-
1
-
-
0034832620
-
Outlier detection for high dimensional data
-
C. C. Aggarwal and P. S. Yu. Outlier detection for high dimensional data. In SIGMOD, 2001.
-
(2001)
SIGMOD
-
-
Aggarwal, C.C.1
Yu, P.S.2
-
2
-
-
77956209162
-
Oddball: Spotting anomalies in weighted graphs
-
L. Akoglu, M. McGlohon, and C. Faloutsos. Oddball: Spotting anomalies in weighted graphs. In PAKDD, 2010.
-
(2010)
PAKDD
-
-
Akoglu, L.1
McGlohon, M.2
Faloutsos, C.3
-
3
-
-
85039571873
-
A linear method for deviation detection in large databases
-
A. Arning, R. Agrawal, and P. Raghavan. A linear method for deviation detection in large databases. In KDD, 1996.
-
(1996)
KDD
-
-
Arning, A.1
Agrawal, R.2
Raghavan, P.3
-
5
-
-
84871101927
-
Using bayes-nets for detecting anomalies in Internet services
-
A. Bronstein, J. Das, M. Duro, R. Friedrich, G. Kleyner, M. Mueller, S. Singhal, and I. Cohen. Using bayes-nets for detecting anomalies in Internet services. In INM, 2001.
-
(2001)
INM
-
-
Bronstein, A.1
Das, J.2
Duro, M.3
Friedrich, R.4
Kleyner, G.5
Mueller, M.6
Singhal, S.7
Cohen, I.8
-
6
-
-
84859722266
-
Anomaly detection for discrete sequences: A survey
-
V. Chandola, A. Banerjee, and V. Kumar. Anomaly detection for discrete sequences: A survey. IEEE Trans. Knowl. Data Eng., 24(5):823-839, 2012.
-
(2012)
IEEE Trans. Knowl. Data Eng.
, vol.24
, Issue.5
, pp. 823839
-
-
Chandola, V.1
Banerjee, A.2
Kumar, V.3
-
7
-
-
34548754917
-
Very fast outlier detection in large multidimensional data sets
-
A. Chaudhary, A. S. Szalay, and A. W. Moore. Very fast outlier detection in large multidimensional data sets. In DMKD, 2002.
-
(2002)
DMKD
-
-
Chaudhary, A.1
Szalay, A.S.2
Moore, A.W.3
-
8
-
-
36849000353
-
Detecting anomalous records in categorical datasets
-
K. Das and J. G. Schneider. Detecting anomalous records in categorical datasets. In KDD, 2007.
-
(2007)
KDD
-
-
Das, K.1
Schneider, J.G.2
-
10
-
-
42749086305
-
Fast mining of distance-based outliers in high-dimensional datasets
-
A. Ghoting, S. Parthasarathy, and M. E. Otey. Fast mining of distance-based outliers in high-dimensional datasets. Data Min. Knowl. Discov., 16(3):349-364, 2008.
-
(2008)
Data Min. Knowl. Discov.
, vol.16
, Issue.3
, pp. 349-364
-
-
Ghoting, A.1
Parthasarathy, S.2
Otey, M.E.3
-
14
-
-
41149134730
-
MDL histogram density estimation
-
P. Kontkanen and P. Myllymäki. MDL histogram density estimation. In AISTAT, 2007.
-
(2007)
AISTAT
-
-
Kontkanen, P.1
Myllymäki, P.2
-
15
-
-
84857188919
-
An information-theoretic approach to finding noisy tiles in binary databases
-
K.-N. Kontonasios and T. De Bie. An information-theoretic approach to finding noisy tiles in binary databases. In SDM, 2010.
-
(2010)
SDM
-
-
Kontonasios, K.-N.1
De Bie, T.2
-
17
-
-
33745781710
-
A symbolic representation of time series, with implications for streaming algorithms
-
J. Lin, E. J. Keogh, S. Lonardi, and B. Y. Chiu. A symbolic representation of time series, with implications for streaming algorithms. In DMKD, pages 2-11, 2003.
-
(2003)
DMKD
, pp. 2-11
-
-
Lin, J.1
Keogh, E.J.2
Lonardi, S.3
Chiu, B.Y.4
-
18
-
-
84873163441
-
Summarising categorical data by clustering attributes
-
M. Mampaey and J. Vreeken. Summarising categorical data by clustering attributes. Data Min. Knowl. Disc., 2012.
-
(2012)
Data Min. Knowl. Disc.
-
-
Mampaey, M.1
Vreeken, J.2
-
19
-
-
48349118009
-
The discrete basis problem
-
P. Miettinen, T. Mielikäinen, A. Gionis, G. Das, and H. Mannila. The discrete basis problem. IEEE TKDE, 20(10):1348-1362, 2008.
-
(2008)
IEEE TKDE
, vol.20
, Issue.10
, pp. 1348-1362
-
-
Miettinen, P.1
Mielikäinen, T.2
Gionis, A.3
Das, G.4
Mannila, H.5
-
20
-
-
0018015137
-
Modeling by shortest data description
-
J. Rissanen. Modeling by shortest data description. Automatica, 14(1):465-471, 1978.
-
(1978)
Automatica
, vol.14
, Issue.1
, pp. 465-471
-
-
Rissanen, J.1
-
21
-
-
33750316546
-
Item sets that compress
-
SIAM
-
A. Siebes, J. Vreeken, and M. van Leeuwen. Item sets that compress. In SDM, pages 393-404. SIAM, 2006.
-
(2006)
SDM
, pp. 393-404
-
-
Siebes, A.1
Vreeken, J.2
Van Leeuwen, M.3
-
22
-
-
84880091878
-
The odd one out: Identifying and characterising anomalies
-
SIAM
-
K. Smets and J. Vreeken. The odd one out: Identifying and characterising anomalies. In SDM, pages x-y. SIAM, 2011.
-
(2011)
SDM
-
-
Smets, K.1
Vreeken, J.2
-
23
-
-
84866021053
-
SLIM: Directly mining descriptive patterns
-
SIAM
-
K. Smets and J. Vreeken. SLIM: Directly mining descriptive patterns. In SDM, pages 1-12. SIAM, 2012.
-
(2012)
SDM
, pp. 1-12
-
-
Smets, K.1
Vreeken, J.2
-
24
-
-
67049165548
-
Finding good itemsets by packing data
-
N. Tatti and J. Vreeken. Finding good itemsets by packing data. In ICDM, pages 588-597, 2008.
-
(2008)
ICDM
, pp. 588-597
-
-
Tatti, N.1
Vreeken, J.2
-
25
-
-
79960089996
-
KRIMP: Mining itemsets that compress
-
J. Vreeken, M. van Leeuwen, and A. Siebes. KRIMP: Mining itemsets that compress. DAMI, 23(1):169-214, 2011.
-
(2011)
DAMI
, vol.23
, Issue.1
, pp. 169-214
-
-
Vreeken, J.1
Van Leeuwen, M.2
Siebes, A.3
-
26
-
-
1942484473
-
Wagner. Bayesian network anomaly pattern detection for disease outbreaks
-
W.-K. Wong, A. W. Moore, G. F. Cooper, and M. M. Wagner. Bayesian network anomaly pattern detection for disease outbreaks. In ICML, 2003.
-
(2003)
ICML
-
-
Wong, W.-K.1
Moore, A.W.2
Cooper, G.F.3
M, M.4
|