-
1
-
-
0034832620
-
Outlier detection for high dimensional data
-
C. C. Aggarwal and P. S. Yu, "Outlier detection for high dimensional data," in SIGMOD, 2001, pp. 37-46.
-
(2001)
SIGMOD
, pp. 37-46
-
-
Aggarwal, C.C.1
Yu, P.S.2
-
2
-
-
0032090765
-
Automatic subspace clustering of high dimensional data for data mining applications
-
R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan, "Automatic subspace clustering of high dimensional data for data mining applications," in SIGMOD, 1998, pp. 94-105.
-
(1998)
SIGMOD
, pp. 94-105
-
-
Agrawal, R.1
Gehrke, J.2
Gunopulos, D.3
Raghavan, P.4
-
3
-
-
0002221136
-
Fast algorithms for mining association rules
-
R. Agrawal and R. Srikant, "Fast algorithms for mining association rules," in VLDB, 1994, pp. 487-499.
-
(1994)
VLDB
, pp. 487-499
-
-
Agrawal, R.1
Srikant, R.2
-
4
-
-
19544379322
-
Subspace selection for clustering high-dimensional data
-
C. Baumgartner, C. Plant, K. Kailing, H.-P. Kriegel, and P. Kröger, "Subspace selection for clustering high-dimensional data," in ICDM, 2004, pp. 11-18.
-
(2004)
ICDM
, pp. 11-18
-
-
Baumgartner, C.1
Plant, C.2
Kailing, K.3
Kriegel, H.-P.4
Kröger, P.5
-
5
-
-
77952380096
-
Mining distance-based outliers in near linear time with randomization and a simple pruning rule
-
S. D. Bay and M. Schwabacher, "Mining distance-based outliers in near linear time with randomization and a simple pruning rule," in KDD, 2003, pp. 29-38.
-
(2003)
KDD
, pp. 29-38
-
-
Bay, S.D.1
Schwabacher, M.2
-
6
-
-
0002086686
-
When is nearest neighbors meaningful
-
K. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft, "When is nearest neighbors meaningful," in IDBT, 1999, pp. 217-235.
-
(1999)
IDBT
, pp. 217-235
-
-
Beyer, K.1
Goldstein, J.2
Ramakrishnan, R.3
Shaft, U.4
-
7
-
-
0039253819
-
LOF: Identifying density-based local outliers
-
M. Breunig, H.-P. Kriegel, R. Ng, and J. Sander, "LOF: identifying density-based local outliers," in SIGMOD, 2000, pp. 93-104.
-
(2000)
SIGMOD
, pp. 93-104
-
-
Breunig, M.1
Kriegel, H.-P.2
Ng, R.3
Sander, J.4
-
8
-
-
0002646822
-
Entropy-based subspace clustering for mining numerical data
-
C.-H. Cheng, A. W. Fu, and Y. Zhang, "Entropy-based subspace clustering for mining numerical data," in KDD, 1999, pp. 84-93.
-
(1999)
KDD
, pp. 84-93
-
-
Cheng, C.-H.1
Fu, A.W.2
Zhang, Y.3
-
9
-
-
79951739637
-
Finding local anomalies in very high dimensional space
-
T. de Vries, S. Chawla, and M. E. Houle, "Finding local anomalies in very high dimensional space," in ICDM, 2010, pp. 128-137.
-
(2010)
ICDM
, pp. 128-137
-
-
De Vries, T.1
Chawla, S.2
Houle, M.E.3
-
10
-
-
85170282443
-
A density-based algorithm for discovering clusters in large spatial databases
-
M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, "A density-based algorithm for discovering clusters in large spatial databases," in KDD, 1996, pp. 226-231.
-
(1996)
KDD
, pp. 226-231
-
-
Ester, M.1
Kriegel, H.-P.2
Sander, J.3
Xu, X.4
-
11
-
-
35548978494
-
Outlier identification in high dimensions
-
P. Filzmoser, R. Maronna, and M. Werner, "Outlier identification in high dimensions," Comp. Stat. Data Anal., vol. 52, no. 3, pp. 1694-1711, 2008.
-
(2008)
Comp. Stat. Data Anal.
, vol.52
, Issue.3
, pp. 1694-1711
-
-
Filzmoser, P.1
Maronna, R.2
Werner, M.3
-
13
-
-
42749086305
-
Fast mining of distance-based outliers in high-dimensional datasets
-
A. Ghoting, S. Parthasarathy, and M. Otey, "Fast mining of distance-based outliers in high-dimensional datasets," Data Mining and Knowledge Discovery, vol. 16, pp. 349-364, 2008.
-
(2008)
Data Mining and Knowledge Discovery
, vol.16
, pp. 349-364
-
-
Ghoting, A.1
Parthasarathy, S.2
Otey, M.3
-
15
-
-
9444236233
-
Ranking interesting subspaces for clustering high dimensional data
-
K. Kailing, H.-P. Kriegel, P. Kröger, and S. Wanka, "Ranking interesting subspaces for clustering high dimensional data," in PKDD, 2003, pp. 241-252.
-
(2003)
PKDD
, pp. 241-252
-
-
Kailing, K.1
Kriegel, H.-P.2
Kröger, P.3
Wanka, S.4
-
16
-
-
0003858566
-
Algorithms for Mining Distance-Based Outliers in Large Datasets
-
E. Knorr and R. Ng, "Algorithms for Mining Distance-Based Outliers in Large Datasets," in VLDB, 1998, pp. 392-403.
-
(1998)
VLDB
, pp. 392-403
-
-
Knorr, E.1
Ng, R.2
-
17
-
-
84864227933
-
Interpreting and unifying outlier scores
-
H.-P. Kriegel, P. Kröger, E. Schubert, and A. Zimek, "Interpreting and unifying outlier scores," in SDM, 2011, pp. 13-24.
-
(2011)
SDM
, pp. 13-24
-
-
Kriegel, H.-P.1
Kröger, P.2
Schubert, E.3
Zimek, A.4
-
18
-
-
67650661596
-
Outlier detection in axis-parallel subspaces of high dimensional data
-
H.-P. Kriegel, E. Schubert, A. Zimek, and P. Kröger, "Outlier detection in axis-parallel subspaces of high dimensional data," in PAKDD, 2009, pp. 831-838.
-
(2009)
PAKDD
, pp. 831-838
-
-
Kriegel, H.-P.1
Schubert, E.2
Zimek, A.3
Kröger, P.4
-
19
-
-
65449145220
-
Angle-based outlier detection in high-dimensional data
-
H.-P. Kriegel, M. Schubert, and A. Zimek, "Angle-based outlier detection in high-dimensional data," in KDD, 2008, pp. 444-452.
-
(2008)
KDD
, pp. 444-452
-
-
Kriegel, H.-P.1
Schubert, M.2
Zimek, A.3
-
20
-
-
32344440279
-
Feature bagging for outlier detection
-
A. Lazarevic and V. Kumar, "Feature bagging for outlier detection," in KDD, 2005, pp. 157-166.
-
(2005)
KDD
, pp. 157-166
-
-
Lazarevic, A.1
Kumar, V.2
-
21
-
-
79957856197
-
Statistical selection of relevant subspace projections for outlier ranking
-
E. Müller, M. Schiffer, and T. Seidl, "Statistical selection of relevant subspace projections for outlier ranking," in ICDE, 2011, pp. 434-445.
-
(2011)
ICDE
, pp. 434-445
-
-
Müller, E.1
Schiffer, M.2
Seidl, T.3
-
22
-
-
77951149821
-
Relevant subspace clustering: Mining the most interesting non-redundant concepts in high dimensional data
-
E. Müller, I. Assent, S. Günnemann, R. Krieger, and T. Seidl, "Relevant subspace clustering: Mining the most interesting non-redundant concepts in high dimensional data," in ICDM, 2009, pp. 377-386.
-
(2009)
ICDM
, pp. 377-386
-
-
Müller, E.1
Assent, I.2
Günnemann, S.3
Krieger, R.4
Seidl, T.5
-
23
-
-
78651279991
-
Adaptive outlierness for subspace outlier ranking
-
E. Müller, M. Schiffer, and T. Seidl, "Adaptive outlierness for subspace outlier ranking," in CIKM, 2010, pp. 1629-1632.
-
(2010)
CIKM
, pp. 1629-1632
-
-
Müller, E.1
Schiffer, M.2
Seidl, T.3
-
24
-
-
77956508144
-
Multiple non-redundant spectral clustering views
-
D. Niu, J. G. Dy, and M. I. Jordan, "Multiple non-redundant spectral clustering views," in ICML, 2010, pp. 831-838.
-
(2010)
ICML
, pp. 831-838
-
-
Niu, D.1
Dy, J.G.2
Jordan, M.I.3
-
25
-
-
0345359208
-
LOCI: Fast outlier detection using the local correlation integral
-
S. Papadimitriou, H. Kitagawa, P. Gibbons, and C. Faloutsos, "LOCI: Fast outlier detection using the local correlation integral," in ICDE, 2003, pp. 315-326.
-
(2003)
ICDE
, pp. 315-326
-
-
Papadimitriou, S.1
Kitagawa, H.2
Gibbons, P.3
Faloutsos, C.4
-
27
-
-
84872636119
-
An approximate distribution of estimates of variance components
-
F. E. Satterthwaite, "An approximate distribution of estimates of variance components," Biometrics Bulletin, vol. 2, no. 6, pp. 110-114, 1946.
-
(1946)
Biometrics Bulletin
, vol.2
, Issue.6
, pp. 110-114
-
-
Satterthwaite, F.E.1
-
28
-
-
0002965815
-
The proof and measurement of association between two things
-
C. Spearman, "The proof and measurement of association between two things," American J. of Psych., vol. 15, no. 1, pp. 72-101, 1987.
-
(1987)
American J. of Psych.
, vol.15
, Issue.1
, pp. 72-101
-
-
Spearman, C.1
-
29
-
-
0000634854
-
Use of the Kolmogorov-Smirnov, Cramer-von Mises and related statistics without extensive tables
-
M. Stephens, "Use of the Kolmogorov-Smirnov, Cramer-von Mises and related statistics without extensive tables," J. of the Royal Stat. Society, pp. 115-122, 1970.
-
(1970)
J. of the Royal Stat. Society
, pp. 115-122
-
-
Stephens, M.1
|