mediated phosphorylation of FoxO proteins. EMBO J. 2004, 23:2830-2840.
    • (2004) EMBO J. , vol.23 , pp. 2830-2840
    • Bouchard, C.1
  • 81
    • 34347357584 scopus 로고    scopus 로고
    • Induction of Mxi1-SR alpha by FOXO3a contributes to repression of Myc-dependent gene expression
    • Delpuech O., et al. Induction of Mxi1-SR alpha by FOXO3a contributes to repression of Myc-dependent gene expression. Mol. Cell. Biol. 2007, 27:4917-4930.
    • (2007) Mol. Cell. Biol. , vol.27 , pp. 4917-4930
    • Delpuech, O.1
  • 82
    • 78249255491 scopus 로고    scopus 로고
    • FoxOs enforce a progression checkpoint to constrain mTORC1-activated renal tumorigenesis
    • Gan B., et al. FoxOs enforce a progression checkpoint to constrain mTORC1-activated renal tumorigenesis. Cancer Cell 2010, 18:472-484.
    • (2010) Cancer Cell , vol.18 , pp. 472-484
    • Gan, B.1
  • 83
    • 84887441485 scopus 로고    scopus 로고
    • Antagonism between FOXO and MYC regulates cellular powerhouse
    • Peck B., et al. Antagonism between FOXO and MYC regulates cellular powerhouse. Front. Oncol. 2013, 3:96.
    • (2013) Front. Oncol. , vol.3 , pp. 96
    • Peck, B.1
  • 84
    • 84862777541 scopus 로고    scopus 로고
    • A murine lung cancer co-clinical trial identifies genetic modifiers of therapeutic response
    • Chen Z., et al. A murine lung cancer co-clinical trial identifies genetic modifiers of therapeutic response. Nature 2012, 483:613-617.
    • (2012) Nature , vol.483 , pp. 613-617
    • Chen, Z.1
  • 85
    • 84870289201 scopus 로고    scopus 로고
    • 89Zr-transferrin imaging
    • 89Zr-transferrin imaging. Nat. Med. 2012, 18:1586-1591.
    • (2012) Nat. Med. , vol.18 , pp. 1586-1591
    • Holland, J.P.1
  • 86
    • 84855372881 scopus 로고    scopus 로고
    • 11C]-glutamine for metabolic imaging of tumors
    • 11C]-glutamine for metabolic imaging of tumors. J. Nucl. Med. 2012, 53:98-105.
    • (2012) J. Nucl. Med. , vol.53 , pp. 98-105
    • Qu, W.1
  • 88
    • 79960954452 scopus 로고    scopus 로고
    • 18F-fluorodeoxy-glucose positron emission tomography marks MYC-overexpressing human basal-like breast cancers
    • 18F-fluorodeoxy-glucose positron emission tomography marks MYC-overexpressing human basal-like breast cancers. Cancer Res. 2011, 71:5164-5174.
    • (2011) Cancer Res. , vol.71 , pp. 5164-5174
    • Palaskas, N.1
  • 89
    • 71749101643 scopus 로고    scopus 로고
    • Small molecule inhibitors of Myc/Max dimerization and Myc-induced cell transformation
    • Shi J., et al. Small molecule inhibitors of Myc/Max dimerization and Myc-induced cell transformation. Bioorg. Med. Chem. Lett. 2009, 19:6038-6041.
    • (2009) Bioorg. Med. Chem. Lett. , vol.19 , pp. 6038-6041
    • Shi, J.1
  • 90
    • 80053135617 scopus 로고    scopus 로고
    • Targeting MYC? You BET
    • Alderton G.K. Targeting MYC? You BET. Nat. Rev. Cancer 2011, 11:693.
    • (2011) Nat. Rev. Cancer , vol.11 , pp. 693
    • Alderton, G.K.1
  • 91
    • 80052955256 scopus 로고    scopus 로고
    • BET bromodomain inhibition as a therapeutic strategy to target c-Myc
    • Delmore J.E., et al. BET bromodomain inhibition as a therapeutic strategy to target c-Myc. Cell 2011, 146:904-917.
    • (2011) Cell , vol.146 , pp. 904-917
    • Delmore, J.E.1
  • 92
    • 84863534997 scopus 로고    scopus 로고
    • Metabolic regulation of epigenetics
    • Lu C., Thompson C.B. Metabolic regulation of epigenetics. Cell Metab. 2012, 16:9-17.
    • (2012) Cell Metab. , vol.16 , pp. 9-17
    • Lu, C.1    Thompson, C.B.2
  • 93
    • 84858796263 scopus 로고    scopus 로고
    • IDH1 mutation is sufficient to establish the glioma hypermethylator phenotype
    • Turcan S., et al. IDH1 mutation is sufficient to establish the glioma hypermethylator phenotype. Nature 2012, 483:479-483.
    • (2012) Nature , vol.483 , pp. 479-483
    • Turcan, S.1
  • 94
    • 72049125350 scopus 로고    scopus 로고
    • Cancer-associated IDH1 mutations produce 2-hydroxyglutarate
    • Dang L., et al. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 2009, 462:739-744.
    • (2009) Nature , vol.462 , pp. 739-744
    • Dang, L.1
  • 95
    • 78651463452 scopus 로고    scopus 로고
    • Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of α-ketoglutarate-dependent dioxygenases
    • Xu W., et al. Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of α-ketoglutarate-dependent dioxygenases. Cancer Cell 2011, 19:17-30.
    • (2011) Cancer Cell , vol.19 , pp. 17-30
    • Xu, W.1
  • 96
    • 79955547561 scopus 로고    scopus 로고
    • The oncometabolite 2-hydroxyglutarate inhibits histone lysine demethylases
    • Chowdhury R., et al. The oncometabolite 2-hydroxyglutarate inhibits histone lysine demethylases. EMBO Rep. 2011, 12:463-469.
    • (2011) EMBO Rep. , vol.12 , pp. 463-469
    • Chowdhury, R.1
  • 97
    • 84874451397 scopus 로고    scopus 로고
    • Metabolic modulation of epigenetics in gliomas
    • Venneti S., Thompson C.B. Metabolic modulation of epigenetics in gliomas. Brain Pathol. 2013, 23:217-221.
    • (2013) Brain Pathol. , vol.23 , pp. 217-221
    • Venneti, S.1    Thompson, C.B.2
  • 98
    • 84865266173 scopus 로고    scopus 로고
    • PKM2phosphorylates histone H3 and promotes gene transcription and tumorigenesis
    • Yang W., et al. PKM2phosphorylates histone H3 and promotes gene transcription and tumorigenesis. Cell 2012, 150:685-696.
    • (2012) Cell , vol.150 , pp. 685-696
    • Yang, W.1
  • 99
    • 33746457753 scopus 로고    scopus 로고
    • Enhanced histone acetylation and transcription: a dynamic perspective
    • Clayton A.L., et al. Enhanced histone acetylation and transcription: a dynamic perspective. Mol. Cell 2006, 23:289-296.
    • (2006) Mol. Cell , vol.23 , pp. 289-296
    • Clayton, A.L.1
  • 100
    • 84868117861 scopus 로고    scopus 로고
    • 13C]glucose in human brain tumors in vivo
    • 13C]glucose in human brain tumors in vivo. NMR Biomed. 2012, 25:1234-1244.
    • (2012) NMR Biomed. , vol.25 , pp. 1234-1244
    • Maher, E.A.1
  • 101
    • 84862016091 scopus 로고    scopus 로고
    • Analysis of tumor metabolism reveals mitochondrial glucose oxidation in genetically diverse human glioblastomas in the mouse brain in vivo
    • Marin-Valencia I., et al. Analysis of tumor metabolism reveals mitochondrial glucose oxidation in genetically diverse human glioblastomas in the mouse brain in vivo. Cell Metab. 2012, 15:827-837.
    • (2012) Cell Metab. , vol.15 , pp. 827-837
    • Marin-Valencia, I.1
  • 102
    • 66249105703 scopus 로고    scopus 로고
    • ATP-citrate lyase links cellular metabolism to histone acetylation
    • Wellen K.E., et al. ATP-citrate lyase links cellular metabolism to histone acetylation. Science 2009, 324:1076-1080.
    • (2009) Science , vol.324 , pp. 1076-1080
    • Wellen, K.E.1
  • 103
    • 84886089551 scopus 로고    scopus 로고
    • The epidermal growth factor receptor variant III (EGFRvIII): where wild things are altered
    • Gan H.K., et al. The epidermal growth factor receptor variant III (EGFRvIII): where wild things are altered. FEBS J. 2013, 280:5350-5370.
    • (2013) FEBS J. , vol.280 , pp. 5350-5370
    • Gan, H.K.1
  • 104
    • 84860790212 scopus 로고    scopus 로고
    • Molecular pathology in adult high-grade gliomas: from molecular diagnostics to target therapies
    • Masui K., et al. Molecular pathology in adult high-grade gliomas: from molecular diagnostics to target therapies. Neuropathol. Appl. Neurobiol. 2012, 38:271-291.
    • (2012) Neuropathol. Appl. Neurobiol. , vol.38 , pp. 271-291
    • Masui, K.1
  • 105
    • 27744606737 scopus 로고    scopus 로고
    • Molecular determinants of the response of glioblastomas to EGFR kinase inhibitors
    • Mellinghoff I.K., et al. Molecular determinants of the response of glioblastomas to EGFR kinase inhibitors. N. Engl. J. Med. 2005, 353:2012-2024.
    • (2005) N. Engl. J. Med. , vol.353 , pp. 2012-2024
    • Mellinghoff, I.K.1
  • 106
    • 84892775264 scopus 로고    scopus 로고
    • Targeted therapy resistance mediated by dynamic regulation of extrachromosomal mutant EGFR DNA
    • Nathanson D.A., et al. Targeted therapy resistance mediated by dynamic regulation of extrachromosomal mutant EGFR DNA. Science 2014, 343:72-76.
    • (2014) Science , vol.343 , pp. 72-76
    • Nathanson, D.A.1
  • 107
    • 80052258995 scopus 로고    scopus 로고
    • Phosphoglycerate dehydrogenase diverts glycolytic flux and contributes to oncogenesis
    • Locasale J.W., et al. Phosphoglycerate dehydrogenase diverts glycolytic flux and contributes to oncogenesis. Nat. Genet. 2011, 43:869-874.
    • (2011) Nat. Genet. , vol.43 , pp. 869-874
    • Locasale, J.W.1
  • 108
    • 80051923932 scopus 로고    scopus 로고
    • Functional genomics reveal that the serine synthesis pathway is essential in breast cancer
    • Possemato R., et al. Functional genomics reveal that the serine synthesis pathway is essential in breast cancer. Nature 2011, 476:346-350.
    • (2011) Nature , vol.476 , pp. 346-350
    • Possemato, R.1
  • 109
    • 84902953615 scopus 로고    scopus 로고
    • Expression levels of serine/glycine metabolism-related proteins in triple negative breast cancer tissues
    • Noh S., et al. Expression levels of serine/glycine metabolism-related proteins in triple negative breast cancer tissues. Tumour Biol. 2014, 35:4457-4468.
    • (2014) Tumour Biol. , vol.35 , pp. 4457-4468
    • Noh, S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.