메뉴 건너뛰기




Volumn , Issue , 2012, Pages 1037-1048

HiCS: High contrast subspaces for density-based outlier ranking

Author keywords

[No Author keywords available]

Indexed keywords

CONDITIONAL DEPENDENCE; DENSITY-BASED; DIMENSIONALITY REDUCTION TECHNIQUES; HIGH CONTRAST; LOW CONTRAST; OBJECT BASED; OUTLIER MINING; PRE-PROCESSING STEP; RANDOM PROJECTIONS; RANKING ALGORITHM; RANKING METHODS; RESEARCH CHALLENGES; SEARCH METHOD; SEARCH TECHNIQUE; SUBSPACE PROJECTION; SYNTHETIC DATA;

EID: 84864188417     PISSN: 10844627     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICDE.2012.88     Document Type: Conference Paper
Times cited : (369)

References (29)
  • 1
    • 0034832620 scopus 로고    scopus 로고
    • Outlier detection for high dimensional data
    • C. C. Aggarwal and P. S. Yu, "Outlier detection for high dimensional data," in SIGMOD, 2001, pp. 37-46.
    • (2001) SIGMOD , pp. 37-46
    • Aggarwal, C.C.1    Yu, P.S.2
  • 2
    • 0032090765 scopus 로고    scopus 로고
    • Automatic subspace clustering of high dimensional data for data mining applications
    • R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan, "Automatic subspace clustering of high dimensional data for data mining applications," in SIGMOD, 1998, pp. 94-105.
    • (1998) SIGMOD , pp. 94-105
    • Agrawal, R.1    Gehrke, J.2    Gunopulos, D.3    Raghavan, P.4
  • 3
    • 0002221136 scopus 로고
    • Fast algorithms for mining association rules
    • R. Agrawal and R. Srikant, "Fast algorithms for mining association rules," in VLDB, 1994, pp. 487-499.
    • (1994) VLDB , pp. 487-499
    • Agrawal, R.1    Srikant, R.2
  • 5
    • 77952380096 scopus 로고    scopus 로고
    • Mining distance-based outliers in near linear time with randomization and a simple pruning rule
    • S. D. Bay and M. Schwabacher, "Mining distance-based outliers in near linear time with randomization and a simple pruning rule," in KDD, 2003, pp. 29-38.
    • (2003) KDD , pp. 29-38
    • Bay, S.D.1    Schwabacher, M.2
  • 7
    • 0039253819 scopus 로고    scopus 로고
    • LOF: Identifying density-based local outliers
    • M. Breunig, H.-P. Kriegel, R. Ng, and J. Sander, "LOF: identifying density-based local outliers," in SIGMOD, 2000, pp. 93-104.
    • (2000) SIGMOD , pp. 93-104
    • Breunig, M.1    Kriegel, H.-P.2    Ng, R.3    Sander, J.4
  • 8
    • 0002646822 scopus 로고    scopus 로고
    • Entropy-based subspace clustering for mining numerical data
    • C.-H. Cheng, A. W. Fu, and Y. Zhang, "Entropy-based subspace clustering for mining numerical data," in KDD, 1999, pp. 84-93.
    • (1999) KDD , pp. 84-93
    • Cheng, C.-H.1    Fu, A.W.2    Zhang, Y.3
  • 9
    • 79951739637 scopus 로고    scopus 로고
    • Finding local anomalies in very high dimensional space
    • T. de Vries, S. Chawla, and M. E. Houle, "Finding local anomalies in very high dimensional space," in ICDM, 2010, pp. 128-137.
    • (2010) ICDM , pp. 128-137
    • De Vries, T.1    Chawla, S.2    Houle, M.E.3
  • 10
    • 85170282443 scopus 로고    scopus 로고
    • A density-based algorithm for discovering clusters in large spatial databases
    • M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, "A density-based algorithm for discovering clusters in large spatial databases," in KDD, 1996, pp. 226-231.
    • (1996) KDD , pp. 226-231
    • Ester, M.1    Kriegel, H.-P.2    Sander, J.3    Xu, X.4
  • 11
    • 35548978494 scopus 로고    scopus 로고
    • Outlier identification in high dimensions
    • P. Filzmoser, R. Maronna, and M. Werner, "Outlier identification in high dimensions," Comp. Stat. Data Anal., vol. 52, no. 3, pp. 1694-1711, 2008.
    • (2008) Comp. Stat. Data Anal. , vol.52 , Issue.3 , pp. 1694-1711
    • Filzmoser, P.1    Maronna, R.2    Werner, M.3
  • 13
    • 42749086305 scopus 로고    scopus 로고
    • Fast mining of distance-based outliers in high-dimensional datasets
    • A. Ghoting, S. Parthasarathy, and M. Otey, "Fast mining of distance-based outliers in high-dimensional datasets," Data Mining and Knowledge Discovery, vol. 16, pp. 349-364, 2008.
    • (2008) Data Mining and Knowledge Discovery , vol.16 , pp. 349-364
    • Ghoting, A.1    Parthasarathy, S.2    Otey, M.3
  • 15
    • 9444236233 scopus 로고    scopus 로고
    • Ranking interesting subspaces for clustering high dimensional data
    • K. Kailing, H.-P. Kriegel, P. Kröger, and S. Wanka, "Ranking interesting subspaces for clustering high dimensional data," in PKDD, 2003, pp. 241-252.
    • (2003) PKDD , pp. 241-252
    • Kailing, K.1    Kriegel, H.-P.2    Kröger, P.3    Wanka, S.4
  • 16
    • 0003858566 scopus 로고    scopus 로고
    • Algorithms for Mining Distance-Based Outliers in Large Datasets
    • E. Knorr and R. Ng, "Algorithms for Mining Distance-Based Outliers in Large Datasets," in VLDB, 1998, pp. 392-403.
    • (1998) VLDB , pp. 392-403
    • Knorr, E.1    Ng, R.2
  • 17
    • 84864227933 scopus 로고    scopus 로고
    • Interpreting and unifying outlier scores
    • H.-P. Kriegel, P. Kröger, E. Schubert, and A. Zimek, "Interpreting and unifying outlier scores," in SDM, 2011, pp. 13-24.
    • (2011) SDM , pp. 13-24
    • Kriegel, H.-P.1    Kröger, P.2    Schubert, E.3    Zimek, A.4
  • 18
    • 67650661596 scopus 로고    scopus 로고
    • Outlier detection in axis-parallel subspaces of high dimensional data
    • H.-P. Kriegel, E. Schubert, A. Zimek, and P. Kröger, "Outlier detection in axis-parallel subspaces of high dimensional data," in PAKDD, 2009, pp. 831-838.
    • (2009) PAKDD , pp. 831-838
    • Kriegel, H.-P.1    Schubert, E.2    Zimek, A.3    Kröger, P.4
  • 19
    • 65449145220 scopus 로고    scopus 로고
    • Angle-based outlier detection in high-dimensional data
    • H.-P. Kriegel, M. Schubert, and A. Zimek, "Angle-based outlier detection in high-dimensional data," in KDD, 2008, pp. 444-452.
    • (2008) KDD , pp. 444-452
    • Kriegel, H.-P.1    Schubert, M.2    Zimek, A.3
  • 20
    • 32344440279 scopus 로고    scopus 로고
    • Feature bagging for outlier detection
    • A. Lazarevic and V. Kumar, "Feature bagging for outlier detection," in KDD, 2005, pp. 157-166.
    • (2005) KDD , pp. 157-166
    • Lazarevic, A.1    Kumar, V.2
  • 21
    • 79957856197 scopus 로고    scopus 로고
    • Statistical selection of relevant subspace projections for outlier ranking
    • E. Müller, M. Schiffer, and T. Seidl, "Statistical selection of relevant subspace projections for outlier ranking," in ICDE, 2011, pp. 434-445.
    • (2011) ICDE , pp. 434-445
    • Müller, E.1    Schiffer, M.2    Seidl, T.3
  • 22
    • 77951149821 scopus 로고    scopus 로고
    • Relevant subspace clustering: Mining the most interesting non-redundant concepts in high dimensional data
    • E. Müller, I. Assent, S. Günnemann, R. Krieger, and T. Seidl, "Relevant subspace clustering: Mining the most interesting non-redundant concepts in high dimensional data," in ICDM, 2009, pp. 377-386.
    • (2009) ICDM , pp. 377-386
    • Müller, E.1    Assent, I.2    Günnemann, S.3    Krieger, R.4    Seidl, T.5
  • 23
    • 78651279991 scopus 로고    scopus 로고
    • Adaptive outlierness for subspace outlier ranking
    • E. Müller, M. Schiffer, and T. Seidl, "Adaptive outlierness for subspace outlier ranking," in CIKM, 2010, pp. 1629-1632.
    • (2010) CIKM , pp. 1629-1632
    • Müller, E.1    Schiffer, M.2    Seidl, T.3
  • 24
    • 77956508144 scopus 로고    scopus 로고
    • Multiple non-redundant spectral clustering views
    • D. Niu, J. G. Dy, and M. I. Jordan, "Multiple non-redundant spectral clustering views," in ICML, 2010, pp. 831-838.
    • (2010) ICML , pp. 831-838
    • Niu, D.1    Dy, J.G.2    Jordan, M.I.3
  • 25
    • 0345359208 scopus 로고    scopus 로고
    • LOCI: Fast outlier detection using the local correlation integral
    • S. Papadimitriou, H. Kitagawa, P. Gibbons, and C. Faloutsos, "LOCI: Fast outlier detection using the local correlation integral," in ICDE, 2003, pp. 315-326.
    • (2003) ICDE , pp. 315-326
    • Papadimitriou, S.1    Kitagawa, H.2    Gibbons, P.3    Faloutsos, C.4
  • 27
    • 84872636119 scopus 로고
    • An approximate distribution of estimates of variance components
    • F. E. Satterthwaite, "An approximate distribution of estimates of variance components," Biometrics Bulletin, vol. 2, no. 6, pp. 110-114, 1946.
    • (1946) Biometrics Bulletin , vol.2 , Issue.6 , pp. 110-114
    • Satterthwaite, F.E.1
  • 28
    • 0002965815 scopus 로고
    • The proof and measurement of association between two things
    • C. Spearman, "The proof and measurement of association between two things," American J. of Psych., vol. 15, no. 1, pp. 72-101, 1987.
    • (1987) American J. of Psych. , vol.15 , Issue.1 , pp. 72-101
    • Spearman, C.1
  • 29
    • 0000634854 scopus 로고
    • Use of the Kolmogorov-Smirnov, Cramer-von Mises and related statistics without extensive tables
    • M. Stephens, "Use of the Kolmogorov-Smirnov, Cramer-von Mises and related statistics without extensive tables," J. of the Royal Stat. Society, pp. 115-122, 1970.
    • (1970) J. of the Royal Stat. Society , pp. 115-122
    • Stephens, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.