메뉴 건너뛰기




Volumn , Issue , 2012, Pages 415-424

Fast and reliable anomaly detection in categorical data

Author keywords

anomaly detection; categorical data; data encoding

Indexed keywords

ANOMALY DETECTION; CATEGORICAL DATA; COMPREX; DATA ENCODING; DATA SETS; DATABASE SIZE; DISTANCE FUNCTIONS; KEY FEATURE; NUMERICAL FEATURES; RELATIONAL DATABASE; RUNNING TIME; SIMILARITY THRESHOLD;

EID: 84871074681     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2396761.2396816     Document Type: Conference Paper
Times cited : (109)

References (26)
  • 1
    • 0034832620 scopus 로고    scopus 로고
    • Outlier detection for high dimensional data
    • C. C. Aggarwal and P. S. Yu. Outlier detection for high dimensional data. In SIGMOD, 2001.
    • (2001) SIGMOD
    • Aggarwal, C.C.1    Yu, P.S.2
  • 2
    • 77956209162 scopus 로고    scopus 로고
    • Oddball: Spotting anomalies in weighted graphs
    • L. Akoglu, M. McGlohon, and C. Faloutsos. Oddball: Spotting anomalies in weighted graphs. In PAKDD, 2010.
    • (2010) PAKDD
    • Akoglu, L.1    McGlohon, M.2    Faloutsos, C.3
  • 3
    • 85039571873 scopus 로고    scopus 로고
    • A linear method for deviation detection in large databases
    • A. Arning, R. Agrawal, and P. Raghavan. A linear method for deviation detection in large databases. In KDD, 1996.
    • (1996) KDD
    • Arning, A.1    Agrawal, R.2    Raghavan, P.3
  • 6
    • 84859722266 scopus 로고    scopus 로고
    • Anomaly detection for discrete sequences: A survey
    • V. Chandola, A. Banerjee, and V. Kumar. Anomaly detection for discrete sequences: A survey. IEEE Trans. Knowl. Data Eng., 24(5):823-839, 2012.
    • (2012) IEEE Trans. Knowl. Data Eng. , vol.24 , Issue.5 , pp. 823839
    • Chandola, V.1    Banerjee, A.2    Kumar, V.3
  • 7
    • 34548754917 scopus 로고    scopus 로고
    • Very fast outlier detection in large multidimensional data sets
    • A. Chaudhary, A. S. Szalay, and A. W. Moore. Very fast outlier detection in large multidimensional data sets. In DMKD, 2002.
    • (2002) DMKD
    • Chaudhary, A.1    Szalay, A.S.2    Moore, A.W.3
  • 8
    • 36849000353 scopus 로고    scopus 로고
    • Detecting anomalous records in categorical datasets
    • K. Das and J. G. Schneider. Detecting anomalous records in categorical datasets. In KDD, 2007.
    • (2007) KDD
    • Das, K.1    Schneider, J.G.2
  • 10
    • 42749086305 scopus 로고    scopus 로고
    • Fast mining of distance-based outliers in high-dimensional datasets
    • A. Ghoting, S. Parthasarathy, and M. E. Otey. Fast mining of distance-based outliers in high-dimensional datasets. Data Min. Knowl. Discov., 16(3):349-364, 2008.
    • (2008) Data Min. Knowl. Discov. , vol.16 , Issue.3 , pp. 349-364
    • Ghoting, A.1    Parthasarathy, S.2    Otey, M.E.3
  • 14
    • 41149134730 scopus 로고    scopus 로고
    • MDL histogram density estimation
    • P. Kontkanen and P. Myllymäki. MDL histogram density estimation. In AISTAT, 2007.
    • (2007) AISTAT
    • Kontkanen, P.1    Myllymäki, P.2
  • 15
    • 84857188919 scopus 로고    scopus 로고
    • An information-theoretic approach to finding noisy tiles in binary databases
    • K.-N. Kontonasios and T. De Bie. An information-theoretic approach to finding noisy tiles in binary databases. In SDM, 2010.
    • (2010) SDM
    • Kontonasios, K.-N.1    De Bie, T.2
  • 17
    • 33745781710 scopus 로고    scopus 로고
    • A symbolic representation of time series, with implications for streaming algorithms
    • J. Lin, E. J. Keogh, S. Lonardi, and B. Y. Chiu. A symbolic representation of time series, with implications for streaming algorithms. In DMKD, pages 2-11, 2003.
    • (2003) DMKD , pp. 2-11
    • Lin, J.1    Keogh, E.J.2    Lonardi, S.3    Chiu, B.Y.4
  • 18
    • 84873163441 scopus 로고    scopus 로고
    • Summarising categorical data by clustering attributes
    • M. Mampaey and J. Vreeken. Summarising categorical data by clustering attributes. Data Min. Knowl. Disc., 2012.
    • (2012) Data Min. Knowl. Disc.
    • Mampaey, M.1    Vreeken, J.2
  • 20
    • 0018015137 scopus 로고
    • Modeling by shortest data description
    • J. Rissanen. Modeling by shortest data description. Automatica, 14(1):465-471, 1978.
    • (1978) Automatica , vol.14 , Issue.1 , pp. 465-471
    • Rissanen, J.1
  • 21
    • 33750316546 scopus 로고    scopus 로고
    • Item sets that compress
    • SIAM
    • A. Siebes, J. Vreeken, and M. van Leeuwen. Item sets that compress. In SDM, pages 393-404. SIAM, 2006.
    • (2006) SDM , pp. 393-404
    • Siebes, A.1    Vreeken, J.2    Van Leeuwen, M.3
  • 22
    • 84880091878 scopus 로고    scopus 로고
    • The odd one out: Identifying and characterising anomalies
    • SIAM
    • K. Smets and J. Vreeken. The odd one out: Identifying and characterising anomalies. In SDM, pages x-y. SIAM, 2011.
    • (2011) SDM
    • Smets, K.1    Vreeken, J.2
  • 23
    • 84866021053 scopus 로고    scopus 로고
    • SLIM: Directly mining descriptive patterns
    • SIAM
    • K. Smets and J. Vreeken. SLIM: Directly mining descriptive patterns. In SDM, pages 1-12. SIAM, 2012.
    • (2012) SDM , pp. 1-12
    • Smets, K.1    Vreeken, J.2
  • 24
    • 67049165548 scopus 로고    scopus 로고
    • Finding good itemsets by packing data
    • N. Tatti and J. Vreeken. Finding good itemsets by packing data. In ICDM, pages 588-597, 2008.
    • (2008) ICDM , pp. 588-597
    • Tatti, N.1    Vreeken, J.2
  • 25
    • 79960089996 scopus 로고    scopus 로고
    • KRIMP: Mining itemsets that compress
    • J. Vreeken, M. van Leeuwen, and A. Siebes. KRIMP: Mining itemsets that compress. DAMI, 23(1):169-214, 2011.
    • (2011) DAMI , vol.23 , Issue.1 , pp. 169-214
    • Vreeken, J.1    Van Leeuwen, M.2    Siebes, A.3
  • 26
    • 1942484473 scopus 로고    scopus 로고
    • Wagner. Bayesian network anomaly pattern detection for disease outbreaks
    • W.-K. Wong, A. W. Moore, G. F. Cooper, and M. M. Wagner. Bayesian network anomaly pattern detection for disease outbreaks. In ICML, 2003.
    • (2003) ICML
    • Wong, W.-K.1    Moore, A.W.2    Cooper, G.F.3    M, M.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.