메뉴 건너뛰기




Volumn 29, Issue 3, 2015, Pages 626-688

Graph based anomaly detection and description: A survey

Author keywords

Anomaly description; Anomaly detection; Change point detection; Event detection; Fraud detection; Graph mining; Network anomaly detection; Visual analytics

Indexed keywords

LAWS AND LEGISLATION; SURVEYS;

EID: 84940282157     PISSN: 13845810     EISSN: None     Source Type: Journal    
DOI: 10.1007/s10618-014-0365-y     Document Type: Article
Times cited : (1339)

References (264)
  • 3
    • 84905869515 scopus 로고    scopus 로고
    • Evolutionary network analysis: a survey
    • Aggarwal C, Subbian K (2014) Evolutionary network analysis: a survey. ACM Comput Surv 47(1):10. doi:10.1145/2601412
    • (2014) ACM Comput Surv , vol.47 , Issue.1 , pp. 10
    • Aggarwal, C.1    Subbian, K.2
  • 8
    • 68749098468 scopus 로고    scopus 로고
    • RTG: a recursive realistic graph generator using random typing
    • Akoglu L, Faloutsos C (2009) RTG: a recursive realistic graph generator using random typing. Data Min Knowl Discov 19(2):194–209
    • (2009) Data Min Knowl Discov , vol.19 , Issue.2 , pp. 194-209
    • Akoglu, L.1    Faloutsos, C.2
  • 12
    • 84880243365 scopus 로고    scopus 로고
    • PICS: parameter-free identification of cohesive subgroups in large attributed graphs. Proceedings of the 12th SIAM international conference on data mining (SDM), Anaheim, CA
    • Akoglu L, Tong H, Meeder B, Faloutsos C (2012b) PICS: parameter-free identification of cohesive subgroups in large attributed graphs. Proceedings of the 12th SIAM international conference on data mining (SDM), Anaheim, CA. SIAM/Omnipress, pp 439–450
    • (2012) SIAM/Omnipress , pp. 439-450
    • Akoglu, L.1    Tong, H.2    Meeder, B.3    Faloutsos, C.4
  • 16
    • 80053426370 scopus 로고    scopus 로고
    • Dimensionality reduction for histogram features based on supervised non-negative matrix factorization
    • Ambai M, Utama NP, Yoshida Y (2011) Dimensionality reduction for histogram features based on supervised non-negative matrix factorization. IEICE Trans Inf Syst 94-D(10):1870–1879
    • (2011) IEICE Trans Inf Syst 94-D(10) , pp. 1870-1879
    • Ambai, M.1    Utama, N.P.2    Yoshida, Y.3
  • 22
    • 0038483826 scopus 로고    scopus 로고
    • Emergence of scaling in random networks
    • Barabási A-L, Albert R (1999) Emergence of scaling in random networks. Science 286:509–512
    • (1999) Science , vol.286 , pp. 509-512
    • Barabási, A.-L.1    Albert, R.2
  • 29
    • 84940278006 scopus 로고    scopus 로고
    • Dynamic Network Evolution: Models, Clustering
    • Rensselaer Polytechnic Institute, Troy, NY
    • Bilgin CC, Yener B (2006) Dynamic Network Evolution: Models, Clustering, Anomaly Detection. Rensselaer Polytechnic Institute, Troy, NY
    • (2006) Anomaly Detection
    • Bilgin, C.C.1    Yener, B.2
  • 34
    • 0042421807 scopus 로고    scopus 로고
    • Statistical fraud detection: a review
    • Bolton RJ, Hand DJ (2002) Statistical fraud detection: a review. Stat Sci 17(3):235–255
    • (2002) Stat Sci , vol.17 , Issue.3 , pp. 235-255
    • Bolton, R.J.1    Hand, D.J.2
  • 35
    • 0042761757 scopus 로고    scopus 로고
    • Eigenvector-like measures of centrality for asymmetric relations
    • Bonacich P, Lloyd P (2001) Eigenvector-like measures of centrality for asymmetric relations. Soc Netw 23(3):191–201
    • (2001) Soc Netw , vol.23 , Issue.3 , pp. 191-201
    • Bonacich, P.1    Lloyd, P.2
  • 38
    • 0038589165 scopus 로고    scopus 로고
    • The anatomy of a large-scale hypertextual web search engine
    • Brin S, Page L (1998) The anatomy of a large-scale hypertextual web search engine. Comput Netw 30(1–7):107–117
    • (1998) Comput Netw , vol.30 , Issue.1-7 , pp. 107-117
    • Brin, S.1    Page, L.2
  • 39
    • 0033188822 scopus 로고    scopus 로고
    • Error correcting graph matching: on the influence of the underlying cost function
    • Bunke H (1999) Error correcting graph matching: on the influence of the underlying cost function. IEEE Trans Pattern Anal Mach Intell 21(9):917–922
    • (1999) IEEE Trans Pattern Anal Mach Intell , vol.21 , Issue.9 , pp. 917-922
    • Bunke, H.1
  • 44
    • 70349266356 scopus 로고    scopus 로고
    • Comprehensive survey on distance/similarity measures between probability density functions
    • Cha S-H (2007) Comprehensive survey on distance/similarity measures between probability density functions. Int J Math Models Methods Appl Sci 1(4):300–307
    • (2007) Int J Math Models Methods Appl Sci , vol.1 , Issue.4 , pp. 300-307
    • Cha, S.-H.1
  • 49
    • 84859722266 scopus 로고    scopus 로고
    • Anomaly detection for discrete sequences: a survey
    • Chandola V, Banerjee A, Kumar V (2012) Anomaly detection for discrete sequences: a survey. IEEE Trans Knowl Data Eng 24(5):823–839
    • (2012) IEEE Trans Knowl Data Eng , vol.24 , Issue.5 , pp. 823-839
    • Chandola, V.1    Banerjee, A.2    Kumar, V.3
  • 50
    • 54649085149 scopus 로고    scopus 로고
    • Graph similarity and distance in graphs
    • Chartrand G, Kubicki G, Schulz M (1998) Graph similarity and distance in graphs. Aequ Math 55(1–2):129–145
    • (1998) Aequ Math , vol.55 , Issue.1-2 , pp. 129-145
    • Chartrand, G.1    Kubicki, G.2    Schulz, M.3
  • 53
    • 84940272985 scopus 로고    scopus 로고
    • Chaudhary A, Szalay AS, Moore AW (2002) Very fast outlier detection in large multidimensional data sets. In Proceedings of the ACM SIGMOD workshop on research issues in data mining and knowledge discovery (DMKD), Madison, WI
    • Chaudhary A, Szalay AS, Moore AW (2002) Very fast outlier detection in large multidimensional data sets. In Proceedings of the ACM SIGMOD workshop on research issues in data mining and knowledge discovery (DMKD), Madison, WI
  • 55
    • 0025401005 scopus 로고
    • The computational complexity of probabilistic inference using Bayesian belief networks
    • Cooper GF (1990) The computational complexity of probabilistic inference using Bayesian belief networks. Artif Intell 42(2–3):393–405
    • (1990) Artif Intell , vol.42 , Issue.2-3 , pp. 393-405
    • Cooper, G.F.1
  • 56
    • 23044525410 scopus 로고    scopus 로고
    • Signature-based methods for data streams
    • Cortes C, Pregibon D (2001) Signature-based methods for data streams. Data Min Knowl Discov 5(3):167–182
    • (2001) Data Min Knowl Discov , vol.5 , Issue.3 , pp. 167-182
    • Cortes, C.1    Pregibon, D.2
  • 59
    • 84874031015 scopus 로고    scopus 로고
    • Pang HH (2012) Detecting anomalies in bipartite graphs with mutual dependency principles
    • Brussels: Belgium. IEEE Computer Society
    • Dai H, Zhu F, Lim E-P, Pang HH (2012) Detecting anomalies in bipartite graphs with mutual dependency principles. In: Proceedings of the 12th IEEE international conference on data mining (ICDM), Brussels, Belgium. IEEE Computer Society, pp 171–180
    • Proceedings of the 12th IEEE international conference on data mining (ICDM) , pp. 171-180
    • Dai, H.1    Zhu, F.2    Lim, E.-P.3
  • 67
    • 33751097630 scopus 로고    scopus 로고
    • Fast monte carlo algorithms for matrices iii: computing a compressed approximate matrix decomposition
    • Drineas P, Kannan R, Mahoney MW (2006) Fast monte carlo algorithms for matrices iii: computing a compressed approximate matrix decomposition. SIAM J Comput 36(1):184–206
    • (2006) SIAM J Comput , vol.36 , Issue.1 , pp. 184-206
    • Drineas, P.1    Kannan, R.2    Mahoney, M.W.3
  • 70
    • 67649739099 scopus 로고    scopus 로고
    • A survey of signature based methods for financial fraud detection
    • Edge ME, Falcone Sampaio PR (2009) A survey of signature based methods for financial fraud detection. Comput Secur 28(6):381–394
    • (2009) Comput Secur , vol.28 , Issue.6 , pp. 381-394
    • Edge, M.E.1    Falcone Sampaio, P.R.2
  • 75
    • 0002593344 scopus 로고    scopus 로고
    • Irani KB (1993) Multi-interval discretization of continuous-valued attributes for classification learning
    • Chambery: France. Morgan Kaufmann
    • Fayyad UM, Irani KB (1993) Multi-interval discretization of continuous-valued attributes for classification learning. In: Proceedings of the 5th international joint conference on artificial intelligence (IJCAI), Chambery, France. Morgan Kaufmann, pp 1022–1029
    • Proceedings of the 5th international joint conference on artificial intelligence (IJCAI) , pp. 1022-1029
    • Fayyad, U.M.1
  • 76
    • 84940280316 scopus 로고    scopus 로고
    • Federal Bureau of Investigation (FBI) (2009) Online auction fraud
    • Federal Bureau of Investigation (FBI) (2009) Online auction fraud
  • 80
    • 0001350119 scopus 로고
    • Algebraic connectivity of graphs
    • Fiedler M (1973) Algebraic connectivity of graphs. Czechoslov Math J 23(98):298–305
    • (1973) Czechoslov Math J , vol.23 , Issue.98 , pp. 298-305
    • Fiedler, M.1
  • 83
    • 84865730611 scopus 로고
    • A set of measures of centrality based upon betweenness
    • Freeman LC (1977) A set of measures of centrality based upon betweenness. Sociometry 40:35–41
    • (1977) Sociometry , vol.40 , pp. 35-41
    • Freeman, L.C.1
  • 90
    • 73749086870 scopus 로고    scopus 로고
    • A survey of graph edit distance
    • Gao X, Xiao B, Tao D, Li X (2010b) A survey of graph edit distance. J Pattern Anal Appl 13(1):113–129
    • (2010) J Pattern Anal Appl , vol.13 , Issue.1 , pp. 113-129
    • Gao, X.1    Xiao, B.2    Tao, D.3    Li, X.4
  • 91
    • 33750904572 scopus 로고    scopus 로고
    • Using graph diameter for change detection in dynamic networks
    • Gaston ME, Kraetzl M, Wallis WD (2006) Using graph diameter for change detection in dynamic networks. Aust J Comb, 299–311
    • (2006) Aust J Comb , pp. 299-311
    • Gaston, M.E.1    Kraetzl, M.2    Wallis, W.D.3
  • 92
    • 42749086305 scopus 로고    scopus 로고
    • Fast mining of distance-based outliers in high-dimensional datasets
    • Ghoting A, Parthasarathy S, Otey ME (2008) Fast mining of distance-based outliers in high-dimensional datasets. Data Min Knowl Discov 16(3):349–364
    • (2008) Data Min Knowl Discov , vol.16 , Issue.3 , pp. 349-364
    • Ghoting, A.1    Parthasarathy, S.2    Otey, M.E.3
  • 97
    • 84864555859 scopus 로고    scopus 로고
    • Finding density-based subspace clusters in graphs with feature vectors
    • Günnemann S, Boden B, Seidl T (2012) Finding density-based subspace clusters in graphs with feature vectors. Data Min Knowl Discov 25(2):243–269
    • (2012) Data Min Knowl Discov , vol.25 , Issue.2 , pp. 243-269
    • Günnemann, S.1    Boden, B.2    Seidl, T.3
  • 101
    • 84869031526 scopus 로고    scopus 로고
    • Eliassi-Rad T (2012) Measuring tie strength in implicit social networks
    • Evanston: IL. ACM
    • Gupte M, Eliassi-Rad T (2012) Measuring tie strength in implicit social networks. In: Proceedings of the ACM conference on web science, Evanston, IL. ACM, pp 109–118
    • Proceedings of the ACM conference on web science , pp. 109-118
    • Gupte, M.1
  • 103
    • 0041848443 scopus 로고    scopus 로고
    • Topic-sensitive pagerank: a context-sensitive ranking algorithm for web search
    • Haveliwala TH (2003) Topic-sensitive pagerank: a context-sensitive ranking algorithm for web search. IEEE Trans Knowl Data Eng 15(4):784–796
    • (2003) IEEE Trans Knowl Data Eng , vol.15 , Issue.4 , pp. 784-796
    • Haveliwala, T.H.1
  • 105
    • 0037410488 scopus 로고    scopus 로고
    • Discovering cluster-based local outliers
    • He Z, Xiaofei X, Deng S (2003) Discovering cluster-based local outliers. Pattern Recognit Lett 24(9–10):1641–1650
    • (2003) Pattern Recognit Lett , vol.24 , Issue.9-10 , pp. 1641-1650
    • He, Z.1    Xiaofei, X.2    Deng, S.3
  • 107
    • 84940289099 scopus 로고    scopus 로고
    • One-class classification by combining density and class probability estimation. In: Proceedings of the European conference on machine learning and principles and practice of knowledge discovery in databases (ECML PKDD), Antwerp
    • Springer, Berlin
    • Hempstalk K, Frank E, Witten IH (2008) One-class classification by combining density and class probability estimation. In: Proceedings of the European conference on machine learning and principles and practice of knowledge discovery in databases (ECML PKDD), Antwerp, Belgium. Springer, Berlin
    • (2008) Belgium
    • Hempstalk, K.1    Frank, E.2    Witten, I.H.3
  • 113
    • 79955760469 scopus 로고    scopus 로고
    • Graption: a graph-based P2P traffic classification framework for the internet backbone
    • Iliofotou M, Kim H, Faloutsos M, Mitzenmacher M, Pappu P, Varghese G (2011) Graption: a graph-based P2P traffic classification framework for the internet backbone. Comput Netw 55(8):1909–1920
    • (2011) Comput Netw , vol.55 , Issue.8 , pp. 1909-1920
    • Iliofotou, M.1    Kim, H.2    Faloutsos, M.3    Mitzenmacher, M.4    Pappu, P.5    Varghese, G.6
  • 114
  • 122
    • 84860803254 scopus 로고    scopus 로고
    • Thinking
    • Farrar, Straus and Giroux
    • Kahneman D (2011) Thinking, fast and slow. Farrar, Straus and Giroux
    • (2011) Fast and slow
    • Kahneman, D.1
  • 124
    • 79957866699 scopus 로고    scopus 로고
    • Faloutsos C (2011a) Mining large graphs: algorithms, inference, and discoveries
    • Hannover: Germany. IEEE Computer Society
    • Kang U, Chau DH, Faloutsos C (2011a) Mining large graphs: algorithms, inference, and discoveries. In: Proceedings of the 27th international conference on data engineering (ICDE), Hannover, Germany. IEEE Computer Society, pp 243–254
    • Proceedings of the 27th international conference on data engineering (ICDE) , pp. 243-254
    • Kang, U.1    Chau, D.H.2
  • 126
    • 79952540632 scopus 로고    scopus 로고
    • Hadi: mining radii of large graphs. ACM Trans Knowl Discov Data 5: 8:1–8:24
    • Kang U, Tsourakakis CE, Appel AP, Faloutsos C, Leskovec J (2011c) Hadi: mining radii of large graphs. ACM Trans Knowl Discov Data 5: 8:1–8:24. ISSN 1556–4681
    • (2011) ISSN , pp. 1556-4681
    • Kang, U.1    Tsourakakis, C.E.2    Appel, A.P.3    Faloutsos, C.4    Leskovec, J.5
  • 130
    • 0003692957 scopus 로고
    • Metis-unstructured graph partitioning and sparse matrix ordering system, version 2.0. Technical report, University of Minnesota
    • Karypis G, Kumar V (1995) Metis-unstructured graph partitioning and sparse matrix ordering system, version 2.0. Technical report, University of Minnesota, Department of Computer Science
    • (1995) Department of Computer Science
    • Karypis, G.1    Kumar, V.2
  • 131
    • 84940234728 scopus 로고    scopus 로고
    • Parallel multilevel k-way partitioning scheme for irregular graphs. In: Proceedings of the 1996 ACM/IEEE conference on supercomputing (CDROM), Supercomputing ’96
    • Karypis G, Kumar V (1996) Parallel multilevel k-way partitioning scheme for irregular graphs. In: Proceedings of the 1996 ACM/IEEE conference on supercomputing (CDROM), Supercomputing ’96. IEEE Computer Society
    • (1996) IEEE Computer Society
    • Karypis, G.1    Kumar, V.2
  • 133
    • 0002827622 scopus 로고
    • A new status index derived from sociometric analysis
    • Katz L (1953) A new status index derived from sociometric analysis. Psychometrika 18(1):39–43
    • (1953) Psychometrika , vol.18 , Issue.1 , pp. 39-43
    • Katz, L.1
  • 135
    • 0041150047 scopus 로고
    • Comparison of graphs by their number of spanning trees
    • Kelmans AK (1976) Comparison of graphs by their number of spanning trees. Discrete Math 16(3):241–261
    • (1976) Discrete Math , vol.16 , Issue.3 , pp. 241-261
    • Kelmans, A.K.1
  • 144
    • 77954086220 scopus 로고    scopus 로고
    • MetroSurv: detecting events in subway stations
    • Krausz B, Herpers R (2010) MetroSurv: detecting events in subway stations. Multimed Tools Appl 50(1):123–147
    • (2010) Multimed Tools Appl , vol.50 , Issue.1 , pp. 123-147
    • Krausz, B.1    Herpers, R.2
  • 147
    • 77952908435 scopus 로고    scopus 로고
    • The economics of click fraud
    • Kshetri N (2010) The economics of click fraud. IEEE Secur Priv 8(3):45–53
    • (2010) IEEE Secur Priv , vol.8 , Issue.3 , pp. 45-53
    • Kshetri, N.1
  • 150
    • 77956221595 scopus 로고    scopus 로고
    • Kumar M, Ghani R, Mei Z-S (2010) Data mining to predict and prevent errors in health insurance claims processing. In: Proceedings of the 16th ACM international conference on knowledge discovery and data mining (SIGKDD), Washington, DC. ACM, pp 65–74
    • Kumar M, Ghani R, Mei Z-S (2010) Data mining to predict and prevent errors in health insurance claims processing. In: Proceedings of the 16th ACM international conference on knowledge discovery and data mining (SIGKDD), Washington, DC. ACM, pp 65–74
  • 164
    • 84874192412 scopus 로고    scopus 로고
    • Svdd-based outlier detection on uncertain data
    • Liu B, Xiao Y, Cao L, Hao Z, Deng F (2013) Svdd-based outlier detection on uncertain data. Knowl Inf Syst 34(3):597–618
    • (2013) Knowl Inf Syst , vol.34 , Issue.3 , pp. 597-618
    • Liu, B.1    Xiao, Y.2    Cao, L.3    Hao, Z.4    Deng, F.5
  • 170
    • 77953023846 scopus 로고    scopus 로고
    • Machine learning algorithms for event detection
    • Margineantu DD, Wong W-K, Dash D (2010) Machine learning algorithms for event detection. Mach Learn 79(3):257–259
    • (2010) Mach Learn , vol.79 , Issue.3 , pp. 257-259
    • Margineantu, D.D.1    Wong, W.-K.2    Dash, D.3
  • 172
    • 0034836055 scopus 로고    scopus 로고
    • BRITE: an approach to universal topology generation. In: Proceedings of the IEEE 9th international symposium on modeling, analysis and simulation of computer and telecommunication systems
    • Medina A, Lakhina A, Matta I, Byers JW (2001) BRITE: an approach to universal topology generation. In: Proceedings of the IEEE 9th international symposium on modeling, analysis and simulation of computer and telecommunication systems. IEEE Computer Society
    • (2001) IEEE Computer Society
    • Medina, A.1    Lakhina, A.2    Matta, I.3    Byers, J.W.4
  • 174
    • 0442312143 scopus 로고    scopus 로고
    • A mixture model and em-based algorithm for class discovery, robust classification, and outlier rejection in mixed labeled/unlabeled data sets
    • Miller DJ, Browning J (2003) A mixture model and em-based algorithm for class discovery, robust classification, and outlier rejection in mixed labeled/unlabeled data sets. IEEE Trans Pattern Anal Mach Intell 25(11):1468–1483
    • (2003) IEEE Trans Pattern Anal Mach Intell , vol.25 , Issue.11 , pp. 1468-1483
    • Miller, D.J.1    Browning, J.2
  • 180
    • 84920833097 scopus 로고
    • Approximations for distributions of scan statistics
    • Naus JI (1982) Approximations for distributions of scan statistics. J Am Stat Assoc 77(377):177–183
    • (1982) J Am Stat Assoc , vol.77 , Issue.377 , pp. 177-183
    • Naus, J.I.1
  • 187
    • 2942564706 scopus 로고    scopus 로고
    • Detecting community structure in networks
    • Newman MEJ (2004) Detecting community structure in networks. Eur Phys J B 38:321–330
    • (2004) Eur Phys J B , vol.38 , pp. 321-330
    • Newman, M.E.J.1
  • 188
    • 33745012299 scopus 로고    scopus 로고
    • Modularity and community structure in networks
    • Newman MEJ (2006) Modularity and community structure in networks. Proc Natl Acad Sci 103(23):8577–8582
    • (2006) Proc Natl Acad Sci , vol.103 , Issue.23 , pp. 8577-8582
    • Newman, M.E.J.1
  • 189
    • 37649028224 scopus 로고    scopus 로고
    • Finding and evaluating community structure in networks
    • Newman MEJ, Girvan M (2004) Finding and evaluating community structure in networks. Phys Rev E 69(2):026113
    • (2004) Phys Rev E , vol.69 , Issue.2 , pp. 026113
    • Newman, M.E.J.1    Girvan, M.2
  • 191
    • 84995303159 scopus 로고    scopus 로고
    • Unsupervised dimensionality reduction via gradient-based matrix factorization with two adaptive learning rates
    • Nikulin V, Huang T-H (2012) Unsupervised dimensionality reduction via gradient-based matrix factorization with two adaptive learning rates. J Mach Learn Res Proc Track 27:181–194
    • (2012) J Mach Learn Res Proc Track , vol.27 , pp. 181-194
    • Nikulin, V.1    Huang, T.-H.2
  • 193
    • 2342616749 scopus 로고    scopus 로고
    • Random walks on complex networks
    • Noh JD, Rieger H (2004) Random walks on complex networks. Phys Rev Lett 92:118701
    • (2004) Phys Rev Lett , vol.92 , pp. 118701
    • Noh, J.D.1    Rieger, H.2
  • 196
    • 33646553013 scopus 로고    scopus 로고
    • Fast distributed outlier detection in mixed-attribute data sets
    • Otey ME, Ghoting A, Parthasarathy S (2006) Fast distributed outlier detection in mixed-attribute data sets. Data Min Knowl Discov 12(2–3):203–228
    • (2006) Data Min Knowl Discov , vol.12 , Issue.2-3 , pp. 203-228
    • Otey, M.E.1    Ghoting, A.2    Parthasarathy, S.3
  • 197
    • 83255191401 scopus 로고    scopus 로고
    • Finding deceptive opinion spam by any stretch of the imagination. In Proceedings of the 49th annual meeting of the association for computational linguistics (ACL), Portland
    • Ott M, Choi Y, Cardie C, Hancock JT (2011) Finding deceptive opinion spam by any stretch of the imagination. In Proceedings of the 49th annual meeting of the association for computational linguistics (ACL), Portland, OR, pp 309–319
    • (2011) OR , pp. 309-319
    • Ott, M.1    Choi, Y.2    Cardie, C.3    Hancock, J.T.4
  • 201
    • 67149126890 scopus 로고    scopus 로고
    • Sun J (2008) DisCo: distributed co-clustering with map-reduce: a case study towards petabyte-scale end-to-end mining
    • Pisa: Italy. IEEE Computer Society
    • Papadimitriou S, Sun J (2008) DisCo: distributed co-clustering with map-reduce: a case study towards petabyte-scale end-to-end mining. In: Proceedings of the 8th IEEE international conference on data mining (ICDM), Pisa, Italy. IEEE Computer Society, pp 512–521
    • Proceedings of the 8th IEEE international conference on data mining (ICDM) , pp. 512-521
    • Papadimitriou, S.1
  • 206
    • 0000325341 scopus 로고
    • On lines and planes of closest fit to systems of points in space
    • Pearson K (1901) On lines and planes of closest fit to systems of points in space. Philos Mag 2(6):559–572
    • (1901) Philos Mag , vol.2 , Issue.6 , pp. 559-572
    • Pearson, K.1
  • 207
    • 84940262233 scopus 로고    scopus 로고
    • Detecting change points in the large-scale structure of evolving networks
    • Peel L, Clauset A (2014) Detecting change points in the large-scale structure of evolving networks. CoRR, abs/1403.0989
    • (2014) CoRR, abs/1403 , pp. 0989
    • Peel, L.1    Clauset, A.2
  • 208
    • 0033570815 scopus 로고    scopus 로고
    • Replicator equations, maximal cliques, and graph isomorphism
    • Pelillo M (1999) Replicator equations, maximal cliques, and graph isomorphism. Neural Comput 11(8):1933–1955
    • (1999) Neural Comput , vol.11 , Issue.8 , pp. 1933-1955
    • Pelillo, M.1
  • 210
    • 29144443664 scopus 로고    scopus 로고
    • Minority report in fraud detection: classification of skewed data
    • Phua C, Alahakoon D, Lee V (2004) Minority report in fraud detection: classification of skewed data. SIGKDD Explor 6(1):50–59
    • (2004) SIGKDD Explor , vol.6 , Issue.1 , pp. 50-59
    • Phua, C.1    Alahakoon, D.2    Lee, V.3
  • 211
  • 212
    • 84874254173 scopus 로고    scopus 로고
    • Anomaly detection in time series of graphs using arma processes
    • Pincombe B (2005) Anomaly detection in time series of graphs using arma processes. ASOR Bull 24(4): 2–10
    • (2005) ASOR Bull , vol.24 , Issue.4 , pp. 2-10
    • Pincombe, B.1
  • 218
    • 0032614642 scopus 로고    scopus 로고
    • Hypothesis selection and testing by the MDL principle
    • Rissanen J (1999) Hypothesis selection and testing by the MDL principle. Comput J 42:260–269
    • (1999) Comput J , vol.42 , pp. 260-269
    • Rissanen, J.1
  • 221
    • 0042323830 scopus 로고    scopus 로고
    • Computing depth contours of bivariate point clouds
    • Ruts I, Rousseeuw PJ (1996) Computing depth contours of bivariate point clouds. Comput Stat Data Anal 23(1):153–168
    • (1996) Comput Stat Data Anal , vol.23 , Issue.1 , pp. 153-168
    • Ruts, I.1    Rousseeuw, P.J.2
  • 222
    • 18644368589 scopus 로고    scopus 로고
    • Outlier detection based on the distribution of distances between data points
    • Saltenis V (2004) Outlier detection based on the distribution of distances between data points. Informatica (Lithuanian Academy of Sciences) 15(3):399–410
    • (2004) Informatica (Lithuanian Academy of Sciences) , vol.15 , Issue.3 , pp. 399-410
    • Saltenis, V.1
  • 223
    • 84891852242 scopus 로고    scopus 로고
    • Local outlier detection reconsidered: a generalized view on locality with applications to spatial, video, and network outlier detection
    • Schubert E, Zimek A, Kriegel H-P (2012) Local outlier detection reconsidered: a generalized view on locality with applications to spatial, video, and network outlier detection. Data Mining Knowl Discov 28(1): 190–237. doi:10.1007/s10618-012-0300-z
    • (2012) Data Mining Knowl Discov , vol.28 , Issue.1 , pp. 190-237
    • Schubert, E.1    Zimek, A.2    Kriegel, H.-P.3
  • 226
    • 63449131883 scopus 로고    scopus 로고
    • Detection of abnormal change in dynamic networks. In: Information, decision and control, 1999. IDC 99. Proceedings
    • Shoubridge P, Kraetzl M, Ray D (1999) Detection of abnormal change in dynamic networks. In: Information, decision and control, 1999. IDC 99. Proceedings. pp 557–562
    • (1999) Information, decision and control
    • Shoubridge, P.1    Kraetzl, M.2    Ray, D.3
  • 229
    • 79951764387 scopus 로고    scopus 로고
    • Feng B (2010) gskeletonclu: density-based network clustering via structure-connected tree division or agglomeration
    • Sydney: Australia. IEEE Computer Society
    • Sun H, Huang J, Han J, Deng H, Zhao P, Feng B (2010) gskeletonclu: density-based network clustering via structure-connected tree division or agglomeration. In: Proceedings of the 10th IEEE international conference on data mining (ICDM), Sydney, Australia. IEEE Computer Society, pp 481–490
    • Proceedings of the 10th IEEE international conference on data mining (ICDM) , pp. 481-490
    • Sun, H.1    Huang, J.2    Han, J.3    Deng, H.4    Zhao, P.5
  • 234
    • 85196065696 scopus 로고    scopus 로고
    • Less is more: sparse graph mining with compact matrix decomposition. Stat Anal Data Min 1(1): 6–22
    • Sun J, Xie Y, Zhang H, Faloutsos C (2008) Less is more: sparse graph mining with compact matrix decomposition. Stat Anal Data Min 1(1): 6–22. ISSN 1932–1864
    • (2008) ISSN , pp. 1864-1932
    • Sun, J.1    Xie, Y.2    Zhang, H.3    Faloutsos, C.4
  • 235
    • 84892142402 scopus 로고    scopus 로고
    • Fraud detection in communication networks using neural and probabilistic methods
    • Taniguchi M, Haft M, Hollmen J, Tresp V (1998) Fraud detection in communication networks using neural and probabilistic methods. Acoust Speech Signal Process 2:1241–1244
    • (1998) Acoust Speech Signal Process , vol.2 , pp. 1241-1244
    • Taniguchi, M.1    Haft, M.2    Hollmen, J.3    Tresp, V.4
  • 241
    • 84865437346 scopus 로고    scopus 로고
    • Lin C-Y (2011) Non-negative residual matrix factorization with application to graph anomaly detection
    • SDM, Mesa, AZ
    • Tong H, Lin C-Y (2011) Non-negative residual matrix factorization with application to graph anomaly detection. In: Proceedings of the 11th SIAM international conference on data mining (SDM), Mesa, AZ, pp 143–153
    • Proceedings of the 11th SIAM international conference on data mining , pp. 143-153
    • Tong, H.1
  • 242
    • 84863154938 scopus 로고    scopus 로고
    • Non-negative residual matrix factorization: problem definition, fast solutions, and applications
    • Tong H, Lin C-Y (2012) Non-negative residual matrix factorization: problem definition, fast solutions, and applications. Stat Anal Data Min 5(1):3–15
    • (2012) Stat Anal Data Min , vol.5 , Issue.1 , pp. 3-15
    • Tong, H.1    Lin, C.-Y.2
  • 244
    • 0016870630 scopus 로고
    • An algorithm for subgraph isomorphism
    • Ullmann JR (1976) An algorithm for subgraph isomorphism. J ACM 23(1):31–42
    • (1976) J ACM , vol.23 , Issue.1 , pp. 31-42
    • Ullmann, J.R.1
  • 247
    • 84867408740 scopus 로고    scopus 로고
    • Identify online store review spammers via social review graph
    • Wang G, Xie S, Liu B, Yu PS (2012a) Identify online store review spammers via social review graph. ACM Trans Intell Syst Technol 3(4):61
    • (2012) ACM Trans Intell Syst Technol , vol.3 , Issue.4 , pp. 61
    • Wang, G.1    Xie, S.2    Liu, B.3    Yu, P.S.4
  • 248
    • 84860454495 scopus 로고    scopus 로고
    • Low-rank kernel matrix factorization for large-scale evolutionary clustering
    • Wang L, Rege M, Dong M, Ding Y (2012b) Low-rank kernel matrix factorization for large-scale evolutionary clustering. IEEE Trans Knowl Data Eng 24(6):1036–1050
    • (2012) IEEE Trans Knowl Data Eng , vol.24 , Issue.6 , pp. 1036-1050
    • Wang, L.1    Rege, M.2    Dong, M.3    Ding, Y.4
  • 249
  • 251
    • 0004081447 scopus 로고    scopus 로고
    • Princeton University Press, Princeton, NJ
    • Watts DJ (1999) Small worlds. Princeton University Press, Princeton, NJ
    • (1999) Small worlds
    • Watts, D.J.1
  • 252
    • 0032482432 scopus 로고    scopus 로고
    • Collective dynamics of ‘small-world’ networks. Nature 393(6684):440–442
    • Watts DJ, Strogatz SH (1998) Collective dynamics of ‘small-world’ networks. Nature 393(6684):440–442. ISSN 00280836
    • (1998) ISSN
    • Watts, D.J.1    Strogatz, S.H.2
  • 253
    • 44649130592 scopus 로고    scopus 로고
    • A study of graph spectra for comparing graphs and trees
    • Wilson RC, Zhu P (2008) A study of graph spectra for comparing graphs and trees. J Pattern Recognit 41(9):2833–2841
    • (2008) J Pattern Recognit , vol.41 , Issue.9 , pp. 2833-2841
    • Wilson, R.C.1    Zhu, P.2
  • 254
    • 29144530575 scopus 로고    scopus 로고
    • What’s strange about recent events (wsare): an algorithm for the early detection of disease outbreaks
    • Wong W.-K., Moore A, Cooper G, Wagner M (2005) What’s strange about recent events (wsare): an algorithm for the early detection of disease outbreaks. J Mach Learn Res 6:1961–1998. ISSN 1532–4435
    • (2005) J Mach Learn Res 6:1961–1998. ISSN , pp. 1532-4435
    • Wong, W.-K.1    Moore, A.2    Cooper, G.3    Wagner, M.4
  • 256
    • 84862778493 scopus 로고    scopus 로고
    • Using data mining technique to enhance tax evasion detection performance
    • Wu R-S, Ou C-S, Lin HY, Chang S-I, Yen DC (2012) Using data mining technique to enhance tax evasion detection performance. Expert Syst Appl 39(10):8769–8777
    • (2012) Expert Syst Appl , vol.39 , Issue.10 , pp. 8769-8777
    • Wu, R.-S.1    Ou, C.-S.2    Lin, H.Y.3    Chang, S.-I.4    Yen, D.C.5
  • 260
    • 36248998189 scopus 로고    scopus 로고
    • Graph similarity scoring and matching
    • Zager L, Verghese G (2008) Graph similarity scoring and matching. Appl Math Lett 21(1):86–94
    • (2008) Appl Math Lett , vol.21 , Issue.1 , pp. 86-94
    • Zager, L.1    Verghese, G.2
  • 263
    • 84866458840 scopus 로고    scopus 로고
    • A survey on unsupervised outlier detection in high-dimensional numerical data
    • Zimek A, Schubert E, Kriegel H-P (2012) A survey on unsupervised outlier detection in high-dimensional numerical data. Stat Anal Data Min 5(5):363–387
    • (2012) Stat Anal Data Min , vol.5 , Issue.5 , pp. 363-387
    • Zimek, A.1    Schubert, E.2    Kriegel, H.-P.3
  • 264
    • 84904384520 scopus 로고    scopus 로고
    • Ensembles for unsupervised outlier detection: challenges and research questions. A position paper
    • Zimek A, Campello RJGB, Sander J (2014) Ensembles for unsupervised outlier detection: challenges and research questions. A position paper. SIGKDD Explor Newsl 15(1):11–22
    • (2014) SIGKDD Explor Newsl , vol.15 , Issue.1 , pp. 11-22
    • Zimek, A.1    Campello, R.J.G.B.2    Sander, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.