-
1
-
-
0000501656
-
Information theory and an extension of the maximum likelihood principle
-
H. Akaike. Information theory and an extension of the maximum likelihood principle. In Proc. of the 2nd Int'l Symp. on Information Theory, pages 267-281, 1972.
-
(1972)
Proc. of the 2nd Int'l Symp. on Information Theory
, pp. 267-281
-
-
Akaike, H.1
-
2
-
-
79956316709
-
Oddball: Spotting anomalies in weighted graphs
-
L. Akoglu, M. McGlohon, and C. Faloutsos. Oddball: Spotting anomalies in weighted graphs. In PAKDD, pages 410-421, 2010.
-
(2010)
PAKDD
, pp. 410-421
-
-
Akoglu, L.1
McGlohon, M.2
Faloutsos, C.3
-
3
-
-
77951168734
-
Cross-guided clustering: Transfer of relevant supervision across domains for improved clustering
-
I. Bhattacharya, S. Godbole, S. Joshi, and A. Verma. Cross-guided clustering: Transfer of relevant supervision across domains for improved clustering. In ICDM, pages 41-50, 2009.
-
(2009)
ICDM
, pp. 41-50
-
-
Bhattacharya, I.1
Godbole, S.2
Joshi, S.3
Verma, A.4
-
4
-
-
77956216411
-
Unsupervised feature selection for multi-cluster data
-
D. Cai, C. Zhang, and X. He. Unsupervised feature selection for multi-cluster data. In KDD, pages 333-342, 2010.
-
(2010)
KDD
, pp. 333-342
-
-
Cai, D.1
Zhang, C.2
He, X.3
-
5
-
-
77956500367
-
Transfer learning for collective link prediction in multiple heterogenous domains
-
B. Cao, N. Liu, and Q. Yang. Transfer learning for collective link prediction in multiple heterogenous domains. In ICML, pages 159-166, 2010.
-
(2010)
ICML
, pp. 159-166
-
-
Cao, B.1
Liu, N.2
Yang, Q.3
-
6
-
-
41349117788
-
Finding community structure in very large networks
-
A. Clauset, M. Newman, and C. Moore. Finding community structure in very large networks. Phys. Rev. E, 70:066111, 2004.
-
(2004)
Phys. Rev. E
, vol.70
, pp. 066111
-
-
Clauset, A.1
Newman, M.2
Moore, C.3
-
7
-
-
71149083696
-
Eigentransfer: A unified framework for transfer learning
-
W. Dai, O. Jin, G.-R. Xue, Q. Yang, and Y. Yu. Eigentransfer: a unified framework for transfer learning. In ICML, pages 193-200, 2009.
-
(2009)
ICML
, pp. 193-200
-
-
Dai, W.1
Jin, O.2
Xue, G.-R.3
Yang, Q.4
Yu, Y.5
-
8
-
-
84864031935
-
Generalized nonnegative matrix approximations with Bregman divergences
-
I. S. Dhillon and S. Sra. Generalized nonnegative matrix approximations with Bregman divergences. In NIPS, pages 283-290, 2005.
-
(2005)
NIPS
, pp. 283-290
-
-
Dhillon, I.S.1
Sra, S.2
-
9
-
-
70349313631
-
Inferring social network structure using mobile phone data
-
N. Eagle, A. Pentland, and D. Lazer. Inferring social network structure using mobile phone data. PNAS, 106(36):15274-15278, 2009.
-
(2009)
PNAS
, vol.106
, Issue.36
, pp. 15274-15278
-
-
Eagle, N.1
Pentland, A.2
Lazer, D.3
-
10
-
-
10944227316
-
Sparse coding and NMF
-
J. Eggert and E. Korner. Sparse coding and NMF. In IJCNN, pages 2529-2533, 2004.
-
(2004)
IJCNN
, pp. 2529-2533
-
-
Eggert, J.1
Korner, E.2
-
11
-
-
77950793077
-
Semi-supervised semantic role labeling
-
H. Fürstenau and M. Lapata. Semi-supervised semantic role labeling. In EACL, pages 220-228, 2009.
-
(2009)
EACL
, pp. 220-228
-
-
Fürstenau, H.1
Lapata, M.2
-
12
-
-
78650094757
-
Leveraging label-independent features for classification in sparsely labeled networks: An empirical study
-
B. Gallagher and T. Eliassi-Rad. Leveraging label-independent features for classification in sparsely labeled networks: An empirical study. Lecture Notes in Computer Science, 5498:1-19, 2010.
-
(2010)
Lecture Notes in Computer Science
, vol.5498
, pp. 1-19
-
-
Gallagher, B.1
Eliassi-Rad, T.2
-
13
-
-
65449133627
-
Using ghost edges for classification in sparsely labeled networks
-
B. Gallagher, H. Tong, T. Eliassi-Rad, and C. Faloutsos. Using ghost edges for classification in sparsely labeled networks. In KDD, pages 256-264, 2008.
-
(2008)
KDD
, pp. 256-264
-
-
Gallagher, B.1
Tong, H.2
Eliassi-Rad, T.3
Faloutsos, C.4
-
14
-
-
77956201937
-
Metric forensics: A multi-level approach for mining volatile graphs
-
K. Henderson, T. Eliassi-Rad, C. Faloutsos, L. Akoglu, L. Li, K. Maruhashi, B. A. Prakash, and H. Tong. Metric forensics: A multi-level approach for mining volatile graphs. In KDD, pages 163-172, 2010.
-
(2010)
KDD
, pp. 163-172
-
-
Henderson, K.1
Eliassi-Rad, T.2
Faloutsos, C.3
Akoglu, L.4
Li, L.5
Maruhashi, K.6
Prakash, B.A.7
Tong, H.8
-
15
-
-
80052674771
-
It's who you know: Graph mining using recursive structural features
-
K. Henderson, B. Gallagher, L. Li, L. Akoglu, T. Eliassi-Rad, H. Tong, and C. Faloutsos. It's who you know: Graph mining using recursive structural features. In KDD, pages 663-671, 2011.
-
(2011)
KDD
, pp. 663-671
-
-
Henderson, K.1
Gallagher, B.2
Li, L.3
Akoglu, L.4
Eliassi-Rad, T.5
Tong, H.6
Faloutsos, C.7
-
16
-
-
56749154712
-
Exploiting cluster-structure to predict the labeling of a graph
-
M. Herbster. Exploiting cluster-structure to predict the labeling of a graph. In ALT, pages 54-69, 2008.
-
(2008)
ALT
, pp. 54-69
-
-
Herbster, M.1
-
17
-
-
84938015047
-
A method for the construction of minimum-redundancy codes
-
D. Huffman. A method for the construction of minimum-redundancy codes. In Proc. of the IRE, pages 1098-1101, 1952.
-
(1952)
Proc. of the IRE
, pp. 1098-1101
-
-
Huffman, D.1
-
18
-
-
0033592606
-
Learning the parts of objects by non-negative matrix factorization
-
D. D. Lee and H. S. Seung. Learning the parts of objects by non-negative matrix factorization. Nature, 401(6755):788-791, 1999.
-
(1999)
Nature
, vol.401
, Issue.6755
, pp. 788-791
-
-
Lee, D.D.1
Seung, H.S.2
-
19
-
-
77956192510
-
New perspectives and methods in link prediction
-
R. N. Lichtenwalter, J. T. Lussier, and N. V. Chawla. New perspectives and methods in link prediction. In KDD, pages 243-252, 2010.
-
(2010)
KDD
, pp. 243-252
-
-
Lichtenwalter, R.N.1
Lussier, J.T.2
Chawla, N.V.3
-
20
-
-
35548969471
-
Projected Gradient Methods for Nonnegative Matrix Factorization
-
C.-J. Lin. Projected Gradient Methods for Nonnegative Matrix Factorization. Neural Computation, 19(10):2756-2779, 2007.
-
(2007)
Neural Computation
, vol.19
, Issue.10
, pp. 2756-2779
-
-
Lin, C.-J.1
-
21
-
-
0020102027
-
Least squares quantization in PCM
-
S. P. Lloyd. Least squares quantization in PCM. IEEE Trans. on Info. Theory, IT-28(2):129-137, 1982.
-
(1982)
IEEE Trans. on Info. Theory
, vol.IT-28
, Issue.2
, pp. 129-137
-
-
Lloyd, S.P.1
-
22
-
-
84937350296
-
Quantizing for minimum distortion
-
J. Max. Quantizing for minimum distortion. IRE Trans. on Information Theory, IT-6:7-12, 1960.
-
(1960)
IRE Trans. on Information Theory
, vol.IT-6
, pp. 7-12
-
-
Max, J.1
-
23
-
-
38349172091
-
Topic and role discovery in social networks with experiments on enron and academic email
-
A. Mccallum, X. Wang, and A. Corrada-Emmanuel. Topic and role discovery in social networks with experiments on enron and academic email. JAIR, 30(1):249-272, 2007.
-
(2007)
JAIR
, vol.30
, Issue.1
, pp. 249-272
-
-
Mccallum, A.1
Wang, X.2
Corrada-Emmanuel, A.3
-
24
-
-
70450248454
-
Evaluating role mining algorithms
-
I. Molloy, N. Li, T. Li, Z. Mao, Q. Wang, and J. Lobo. Evaluating role mining algorithms. In SACMAT, pages 95-104, 2009.
-
(2009)
SACMAT
, pp. 95-104
-
-
Molloy, I.1
Li, N.2
Li, T.3
Mao, Z.4
Wang, Q.5
Lobo, J.6
-
25
-
-
33749468596
-
Finding community structure in networks using the eigenvectors of matrices
-
M. E. J. Newman. Finding community structure in networks using the eigenvectors of matrices. Phys. Rev. E., 74:036104, 2006.
-
(2006)
Phys. Rev. E
, vol.74
, pp. 036104
-
-
Newman, M.E.J.1
-
27
-
-
0018015137
-
Modeling by shortest data description
-
J. Rissanen. Modeling by shortest data description. Automatica, 14:465-471, 1978.
-
(1978)
Automatica
, vol.14
, pp. 465-471
-
-
Rissanen, J.1
-
28
-
-
77956208062
-
Mixture models for learning low-dimensional roles in high-dimensional data
-
M. Somaiya, C. Jermaine, and S. Ranka. Mixture models for learning low-dimensional roles in high-dimensional data. In KDD, pages 909-918, 2010.
-
(2010)
KDD
, pp. 909-918
-
-
Somaiya, M.1
Jermaine, C.2
Ranka, S.3
-
29
-
-
78651271932
-
Knowledge transfer on hybrid graph
-
Z. Wang, Y. Song, and C. Zhang. Knowledge transfer on hybrid graph. In IJCAI, pages 1291-1296, 2009.
-
(2009)
IJCAI
, pp. 1291-1296
-
-
Wang, Z.1
Song, Y.2
Zhang, C.3
-
30
-
-
25144481906
-
Semi-supervised protein classification using cluster kernels
-
J. Weston, C. Leslie, E. Ie, D. Zhou, A. Elisseeff, and W. S. Noble. Semi-supervised protein classification using cluster kernels. Bioinformatics, 21:3241-3247, 2005.
-
(2005)
Bioinformatics
, vol.21
, pp. 3241-3247
-
-
Weston, J.1
Leslie, C.2
Ie, E.3
Zhou, D.4
Elisseeff, A.5
Noble, W.S.6
|