메뉴 건너뛰기




Volumn , Issue , 2010, Pages 1629-1632

Adaptive outlierness for subspace outlier ranking

Author keywords

Data mining; Outliers; Ranking; Subspaces

Indexed keywords

ADAPTIVE NEIGHBORHOOD; DATA ANALYSIS; OUTLIER MINING; OUTLIERS; RANKING; RANKING APPROACH; SUBSPACE PROJECTION; SUBSPACES;

EID: 78651279991     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1871437.1871690     Document Type: Conference Paper
Times cited : (31)

References (9)
  • 1
    • 47249137675 scopus 로고    scopus 로고
    • DUSC: Dimensionality unbiased subspace clustering
    • I. Assent, R. Krieger, E. Müller, and T. Seidl. DUSC: Dimensionality unbiased subspace clustering. In ICDM, pages 409-414, 2007.
    • (2007) ICDM , pp. 409-414
    • Assent, I.1    Krieger, R.2    Müller, E.3    Seidl, T.4
  • 2
    • 0039253819 scopus 로고    scopus 로고
    • LOF: Identifying density-based local outliers
    • M. Breunig, H.-P. Kriegel, R. Ng, and J. Sander. LOF: Identifying density-based local outliers. In SIGMOD, pages 93-104, 2000.
    • (2000) SIGMOD , pp. 93-104
    • Breunig, M.1    Kriegel, H.-P.2    Ng, R.3    Sander, J.4
  • 3
    • 67650661596 scopus 로고    scopus 로고
    • Outlier detection in axis-parallel subspaces of high dimensional data
    • H.-P. Kriegel, P. Kröger, E. Schubert, and A. Zimek. Outlier detection in axis-parallel subspaces of high dimensional data. In PAKDD, pages 831-838, 2009.
    • (2009) PAKDD , pp. 831-838
    • Kriegel, H.-P.1    Kröger, P.2    Schubert, E.3    Zimek, A.4
  • 4
    • 65449145220 scopus 로고    scopus 로고
    • Angle-based outlier detection in high-dimensional data
    • H.-P. Kriegel, M. Schubert, and A. Zimek. Angle-based outlier detection in high-dimensional data. In KDD, pages 444-452, 2008.
    • (2008) KDD , pp. 444-452
    • Kriegel, H.-P.1    Schubert, M.2    Zimek, A.3
  • 5
    • 77951149821 scopus 로고    scopus 로고
    • Relevant subspace clustering: Mining the most interesting non-redundant concepts in high dimensional data
    • E. Müller, I. Assent, S. Günnemann, R. Krieger, and T. Seidl. Relevant Subspace Clustering: mining the most interesting non-redundant concepts in high dimensional data. In ICDM, pages 377-386, 2009.
    • (2009) ICDM , pp. 377-386
    • Müller, E.1    Assent, I.2    Günnemann, S.3    Krieger, R.4    Seidl, T.5
  • 7
    • 84865086248 scopus 로고    scopus 로고
    • Evaluating clustering in subspace projections of high dimensional data
    • E. Müller, S. Günnemann, I. Assent, and T. Seidl. Evaluating clustering in subspace projections of high dimensional data. PVLDB, 2(1):1270-1281, 2009.
    • (2009) PVLDB , vol.2 , Issue.1 , pp. 1270-1281
    • Müller, E.1    Günnemann, S.2    Assent, I.3    Seidl, T.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.