-
1
-
-
1642274654
-
Yeast cells display a regulatory mechanism in response to methylglyoxal
-
Aguilera J, Prieto JA. 2004. Yeast cells display a regulatory mechanism in response to methylglyoxal. FEMS Yeast Res. 4:633- 641.
-
(2004)
FEMS Yeast Res
, vol.4
, pp. 633-641
-
-
Aguilera, J.1
Prieto, J.A.2
-
2
-
-
0028302033
-
GPD1, which encodes glycerol-3-phosphate dehydrogenase, is essential for growth under osmotic stress in Saccharomyces cerevisiae, and its expression is regulated by the high-osmolarity glycerol response pathway
-
Albertyn J, Hohmann S, Thevelein JM, Prior BA. 1994. GPD1, which encodes glycerol-3-phosphate dehydrogenase, is essential for growth under osmotic stress in Saccharomyces cerevisiae, and its expression is regulated by the high-osmolarity glycerol response pathway. Mol. Cell. Biol. 14:4135- 4144.
-
(1994)
Mol. Cell. Biol
, vol.14
, pp. 4135-4144
-
-
Albertyn, J.1
Hohmann, S.2
Thevelein, J.M.3
Prior, B.A.4
-
3
-
-
0026741194
-
Purification and characterization of glycerol-3-phosphate dehydrogenase of Saccharomyces cerevisiae
-
Albertyn J, van Tonder A, Prior BA. 1992. Purification and characterization of glycerol-3-phosphate dehydrogenase of Saccharomyces cerevisiae. FEBS Lett. 308:130 -132.
-
(1992)
FEBS Lett
, vol.308
, pp. 130-132
-
-
Albertyn, J.1
van Tonder, A.2
Prior, B.A.3
-
4
-
-
47849125967
-
A multidimensional chromatography technology for in-depth phosphoproteome analysis
-
Albuquerque CP, et al. 2008. A multidimensional chromatography technology for in-depth phosphoproteome analysis. Mol. Cell. Proteomics 7:1389 -1396.
-
(2008)
Mol. Cell. Proteomics
, vol.7
, pp. 1389-1396
-
-
Albuquerque, C.P.1
-
5
-
-
77649268965
-
Posttranslational regulation impacts the fate of duplicated genes
-
Amoutzias GD, et al. 2010. Posttranslational regulation impacts the fate of duplicated genes. Proc. Natl. Acad. Sci. U. S. A. 107:2967-2971.
-
(2010)
Proc. Natl. Acad. Sci. U. S. A.
, vol.107
, pp. 2967-2971
-
-
Amoutzias, G.D.1
-
6
-
-
0030908893
-
The two isoenzymes for yeast NAD+-dependent glycerol 3-phosphate dehydrogenase encoded by GPD1 and GPD2 have distinct roles in osmoadaptation and redox regulation
-
Ansell R, Granath K, Hohmann S, Thevelein JM, Adler L. 1997. The two isoenzymes for yeast NAD+-dependent glycerol 3-phosphate dehydrogenase encoded by GPD1 and GPD2 have distinct roles in osmoadaptation and redox regulation. EMBO J. 16:2179 -2187.
-
(1997)
EMBO J
, vol.16
, pp. 2179-2187
-
-
Ansell, R.1
Granath, K.2
Hohmann, S.3
Thevelein, J.M.4
Adler, L.5
-
7
-
-
38649105202
-
Regulation of ceramide biosynthesis by TOR complex 2
-
Aronova S, et al. 2008. Regulation of ceramide biosynthesis by TOR complex 2. Cell Metab. 7:148 -158.
-
(2008)
Cell Metab
, vol.7
, pp. 148-158
-
-
Aronova, S.1
-
8
-
-
77955957347
-
Evolution of characterized phosphorylation sites in budding yeast
-
Ba AN, Moses AM. 2010. Evolution of characterized phosphorylation sites in budding yeast. Mol. Biol. Evol. 27:2027-2037.
-
(2010)
Mol. Biol. Evol
, vol.27
, pp. 2027-2037
-
-
Ba, A.N.1
Moses, A.M.2
-
9
-
-
73649121261
-
Identification of positive regulators of the yeast fps1 glycerol channel
-
doi:10.1371/ journal.pgen.1000738
-
Beese SE, Negishi T, Levin DE. 2009. Identification of positive regulators of the yeast fps1 glycerol channel. PLoS Genet. 5:e1000738. doi:10.1371/ journal.pgen.1000738.
-
(2009)
PLoS Genet
, vol.5
-
-
Beese, S.E.1
Negishi, T.2
Levin, D.E.3
-
10
-
-
67649972198
-
Evolution of phosphoregulation: comparison of phosphorylation patterns across yeast species
-
doi: 10.1371/journal.pbio.1000134
-
Beltrao P, et al. 2009. Evolution of phosphoregulation: comparison of phosphorylation patterns across yeast species. PLoS Biol. 7:e1000134. doi: 10.1371/journal.pbio.1000134.
-
(2009)
PLoS Biol
, vol.7
-
-
Beltrao, P.1
-
11
-
-
84860501617
-
Plasma membrane stress induces relocalization of Slm proteins and activation of TORC2 to promote sphingolipid synthesis
-
Berchtold D, et al. 2012. Plasma membrane stress induces relocalization of Slm proteins and activation of TORC2 to promote sphingolipid synthesis. Nat. Cell Biol. 14:542-547.
-
(2012)
Nat. Cell Biol
, vol.14
, pp. 542-547
-
-
Berchtold, D.1
-
12
-
-
0242475404
-
Physiological response to anaerobicity of glycerol-3-phosphate dehydrogenase mutants of Saccharomyces cerevisiae
-
Björkqvist S, Ansell R, Adler L, Liden G. 1997. Physiological response to anaerobicity of glycerol-3-phosphate dehydrogenase mutants of Saccharomyces cerevisiae. Appl. Environ. Microbiol. 63:128 -132.
-
(1997)
Appl. Environ. Microbiol
, vol.63
, pp. 128-132
-
-
Björkqvist, S.1
Ansell, R.2
Adler, L.3
Liden, G.4
-
13
-
-
78650441706
-
Metabolic regulation rather than de novo enzyme synthesis dominates the osmo-adaptation of yeast
-
Bouwman J, et al. 2011. Metabolic regulation rather than de novo enzyme synthesis dominates the osmo-adaptation of yeast. Yeast 28:43-53.
-
(2011)
Yeast
, vol.28
, pp. 43-53
-
-
Bouwman, J.1
-
14
-
-
33745049690
-
Slm1 and slm2 are novel substrates of the calcineurin phosphatase required for heat stress-induced endocytosis of the yeast uracil permease
-
Bultynck G, et al. 2006. Slm1 and slm2 are novel substrates of the calcineurin phosphatase required for heat stress-induced endocytosis of the yeast uracil permease. Mol. Cell. Biol. 26:4729-4745.
-
(2006)
Mol. Cell. Biol
, vol.26
, pp. 4729-4745
-
-
Bultynck, G.1
-
15
-
-
0030595028
-
Fast purification and kinetic studies of the glycerol-3-phosphate dehydrogenase from the yeast Saccharomyces cerevisiae
-
Cai J, Pietzsch M, Theobald U, Rizzi M. 1996. Fast purification and kinetic studies of the glycerol-3-phosphate dehydrogenase from the yeast Saccharomyces cerevisiae. J. Biotechnol. 49:19 -27.
-
(1996)
J. Biotechnol
, vol.49
, pp. 19-27
-
-
Cai, J.1
Pietzsch, M.2
Theobald, U.3
Rizzi, M.4
-
16
-
-
0033602281
-
Functional counterparts of mammalian protein kinases PDK1 and SGK in budding yeast
-
Casamayor A, Torrance PD, Kobayashi T, Thorner J, Alessi DR. 1999. Functional counterparts of mammalian protein kinases PDK1 and SGK in budding yeast. Curr. Biol. 9:186 -197.
-
(1999)
Curr. Biol.
, vol.9
, pp. 186-197
-
-
Casamayor, A.1
Torrance, P.D.2
Kobayashi, T.3
Thorner, J.4
Alessi, D.R.5
-
17
-
-
84455161597
-
Subunit and domain requirements for adenylate-mediated protection of Snf1 ki-nase activation loop from dephosphorylation
-
Chandrashekarappa DG, McCartney RR, Schmidt MC. 2011. Subunit and domain requirements for adenylate-mediated protection of Snf1 ki-nase activation loop from dephosphorylation. J. Biol. Chem. 286:44532- 44541.
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 44532-44541
-
-
Chandrashekarappa, D.G.1
McCartney, R.R.2
Schmidt, M.C.3
-
18
-
-
0027476071
-
A pair of putative protein kinase genes (YPK1 and YPK2) is required for cell growth in Saccharomyces cerevisiae
-
Chen P, Lee KS, Levin DE. 1993. A pair of putative protein kinase genes (YPK1 and YPK2) is required for cell growth in Saccharomyces cerevisiae. Mol. Gen. Genet. 236:443- 447.
-
(1993)
Mol. Gen. Genet.
, vol.236
, pp. 443-447
-
-
Chen, P.1
Lee, K.S.2
Levin, D.E.3
-
19
-
-
33847778786
-
Analysis of phosphorylation sites on proteins from Saccharomyces cerevisiae by electron transfer dissociation (ETD) mass spectrometry
-
Chi A, et al. 2007. Analysis of phosphorylation sites on proteins from Saccharomyces cerevisiae by electron transfer dissociation (ETD) mass spectrometry. Proc. Natl. Acad. Sci. U. S. A. 104:2193-2198.
-
(2007)
Proc. Natl. Acad. Sci. U. S. A.
, vol.104
, pp. 2193-2198
-
-
Chi, A.1
-
20
-
-
84864805148
-
Integrated analysis of transcriptome and lipid profiling reveals the co-influences of inositol-choline and Snf1 in controlling lipid biosynthesis in yeast
-
Chumnanpuen P, Zhang J, Nookaew I, Nielsen J. 2012. Integrated analysis of transcriptome and lipid profiling reveals the co-influences of inositol-choline and Snf1 in controlling lipid biosynthesis in yeast. Mol. Genet. Genomics 287:541-554.
-
(2012)
Mol. Genet. Genomics
, vol.287
, pp. 541-554
-
-
Chumnanpuen, P.1
Zhang, J.2
Nookaew, I.3
Nielsen, J.4
-
21
-
-
0028942747
-
Similar substrate recognition motifs for mammalian AMP-activated protein kinase, higher plant HMG-CoA reductase kinase-A, yeast SNF1, and mammalian calmodulin-dependent protein kinase I
-
Dale S, Wilson WA, Edelman AM, Hardie DG. 1995. Similar substrate recognition motifs for mammalian AMP-activated protein kinase, higher plant HMG-CoA reductase kinase-A, yeast SNF1, and mammalian calmodulin-dependent protein kinase I. FEBS Lett. 361:191-195.
-
(1995)
FEBS Lett
, vol.361
, pp. 191-195
-
-
Dale, S.1
Wilson, W.A.2
Edelman, A.M.3
Hardie, D.G.4
-
22
-
-
33846147991
-
The yeast PH domain proteins Slm1 and Slm2 are targets of sphingolipid signaling during the response to heat stress
-
Daquinag A, Fadri M, Jung SY, Qin J, Kunz J. 2007. The yeast PH domain proteins Slm1 and Slm2 are targets of sphingolipid signaling during the response to heat stress. Mol. Cell. Biol. 27:633- 650.
-
(2007)
Mol. Cell. Biol.
, vol.27
, pp. 633-650
-
-
Daquinag, A.1
Fadri, M.2
Jung, S.Y.3
Qin, J.4
Kunz, J.5
-
23
-
-
0029561101
-
A second osmosensing signal transduction pathway in yeast
-
Davenport KR, Sohaskey M, Kamada Y, Levin DE, Gustin MC. 1995. A second osmosensing signal transduction pathway in yeast. Hypotonic shock activates the PKC1 protein kinase-regulated cell integrity pathway. J. Biol. Chem. 270:30157-30161.
-
(1995)
Hypotonic shock activates the PKC1 protein kinase-regulated cell integrity pathway. J. Biol. Chem.
, vol.270
, pp. 30157-30161
-
-
Davenport, K.R.1
Sohaskey, M.2
Kamada, Y.3
Levin, D.E.4
Gustin, M.C.5
-
24
-
-
81355139585
-
Controlling gene expression in response to stress
-
de Nadal E, Ammerer G, Posas F. 2011. Controlling gene expression in response to stress. Nat. Rev. Genet. 12:833- 845.
-
(2011)
Nat. Rev. Genet.
, vol.12
, pp. 833-845
-
-
de Nadal, E.1
Ammerer, G.2
Posas, F.3
-
25
-
-
2642584094
-
High osmolarity glycerol (HOG) pathway-induced phosphorylation and activation of 6-phosphofructo-2-kinase are essential for glycerol accumulation and yeast cell proliferation under hyperosmotic stress
-
Dihazi H, Kessler R, Eschrich K. 2004. High osmolarity glycerol (HOG) pathway-induced phosphorylation and activation of 6-phosphofructo-2-kinase are essential for glycerol accumulation and yeast cell proliferation under hyperosmotic stress. J. Biol. Chem. 279:23961-23968.
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 23961-23968
-
-
Dihazi, H.1
Kessler, R.2
Eschrich, K.3
-
26
-
-
41649119244
-
The malateaspartate NADH shuttle components are novel metabolic longevity regulators required for calorie restriction-mediated life span extension in yeast
-
Easlon E, Tsang F, Skinner C, Wang C, Lin SJ. 2008. The malateaspartate NADH shuttle components are novel metabolic longevity regulators required for calorie restriction-mediated life span extension in yeast. Genes Dev. 22:931-944.
-
(2008)
Genes Dev
, vol.22
, pp. 931-944
-
-
Easlon, E.1
Tsang, F.2
Skinner, C.3
Wang, C.4
Lin, S.J.5
-
27
-
-
31544468889
-
Purification and characterization of the three Snf1-activating kinases of Saccharomyces cerevisiae
-
Elbing K, McCartney RR, Schmidt MC. 2006. Purification and characterization of the three Snf1-activating kinases of Saccharomyces cerevisiae. Biochem. J. 393:797- 805.
-
(2006)
Biochem. J.
, vol.393
, pp. 797-805
-
-
Elbing, K.1
McCartney, R.R.2
Schmidt, M.C.3
-
28
-
-
0036198435
-
Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae
-
Ficarro SB, et al. 2002. Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae. Nat. Biotechnol. 20:301- 305.
-
(2002)
Nat. Biotechnol.
, vol.20
, pp. 301-305
-
-
Ficarro, S.B.1
-
29
-
-
0025074778
-
Phosphate groups as substrate determinants for casein kinase I action
-
Flotow H, et al. 1990. Phosphate groups as substrate determinants for casein kinase I action. J. Biol. Chem. 265:14264 -14269.
-
(1990)
J. Biol. Chem.
, vol.265
, pp. 14264-14269
-
-
Flotow, H.1
-
30
-
-
84868704975
-
-
Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY
-
Fraenkel DG. 2011. Yeast intermediary metabolism. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
-
(2011)
Yeast intermediary metabolism
-
-
Fraenkel, D.G.1
-
31
-
-
79960106694
-
Phosphorylation network rewiring by gene duplication
-
doi:10.1038/msb.2011.43
-
Freschi L, Courcelles M, Thibault P, Michnick SW, Landry CR. 2011. Phosphorylation network rewiring by gene duplication. Mol. Syst. Biol. 7:504. doi:10.1038/msb.2011.43.
-
(2011)
Mol. Syst. Biol.
, vol.7
, pp. 504
-
-
Freschi, L.1
Courcelles, M.2
Thibault, P.3
Michnick, S.W.4
Landry, C.R.5
-
32
-
-
28444478789
-
Biochemical and genetic analysis of the yeast proteome with a movable ORF collection
-
Gelperin DM, et al. 2005. Biochemical and genetic analysis of the yeast proteome with a movable ORF collection. Genes Dev. 19:2816 -2826.
-
(2005)
Genes Dev
, vol.19
, pp. 2816-2826
-
-
Gelperin, D.M.1
-
33
-
-
38449110592
-
SNF1/AMPK pathways in yeast
-
Hedbacker K, Carlson M. 2008. SNF1/AMPK pathways in yeast. Front. Biosci. 13:2408 -2420.
-
(2008)
Front. Biosci.
, vol.13
, pp. 2408-2420
-
-
Hedbacker, K.1
Carlson, M.2
-
35
-
-
70349546862
-
Global analysis of Cdk1 substrate phosphorylation sites provides insights into evolution
-
Holt LJ, et al. 2009. Global analysis of Cdk1 substrate phosphorylation sites provides insights into evolution. Science 325:1682-1686.
-
(2009)
Science
, vol.325
, pp. 1682-1686
-
-
Holt, L.J.1
-
36
-
-
77949883591
-
Dynamic changes in the subcellular distribution of Gpd1p in response to cell stress
-
Jung S, Marelli M, Rachubinski RA, Goodlett DR, Aitchison JD. 2010. Dynamic changes in the subcellular distribution of Gpd1p in response to cell stress. J. Biol. Chem. 285:6739-6749.
-
(2010)
J. Biol. Chem
, vol.285
, pp. 6739-6749
-
-
Jung, S.1
Marelli, M.2
Rachubinski, R.A.3
Goodlett, D.R.4
Aitchison, J.D.5
-
37
-
-
84855536687
-
Phosphorylation of yeast transcription factors correlates with the evolution of novel sequence and function
-
Kaganovich M, Snyder M. 2012. Phosphorylation of yeast transcription factors correlates with the evolution of novel sequence and function. J. Proteome Res. 11:261-268.
-
(2012)
J. Proteome Res.
, vol.11
, pp. 261-268
-
-
Kaganovich, M.1
Snyder, M.2
-
38
-
-
23344448223
-
Tor2 directly phosphorylates the AGC kinase Ypk2 to regulate actin polarization
-
Kamada Y, et al. 2005. Tor2 directly phosphorylates the AGC kinase Ypk2 to regulate actin polarization. Mol. Cell. Biol. 25:7239 -7248.
-
(2005)
Mol. Cell. Biol.
, vol.25
, pp. 7239-7248
-
-
Kamada, Y.1
-
39
-
-
11944273348
-
The protein kinase C-activated MAP kinase pathway of Saccharomyces cerevisiae mediates a novel aspect of the heat shock response
-
Kamada Y, Jung US, Piotrowski J, Levin DE. 1995. The protein kinase C-activated MAP kinase pathway of Saccharomyces cerevisiae mediates a novel aspect of the heat shock response. Genes Dev. 9:1559 -1571.
-
(1995)
Genes Dev
, vol.9
, pp. 1559-1571
-
-
Kamada, Y.1
Jung, U.S.2
Piotrowski, J.3
Levin, D.E.4
-
40
-
-
33645714857
-
Phosphate-binding tag, a new tool to visualize phosphorylated proteins
-
Kinoshita E, Kinoshita-Kikuta E, Takiyama K, Koike T. 2006. Phosphate-binding tag, a new tool to visualize phosphorylated proteins. Mol. Cell. Proteomics 5:749 -757.
-
(2006)
Mol. Cell. Proteomics
, vol.5
, pp. 749-757
-
-
Kinoshita, E.1
Kinoshita-Kikuta, E.2
Takiyama, K.3
Koike, T.4
-
41
-
-
0037087575
-
Subcellular localization of the yeast proteome
-
Kumar A, et al. 2002. Subcellular localization of the yeast proteome. Genes Dev. 16:707-719.
-
(2002)
Genes Dev
, vol.16
, pp. 707-719
-
-
Kumar, A.1
-
42
-
-
77951969848
-
MOTIPS: automated motif analysis for predicting targets of modular protein domains
-
doi: 10.1186/1471-2105-11-243
-
Lam HY, et al. 2010. MOTIPS: automated motif analysis for predicting targets of modular protein domains. BMC Bioinformatics 11:243. doi: 10.1186/1471-2105-11-243.
-
(2010)
BMC Bioinformatics
, vol.11
, pp. 243
-
-
Lam, H.Y.1
-
43
-
-
65349155149
-
Weak functional constraints on phosphoproteomes
-
Landry CR, Levy ED, Michnick SW. 2009. Weak functional constraints on phosphoproteomes. Trends Genet. 25:193-197.
-
(2009)
Trends Genet
, vol.25
, pp. 193-197
-
-
Landry, C.R.1
Levy, E.D.2
Michnick, S.W.3
-
44
-
-
2642671097
-
The importance of the glycerol 3-phosphate shuttle during aerobic growth of Saccharomyces cerevisiae
-
Larsson C, et al. 1998. The importance of the glycerol 3-phosphate shuttle during aerobic growth of Saccharomyces cerevisiae. Yeast 14: 347-357.
-
(1998)
Yeast
, vol.14
, pp. 347-357
-
-
Larsson, C.1
-
45
-
-
33947584417
-
Large-scale phosphorylation analysis of alpha-factorarrested Saccharomyces cerevisiae
-
Li X, et al. 2007. Large-scale phosphorylation analysis of alpha-factorarrested Saccharomyces cerevisiae. J. Proteome Res. 6:1190 -1197.
-
(2007)
J. Proteome Res.
, vol.6
, pp. 1190-1197
-
-
Li, X.1
-
46
-
-
83455177213
-
Target of rapamycin (TOR) in nutrient signaling and growth control
-
Loewith R, Hall MN. 2011. Target of rapamycin (TOR) in nutrient signaling and growth control. Genetics 189:1177-1201.
-
(2011)
Genetics
, vol.189
, pp. 1177-1201
-
-
Loewith, R.1
Hall, M.N.2
-
47
-
-
0028947362
-
Fps1, a yeast member of the MIP family of channel proteins, is a facilitator for glycerol uptake and efflux and is inactive under osmotic stress
-
Luyten K, et al. 1995. Fps1, a yeast member of the MIP family of channel proteins, is a facilitator for glycerol uptake and efflux and is inactive under osmotic stress. EMBO J. 14:1360 -1371.
-
(1995)
EMBO J
, vol.14
, pp. 1360-1371
-
-
Luyten, K.1
-
48
-
-
80455160062
-
ADP regulates SNF1, the Saccharomyces cerevisiae homolog of AMP-activated protein kinase
-
Mayer FV, et al. 2011. ADP regulates SNF1, the Saccharomyces cerevisiae homolog of AMP-activated protein kinase. Cell Metab. 14:707-714.
-
(2011)
Cell Metab
, vol.14
, pp. 707-714
-
-
Mayer, F.V.1
-
49
-
-
38549084632
-
The frequency dependence of osmo-adaptation in Saccharomyces cerevisiae
-
Mettetal JT, Muzzey D, Gomez-Uribe C, van Oudenaarden A. 2008. The frequency dependence of osmo-adaptation in Saccharomyces cerevisiae. Science 319:482- 484.
-
(2008)
Science
, vol.319
, pp. 482-484
-
-
Mettetal, J.T.1
Muzzey, D.2
Gomez-Uribe, C.3
van Oudenaarden, A.4
-
50
-
-
77952986553
-
Deciphering protein kinase specificity through largescale analysis of yeast phosphorylation site motifs
-
doi: 10.1126/scisignal.2000482
-
Mok J, et al. 2010. Deciphering protein kinase specificity through largescale analysis of yeast phosphorylation site motifs. Sci. Signal. 3:ra12. doi: 10.1126/scisignal.2000482.
-
(2010)
Sci. Signal.
, vol.3
-
-
Mok, J.1
-
51
-
-
34548775911
-
Hog1 mitogen-activated protein kinase phosphorylation targets the yeast Fps1 aquaglyceroporin for endocytosis, thereby rendering cells resistant to acetic acid
-
Mollapour M, Piper PW. 2007. Hog1 mitogen-activated protein kinase phosphorylation targets the yeast Fps1 aquaglyceroporin for endocytosis, thereby rendering cells resistant to acetic acid. Mol. Cell. Biol. 27:6446- 6456.
-
(2007)
Mol. Cell. Biol.
, vol.27
, pp. 6446-6456
-
-
Mollapour, M.1
Piper, P.W.2
-
52
-
-
33845609865
-
Mutual antagonism of target of rapamycin and calcineurin signaling
-
Mulet JM, Martin DE, Loewith R, Hall MN. 2006. Mutual antagonism of target of rapamycin and calcineurin signaling. J. Biol. Chem. 281:33000- 33007.
-
(2006)
J. Biol. Chem.
, vol.281
, pp. 33000-33007
-
-
Mulet, J.M.1
Martin, D.E.2
Loewith, R.3
Hall, M.N.4
-
53
-
-
84857131380
-
Plasma membrane recruitment and activation of theAGCkinase Ypk1 is [sic] mediated by target of rapamycin complex 2 (TORC2) and its effector proteins Slm1 and Slm2
-
Niles BJ, Mogri H, Hill A, Vlahakis A, Powers T. 2012. Plasma membrane recruitment and activation of theAGCkinase Ypk1 is [sic] mediated by target of rapamycin complex 2 (TORC2) and its effector proteins Slm1 and Slm2. Proc. Natl. Acad. Sci. U. S. A. 109:1536 -1541.
-
(2012)
Proc. Natl. Acad. Sci. U. S. A.
, vol.109
, pp. 1536-1541
-
-
Niles, B.J.1
Mogri, H.2
Hill, A.3
Vlahakis, A.4
Powers, T.5
-
54
-
-
4043098376
-
MAP kinase-mediated stress relief that precedes and regulates the timing of transcriptional induction
-
Proft M, Struhl K. 2004. MAP kinase-mediated stress relief that precedes and regulates the timing of transcriptional induction. Cell 118:351-361.
-
(2004)
Cell
, vol.118
, pp. 351-361
-
-
Proft, M.1
Struhl, K.2
-
55
-
-
0026570843
-
Yeast casein kinase I homologues: an essential gene pair
-
Robinson LC, et al. 1992. Yeast casein kinase I homologues: an essential gene pair. Proc. Natl. Acad. Sci. U. S. A. 89:28 -32.
-
(1992)
Proc. Natl. Acad. Sci. U. S. A.
, vol.89
, pp. 28-32
-
-
Robinson, L.C.1
-
56
-
-
76249089412
-
A protein kinase network regulates the function of aminophospholipid flippases
-
Roelants FM, Baltz AG, Trott AE, Fereres S, Thorner J. 2010. A protein kinase network regulates the function of aminophospholipid flippases. Proc. Natl. Acad. Sci. U. S. A. 107:34 -39.
-
(2010)
Proc. Natl. Acad. Sci. U. S. A.
, vol.107
, pp. 34-39
-
-
Roelants, F.M.1
Baltz, A.G.2
Trott, A.E.3
Fereres, S.4
Thorner, J.5
-
57
-
-
82755163564
-
Protein kinase Ypk1 phosphorylates regulatory proteins Orm1 and Orm2 to control sphingolipid homeostasis in Saccharomyces cerevisiae
-
Roelants FM, Breslow DK, Muir A, Weissman JS, Thorner J. 2011. Protein kinase Ypk1 phosphorylates regulatory proteins Orm1 and Orm2 to control sphingolipid homeostasis in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. U. S. A. 108:19222-19227.
-
(2011)
Proc. Natl. Acad. Sci. U. S. A.
, vol.108
, pp. 19222-19227
-
-
Roelants, F.M.1
Breslow, D.K.2
Muir, A.3
Weissman, J.S.4
Thorner, J.5
-
58
-
-
0036734541
-
Pkh1 and Pkh2 differentially phosphorylate and activate Ypk1 and Ykr2 and define protein kinase modules required for maintenance of cell wall integrity
-
Roelants FM, Torrance PD, Bezman N, Thorner J. 2002. Pkh1 and Pkh2 differentially phosphorylate and activate Ypk1 and Ykr2 and define protein kinase modules required for maintenance of cell wall integrity. Mol. Biol. Cell 13:3005-3028.
-
(2002)
Mol. Biol. Cell
, vol.13
, pp. 3005-3028
-
-
Roelants, F.M.1
Torrance, P.D.2
Bezman, N.3
Thorner, J.4
-
59
-
-
6444241901
-
Differential roles of PDK1-and PDK2-phosphorylation sites in the yeast AGC kinases Ypk1
-
Roelants FM, Torrance PD, Thorner J. 2004. Differential roles of PDK1-and PDK2-phosphorylation sites in the yeast AGC kinases Ypk1, Pkc1 and Sch9. Microbiology 150:3289 -3304.
-
(2004)
Pkc1 and Sch9. Microbiology
, vol.150
, pp. 3289-3304
-
-
Roelants, F.M.1
Torrance, P.D.2
Thorner, J.3
-
60
-
-
0345687191
-
The proteome of Saccharomyces cerevisiae mitochondria
-
Sickmann A, et al. 2003. The proteome of Saccharomyces cerevisiae mitochondria. Proc. Natl. Acad. Sci. U. S. A. 100:13207-13212.
-
(2003)
Proc. Natl. Acad. Sci. U. S. A.
, vol.100
, pp. 13207-13212
-
-
Sickmann, A.1
-
62
-
-
0343130542
-
Sli2 (Ypk1), a homologue of mammalian protein kinase SGK, is a downstream kinase in the sphingolipid-mediated signaling pathway of yeast
-
Sun Y, et al. 2000. Sli2 (Ypk1), a homologue of mammalian protein kinase SGK, is a downstream kinase in the sphingolipid-mediated signaling pathway of yeast. Mol. Cell. Biol. 20:4411- 4419.
-
(2000)
Mol. Cell. Biol.
, vol.20
, pp. 4411-4419
-
-
Sun, Y.1
-
63
-
-
0041700137
-
Elm1p is one of three upstream kinases for the Saccharomyces cerevisiae SNF1 complex
-
Sutherland CM, et al. 2003. Elm1p is one of three upstream kinases for the Saccharomyces cerevisiae SNF1 complex. Curr. Biol. 13:1299 - 1305.
-
(2003)
Curr. Biol.
, vol.13
, pp. 1299-1305
-
-
Sutherland, C.M.1
-
64
-
-
33746506061
-
The phosphatidylinositol 4 5-biphosphate and TORC2 binding proteins Slm1 and Slm2 function in sphingolipid regulation
-
Tabuchi M, Audhya A, Parsons AB, Boone C, Emr SD. 2006. The phosphatidylinositol 4,5-biphosphate and TORC2 binding proteins Slm1 and Slm2 function in sphingolipid regulation. Mol. Cell. Biol. 26:5861- 5875.
-
(2006)
Mol. Cell. Biol.
, vol.26
, pp. 5861-5875
-
-
Tabuchi, M.1
Audhya, A.2
Parsons, A.B.3
Boone, C.4
Emr, S.D.5
-
65
-
-
0033063643
-
Fps1p controls the accumulation and release of the compatible solute glycerol in yeast osmoregulation
-
Tamás MJ, et al. 1999. Fps1p controls the accumulation and release of the compatible solute glycerol in yeast osmoregulation. Mol. Microbiol. 31: 1087-1104.
-
(1999)
Mol. Microbiol.
, vol.31
, pp. 1087-1104
-
-
Tamás, M.J.1
-
66
-
-
0019349080
-
Metabolic pathways in peroxisomes and glyoxysomes
-
Tolbert NE. 1981. Metabolic pathways in peroxisomes and glyoxysomes. Annu. Rev. Biochem. 50:133-157.
-
(1981)
Annu. Rev. Biochem.
, vol.50
, pp. 133-157
-
-
Tolbert, N.E.1
-
67
-
-
0031740335
-
Snf1 protein kinase regulates phosphorylation of the Mig1 repressor in Saccharomyces cerevisiae
-
Treitel MA, Kuchin S, Carlson M. 1998. Snf1 protein kinase regulates phosphorylation of the Mig1 repressor in Saccharomyces cerevisiae. Mol. Cell. Biol. 18:6273- 6280.
-
(1998)
Mol. Cell. Biol.
, vol.18
, pp. 6273-6280
-
-
Treitel, M.A.1
Kuchin, S.2
Carlson, M.3
-
68
-
-
34249813098
-
Sch9 is a major target of TORC1 in Saccharomyces cerevisiae
-
Urban J, et al. 2007. Sch9 is a major target of TORC1 in Saccharomyces cerevisiae. Mol. Cell 26:663- 674.
-
(2007)
Mol. Cell
, vol.26
, pp. 663-674
-
-
Urban, J.1
-
69
-
-
4544378309
-
Distinct intracellular localization of Gpd1p and Gpd2p, the two yeast isoforms of NAD+-dependent glycerol-3-phosphate dehydrogenase, explains their different contributions to redox-driven glycerol production
-
Valadi A, Granath K, Gustafsson L, Adler L. 2004. Distinct intracellular localization of Gpd1p and Gpd2p, the two yeast isoforms of NAD+-dependent glycerol-3-phosphate dehydrogenase, explains their different contributions to redox-driven glycerol production. J. Biol. Chem. 279: 39677-39685.
-
(2004)
J. Biol. Chem
, vol.279
, pp. 39677-39685
-
-
Valadi, A.1
Granath, K.2
Gustafsson, L.3
Adler, L.4
-
70
-
-
66249108601
-
Understanding the Warburg effect: the metabolic requirements of cell proliferation
-
Vander Heiden MG, Cantley LC, Thompson CB. 2009. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324:1029 -1033.
-
(2009)
Science
, vol.324
, pp. 1029-1033
-
-
Vander Heiden, M.G.1
Cantley, L.C.2
Thompson, C.B.3
-
71
-
-
37149013110
-
Pkh-kinases control eisosome assembly and organization
-
Walther TC, et al. 2007. Pkh-kinases control eisosome assembly and organization. EMBO J. 26:4946-4955.
-
(2007)
EMBO J
, vol.26
, pp. 4946-4955
-
-
Walther, T.C.1
-
72
-
-
67149130284
-
Tor1/Sch9-regulated carbon source substitution is as effective as calorie restriction in life span extension
-
doi:10.1371/journal.pgen.1000467
-
Wei M, et al. 2009. Tor1/Sch9-regulated carbon source substitution is as effective as calorie restriction in life span extension. PLoS Genet. 5:e1000467. doi:10.1371/journal.pgen.1000467.
-
(2009)
PLoS Genet
, vol.5
-
-
Wei, M.1
-
74
-
-
0030293885
-
Glucose repression/ derepression in budding yeast: SNF1 protein kinase is activated by phosphorylation under derepressing conditions, and this correlates with a high AMP:ATP ratio
-
Wilson WA, Hawley SA, Hardie DG. 1996. Glucose repression/ derepression in budding yeast: SNF1 protein kinase is activated by phosphorylation under derepressing conditions, and this correlates with a high AMP:ATP ratio. Curr. Biol. 6:1426 -1434.
-
(1996)
Curr. Biol
, vol.6
, pp. 1426-1434
-
-
Wilson, W.A.1
Hawley, S.A.2
Hardie, D.G.3
-
75
-
-
0033529707
-
Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis
-
Winzeler EA, et al. 1999. Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285:901-906.
-
(1999)
Science
, vol.285
, pp. 901-906
-
-
Winzeler, E.A.1
-
76
-
-
0030947344
-
Molecular evidence for an ancient duplication of the entire yeast genome
-
Wolfe KH, Shields DC. 1997. Molecular evidence for an ancient duplication of the entire yeast genome. Nature 387:708 -713.
-
(1997)
Nature
, vol.387
, pp. 708-713
-
-
Wolfe, K.H.1
Shields, D.C.2
-
77
-
-
78650510609
-
mTOR: from growth signal integration to cancer, diabetes and ageing
-
Zoncu R, Efeyan A, Sabatini DM. 2011. mTOR: from growth signal integration to cancer, diabetes and ageing. Nat. Rev. Mol. Cell Biol. 12:21-35.
-
(2011)
Nat. Rev. Mol. Cell Biol
, vol.12
, pp. 21-35
-
-
Zoncu, R.1
Efeyan, A.2
Sabatini, D.M.3
|