메뉴 건너뛰기




Volumn , Issue , 2012, Pages 1231-1239

RolX: Structural role extraction & mining in large graphs

Author keywords

graph mining; network classification; sense making; similarity search; structural role discovery

Indexed keywords

GRAPH MINING; NETWORK CLASSIFICATION; SENSEMAKING; SIMILARITY SEARCH; STRUCTURAL ROLE DISCOVERY;

EID: 84866016454     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2339530.2339723     Document Type: Conference Paper
Times cited : (458)

References (30)
  • 1
    • 0000501656 scopus 로고
    • Information theory and an extension of the maximum likelihood principle
    • H. Akaike. Information theory and an extension of the maximum likelihood principle. In Proc. of the 2nd Int'l Symp. on Information Theory, pages 267-281, 1972.
    • (1972) Proc. of the 2nd Int'l Symp. on Information Theory , pp. 267-281
    • Akaike, H.1
  • 2
    • 79956316709 scopus 로고    scopus 로고
    • Oddball: Spotting anomalies in weighted graphs
    • L. Akoglu, M. McGlohon, and C. Faloutsos. Oddball: Spotting anomalies in weighted graphs. In PAKDD, pages 410-421, 2010.
    • (2010) PAKDD , pp. 410-421
    • Akoglu, L.1    McGlohon, M.2    Faloutsos, C.3
  • 3
    • 77951168734 scopus 로고    scopus 로고
    • Cross-guided clustering: Transfer of relevant supervision across domains for improved clustering
    • I. Bhattacharya, S. Godbole, S. Joshi, and A. Verma. Cross-guided clustering: Transfer of relevant supervision across domains for improved clustering. In ICDM, pages 41-50, 2009.
    • (2009) ICDM , pp. 41-50
    • Bhattacharya, I.1    Godbole, S.2    Joshi, S.3    Verma, A.4
  • 4
    • 77956216411 scopus 로고    scopus 로고
    • Unsupervised feature selection for multi-cluster data
    • D. Cai, C. Zhang, and X. He. Unsupervised feature selection for multi-cluster data. In KDD, pages 333-342, 2010.
    • (2010) KDD , pp. 333-342
    • Cai, D.1    Zhang, C.2    He, X.3
  • 5
    • 77956500367 scopus 로고    scopus 로고
    • Transfer learning for collective link prediction in multiple heterogenous domains
    • B. Cao, N. Liu, and Q. Yang. Transfer learning for collective link prediction in multiple heterogenous domains. In ICML, pages 159-166, 2010.
    • (2010) ICML , pp. 159-166
    • Cao, B.1    Liu, N.2    Yang, Q.3
  • 6
    • 41349117788 scopus 로고    scopus 로고
    • Finding community structure in very large networks
    • A. Clauset, M. Newman, and C. Moore. Finding community structure in very large networks. Phys. Rev. E, 70:066111, 2004.
    • (2004) Phys. Rev. E , vol.70 , pp. 066111
    • Clauset, A.1    Newman, M.2    Moore, C.3
  • 7
    • 71149083696 scopus 로고    scopus 로고
    • Eigentransfer: A unified framework for transfer learning
    • W. Dai, O. Jin, G.-R. Xue, Q. Yang, and Y. Yu. Eigentransfer: a unified framework for transfer learning. In ICML, pages 193-200, 2009.
    • (2009) ICML , pp. 193-200
    • Dai, W.1    Jin, O.2    Xue, G.-R.3    Yang, Q.4    Yu, Y.5
  • 8
    • 84864031935 scopus 로고    scopus 로고
    • Generalized nonnegative matrix approximations with Bregman divergences
    • I. S. Dhillon and S. Sra. Generalized nonnegative matrix approximations with Bregman divergences. In NIPS, pages 283-290, 2005.
    • (2005) NIPS , pp. 283-290
    • Dhillon, I.S.1    Sra, S.2
  • 9
    • 70349313631 scopus 로고    scopus 로고
    • Inferring social network structure using mobile phone data
    • N. Eagle, A. Pentland, and D. Lazer. Inferring social network structure using mobile phone data. PNAS, 106(36):15274-15278, 2009.
    • (2009) PNAS , vol.106 , Issue.36 , pp. 15274-15278
    • Eagle, N.1    Pentland, A.2    Lazer, D.3
  • 10
    • 10944227316 scopus 로고    scopus 로고
    • Sparse coding and NMF
    • J. Eggert and E. Korner. Sparse coding and NMF. In IJCNN, pages 2529-2533, 2004.
    • (2004) IJCNN , pp. 2529-2533
    • Eggert, J.1    Korner, E.2
  • 11
    • 77950793077 scopus 로고    scopus 로고
    • Semi-supervised semantic role labeling
    • H. Fürstenau and M. Lapata. Semi-supervised semantic role labeling. In EACL, pages 220-228, 2009.
    • (2009) EACL , pp. 220-228
    • Fürstenau, H.1    Lapata, M.2
  • 12
    • 78650094757 scopus 로고    scopus 로고
    • Leveraging label-independent features for classification in sparsely labeled networks: An empirical study
    • B. Gallagher and T. Eliassi-Rad. Leveraging label-independent features for classification in sparsely labeled networks: An empirical study. Lecture Notes in Computer Science, 5498:1-19, 2010.
    • (2010) Lecture Notes in Computer Science , vol.5498 , pp. 1-19
    • Gallagher, B.1    Eliassi-Rad, T.2
  • 13
    • 65449133627 scopus 로고    scopus 로고
    • Using ghost edges for classification in sparsely labeled networks
    • B. Gallagher, H. Tong, T. Eliassi-Rad, and C. Faloutsos. Using ghost edges for classification in sparsely labeled networks. In KDD, pages 256-264, 2008.
    • (2008) KDD , pp. 256-264
    • Gallagher, B.1    Tong, H.2    Eliassi-Rad, T.3    Faloutsos, C.4
  • 16
    • 56749154712 scopus 로고    scopus 로고
    • Exploiting cluster-structure to predict the labeling of a graph
    • M. Herbster. Exploiting cluster-structure to predict the labeling of a graph. In ALT, pages 54-69, 2008.
    • (2008) ALT , pp. 54-69
    • Herbster, M.1
  • 17
    • 84938015047 scopus 로고
    • A method for the construction of minimum-redundancy codes
    • D. Huffman. A method for the construction of minimum-redundancy codes. In Proc. of the IRE, pages 1098-1101, 1952.
    • (1952) Proc. of the IRE , pp. 1098-1101
    • Huffman, D.1
  • 18
    • 0033592606 scopus 로고    scopus 로고
    • Learning the parts of objects by non-negative matrix factorization
    • D. D. Lee and H. S. Seung. Learning the parts of objects by non-negative matrix factorization. Nature, 401(6755):788-791, 1999.
    • (1999) Nature , vol.401 , Issue.6755 , pp. 788-791
    • Lee, D.D.1    Seung, H.S.2
  • 19
    • 77956192510 scopus 로고    scopus 로고
    • New perspectives and methods in link prediction
    • R. N. Lichtenwalter, J. T. Lussier, and N. V. Chawla. New perspectives and methods in link prediction. In KDD, pages 243-252, 2010.
    • (2010) KDD , pp. 243-252
    • Lichtenwalter, R.N.1    Lussier, J.T.2    Chawla, N.V.3
  • 20
    • 35548969471 scopus 로고    scopus 로고
    • Projected Gradient Methods for Nonnegative Matrix Factorization
    • C.-J. Lin. Projected Gradient Methods for Nonnegative Matrix Factorization. Neural Computation, 19(10):2756-2779, 2007.
    • (2007) Neural Computation , vol.19 , Issue.10 , pp. 2756-2779
    • Lin, C.-J.1
  • 21
    • 0020102027 scopus 로고
    • Least squares quantization in PCM
    • S. P. Lloyd. Least squares quantization in PCM. IEEE Trans. on Info. Theory, IT-28(2):129-137, 1982.
    • (1982) IEEE Trans. on Info. Theory , vol.IT-28 , Issue.2 , pp. 129-137
    • Lloyd, S.P.1
  • 22
    • 84937350296 scopus 로고
    • Quantizing for minimum distortion
    • J. Max. Quantizing for minimum distortion. IRE Trans. on Information Theory, IT-6:7-12, 1960.
    • (1960) IRE Trans. on Information Theory , vol.IT-6 , pp. 7-12
    • Max, J.1
  • 23
    • 38349172091 scopus 로고    scopus 로고
    • Topic and role discovery in social networks with experiments on enron and academic email
    • A. Mccallum, X. Wang, and A. Corrada-Emmanuel. Topic and role discovery in social networks with experiments on enron and academic email. JAIR, 30(1):249-272, 2007.
    • (2007) JAIR , vol.30 , Issue.1 , pp. 249-272
    • Mccallum, A.1    Wang, X.2    Corrada-Emmanuel, A.3
  • 25
    • 33749468596 scopus 로고    scopus 로고
    • Finding community structure in networks using the eigenvectors of matrices
    • M. E. J. Newman. Finding community structure in networks using the eigenvectors of matrices. Phys. Rev. E., 74:036104, 2006.
    • (2006) Phys. Rev. E , vol.74 , pp. 036104
    • Newman, M.E.J.1
  • 27
    • 0018015137 scopus 로고
    • Modeling by shortest data description
    • J. Rissanen. Modeling by shortest data description. Automatica, 14:465-471, 1978.
    • (1978) Automatica , vol.14 , pp. 465-471
    • Rissanen, J.1
  • 28
    • 77956208062 scopus 로고    scopus 로고
    • Mixture models for learning low-dimensional roles in high-dimensional data
    • M. Somaiya, C. Jermaine, and S. Ranka. Mixture models for learning low-dimensional roles in high-dimensional data. In KDD, pages 909-918, 2010.
    • (2010) KDD , pp. 909-918
    • Somaiya, M.1    Jermaine, C.2    Ranka, S.3
  • 29
    • 78651271932 scopus 로고    scopus 로고
    • Knowledge transfer on hybrid graph
    • Z. Wang, Y. Song, and C. Zhang. Knowledge transfer on hybrid graph. In IJCAI, pages 1291-1296, 2009.
    • (2009) IJCAI , pp. 1291-1296
    • Wang, Z.1    Song, Y.2    Zhang, C.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.