메뉴 건너뛰기




Volumn 24, Issue 5, 2012, Pages 823-839

Anomaly detection for discrete sequences: A survey

Author keywords

Anomaly detection; Discrete sequences

Indexed keywords

ANOMALY DETECTION; APPLICATION DOMAINS; DISCRETE SEQUENCES; GROUP TECHNIQUE; NORMAL SEQUENCES; ONLINE ANOMALY DETECTION; PROBLEM FORMULATION; RELATIVE STRENGTH;

EID: 84859722266     PISSN: 10414347     EISSN: None     Source Type: Journal    
DOI: 10.1109/TKDE.2010.235     Document Type: Review
Times cited : (534)

References (95)
  • 2
    • 7544223741 scopus 로고    scopus 로고
    • A survey of outlier detection methodologies
    • V. Hodge and J. Austin, "A Survey of Outlier Detection Methodologies," Artificial Intelligence Rev., vol. 22, no. 2, pp. 85-126, 2004.
    • (2004) Artificial Intelligence Rev , vol.22 , Issue.2 , pp. 85-126
    • Hodge, V.1    Austin, J.2
  • 5
    • 0032313923 scopus 로고    scopus 로고
    • Intrusion detection using sequences of system calls
    • citeseer.ist.psu.edu/hofmeyr98intrusion.html
    • S.A. Hofmeyr, S. Forrest, and A. Somayaji, "Intrusion Detection Using Sequences of System Calls," J. Computer Security, vol. 6, no. 3, pp. 151-180, citeseer.ist.psu.edu/hofmeyr98intrusion.html, 1998.
    • (1998) J. Computer Security , vol.6 , Issue.3 , pp. 151-180
    • Hofmeyr, S.A.1    Forrest, S.2    Somayaji, A.3
  • 9
    • 3543106606 scopus 로고    scopus 로고
    • Anomaly detection using real-valued negative selection
    • DOI 10.1023/A:1026195112518
    • F.A. Gonzalez and D. Dasgupta, "Anomaly Detection Using Real-Valued Negative Selection," Genetic Programming and Evolvable Machines, vol. 4, no. 4, pp. 383-403, 2003. (Pubitemid 37283494)
    • (2003) Genetic Programming and Evolvable Machines , vol.4 , Issue.4 , pp. 383-403
    • Gonzalez, F.A.1    Dasgupta, D.2
  • 12
    • 79952022688 scopus 로고    scopus 로고
    • Anomaly detection and diagnosis algorithms for discrete symbol sequences with applications to airline safety
    • S. Budalakoti, A. Srivastava, and M. Otey, "Anomaly Detection and Diagnosis Algorithms for Discrete Symbol Sequences with Applications to Airline Safety," Proc. IEEE Int'l Conf. Systems, Man, and Cybernetics, vol. 37, no. 6, 2007.
    • (2007) Proc. IEEE Int'l Conf. Systems, Man, and Cybernetics , vol.37 , Issue.6
    • Budalakoti, S.1    Srivastava, A.2    Otey, M.3
  • 14
    • 67049142361 scopus 로고    scopus 로고
    • A comparative evaluation of anomaly detection techniques for sequence data
    • V. Chandola, V. Mithal, and V. Kumar, "A Comparative Evaluation of Anomaly Detection Techniques for Sequence Data," Proc. Int'l Conf. Data Mining, 2008.
    • (2008) Proc. Int'l Conf. Data Mining
    • Chandola, V.1    Mithal, V.2    Kumar, V.3
  • 18
    • 77949731575 scopus 로고    scopus 로고
    • Temporal sequence learning and data reduction for anomaly detection
    • T. Lane and C.E. Brodley, "Temporal Sequence Learning and Data Reduction for Anomaly Detection," ACM Trans. Information Systems and Security, vol. 2, no. 3, pp. 295-331, 1999.
    • (1999) ACM Trans. Information Systems and Security , vol.2 , Issue.3 , pp. 295-331
    • Lane, T.1    Brodley, C.E.2
  • 22
    • 85016684697 scopus 로고    scopus 로고
    • A Maximum entropy approach to collaborative filtering in dynamic, sparse, high-dimensional domains
    • D. Pavlov and D. Pennock, "A Maximum Entropy Approach to Collaborative Filtering in Dynamic, Sparse, High-Dimensional Domains," Proc. Advances in Neural Information Processing Systems, 2002.
    • (2002) Proc. Advances in Neural Information Processing Systems
    • Pavlov, D.1    Pennock, D.2
  • 23
    • 38849167682 scopus 로고    scopus 로고
    • Sequence modeling with mixtures of conditional maximum entropy distributions
    • D. Pavlov, "Sequence Modeling with Mixtures of Conditional Maximum Entropy Distributions," Proc. Third IEEE Int'l Conf. Data Mining, pp. 251-258, 2003.
    • (2003) Proc. Third IEEE Int'l Conf. Data Mining , pp. 251-258
    • Pavlov, D.1
  • 27
    • 0345359233 scopus 로고    scopus 로고
    • CLUSEQ: Efficient and effective sequence clustering
    • J. Yang and W. Wang, "CLUSEQ: Efficient and Effective Sequence Clustering," Proc. Int'l Conf. Data Eng., pp. 101-112, 2003.
    • (2003) Proc. Int'l Conf. Data Eng , pp. 101-112
    • Yang, J.1    Wang, W.2
  • 28
    • 0030282113 scopus 로고    scopus 로고
    • The power of amnesia: Learning probabilistic automata with variable memory length
    • D. Ron, Y. Singer, and N. Tishby, "The Power of Amnesia: Learning Probabilistic Automata with Variable Memory Length," Machine Learning, vol. 25, nos. 2/3, pp. 117-149, 1996. (Pubitemid 126724391)
    • (1996) Machine Learning , vol.25 , Issue.2-3 , pp. 117-149
    • Ron, D.1    Singer, Y.2    Tishby, N.3
  • 31
    • 0000825481 scopus 로고
    • A Statistical method for evaluating systematic relationships
    • R.R. Sokal and C.D. Michener, "A Statistical Method for Evaluating Systematic Relationships," Univ. of Kansas Scientific Bull., vol. 38, pp. 1409-1438, 1958.
    • (1958) Univ. of Kansas Scientific Bull , vol.38 , pp. 1409-1438
    • Sokal, R.R.1    Michener, C.D.2
  • 32
    • 0017492836 scopus 로고
    • A fast algorithm for computing longest common subsequences
    • J.W. Hunt and T.G. Szymanski, "A Fast Algorithm for Computing Longest Common Subsequences," Comm. ACM, vol. 20, no. 5, pp. 350-353, 1977.
    • (1977) Comm. ACM , vol.20 , Issue.5 , pp. 350-353
    • Hunt, J.W.1    Szymanski, T.G.2
  • 34
    • 0001858279 scopus 로고    scopus 로고
    • Sequence matching and learning in anomaly detection for computer security
    • Fawcett, Haimowitz, Provost, and Stolfo, eds
    • T. Lane and C.E. Brodley, "Sequence Matching and Learning in Anomaly Detection for Computer Security," Proc. AI Approaches to Fraud Detection and Risk Management, Fawcett, Haimowitz, Provost, and Stolfo, eds., pp. 43-49, 1997.
    • (1997) Proc. AI Approaches to Fraud Detection and Risk Management , pp. 43-49
    • Lane, T.1    Brodley, C.E.2
  • 36
    • 85036529638 scopus 로고    scopus 로고
    • Intrusion detection: Applying machine learning to solaris audit data
    • D. Endler, "Intrusion Detection: Applying Machine Learning to Solaris Audit Data," Proc. 14th Ann. Computer Security Applications Conf., pp. 268-279, 1998.
    • (1998) Proc. 14th Ann. Computer Security Applications Conf , pp. 268-279
    • Endler, D.1
  • 40
    • 0142222738 scopus 로고    scopus 로고
    • Detection and classification of intrusions and faults using sequences of system calls
    • J.B.D. Cabrera, L. Lewis, and R.K. Mehra, "Detection and Classification of Intrusions and Faults Using Sequences of System Calls," SIGMOD Record, vol. 30, no. 4, pp. 25-34, 2001.
    • (2001) SIGMOD Record , vol.30 , Issue.4 , pp. 25-34
    • Cabrera, J.B.D.1    Lewis, L.2    Mehra, R.K.3
  • 41
    • 0031233430 scopus 로고    scopus 로고
    • Intrusion detection via system call traces
    • Sept./Oct
    • A.P. Kosoresow and S.A. Hofmeyr, "Intrusion Detection via System Call Traces," IEEE Software, vol. 14, no. 5, pp. 35-42, Sept./Oct. 1997.
    • (1997) IEEE Software , vol.14 , Issue.5 , pp. 35-42
    • Kosoresow, A.P.1    Hofmeyr, S.A.2
  • 45
    • 84901453196 scopus 로고    scopus 로고
    • Anomaly detection in multidimensional data using negative selection algorithm
    • May
    • D. Dasgupta and N. Majumdar, "Anomaly Detection in Multidimensional Data Using Negative Selection Algorithm," Proc. IEEE Conf. Evolutionary Computation, pp. 1039-1044, May 2002.
    • (2002) Proc. IEEE Conf. Evolutionary Computation , pp. 1039-1044
    • Dasgupta, D.1    Majumdar, N.2
  • 46
    • 0029718285 scopus 로고    scopus 로고
    • An Immunological approach to change detection: Algorithms, analysis and implications
    • S. Forrest, P. D'haeseleer, and P. Helman, "An Immunological Approach to Change Detection: Algorithms, Analysis and Implications," Proc. IEEE Symp. Security and Privacy, pp. 110-119, 1996.
    • (1996) Proc. IEEE Symp. Security and Privacy , pp. 110-119
    • Forrest, S.1    D'haeseleer, P.2    Helman, P.3
  • 52
    • 33846005488 scopus 로고    scopus 로고
    • Sequence-similarity kernels for SVMs to detect anomalies in system calls
    • DOI 10.1016/j.neucom.2006.10.017, PII S092523120600292X
    • S. Tian, S. Mu, and C. Yin, "Sequence-Similarity Kernels for Svms to Detect Anomalies in System Calls," Neurocomputing, vol. 70, nos. 4-6, pp. 859-866, 2007. (Pubitemid 46043984)
    • (2007) Neurocomputing , vol.70 , Issue.4-6 , pp. 859-866
    • Tian, S.1    Mu, S.2    Yin, C.3
  • 55
    • 0034593307 scopus 로고    scopus 로고
    • Characterizing the behavior of a program using multiple-length n-grams
    • C. Marceau, "Characterizing the Behavior of a Program Using Multiple-Length N-Grams," Proc. Workshop New Security Paradigms, pp. 101-110, 2000.
    • (2000) Proc. Workshop New Security Paradigms , pp. 101-110
    • Marceau, C.1
  • 57
    • 85149612939 scopus 로고
    • Fast effective rule induction
    • A. Prieditis and S. Russell, eds., July
    • W.W. Cohen, "Fast Effective Rule Induction," Proc. 12th Int'l Conf. Machine Learning, A. Prieditis and S. Russell, eds., pp. 115-123, July 1995.
    • (1995) Proc. 12th Int'l Conf. Machine Learning , pp. 115-123
    • Cohen, W.W.1
  • 58
    • 0022594196 scopus 로고
    • An introduction to hidden markov models
    • Jan
    • L.R. Rabiner and B.H. Juang, "An Introduction to Hidden Markov Models," IEEE ASSP Magazine, vol. 3, no. 1, pp. 4-16, Jan. 1986.
    • (1986) IEEE ASSP Magazine , vol.3 , Issue.1 , pp. 4-16
    • Rabiner, L.R.1    Juang, B.H.2
  • 59
    • 0000353178 scopus 로고
    • A maximization technique occuring in the statistical analysis of probabilistic functions of markov chains
    • L.E. Baum, T. Petrie, G. Soules, and N. Weiss, "A Maximization Technique Occuring in the Statistical Analysis of Probabilistic Functions of Markov Chains," Annals of Math. Statistics, vol. 41, no. 1, pp. 164-171, 1970.
    • (1970) Annals of Math. Statistics , vol.41 , Issue.1 , pp. 164-171
    • Baum, L.E.1    Petrie, T.2    Soules, G.3    Weiss, N.4
  • 60
    • 0002979739 scopus 로고    scopus 로고
    • Hidden markov models for human/computer interface modeling
    • T. Lane, "Hidden Markov Models for Human/Computer Interface Modeling," Proc. IJCAI-99 Workshop Learning about Users, pp. 35-44, 1999.
    • (1999) Proc. IJCAI-99 Workshop Learning about Users , pp. 35-44
    • Lane, T.1
  • 62
    • 0015600423 scopus 로고
    • The viterbi algorithm
    • Mar
    • J. Forney, G.D., "The Viterbi Algorithm," Proc. IEEE, vol. 61, no. 3, pp. 268-278, Mar. 1973.
    • (1973) Proc. IEEE , vol.61 , Issue.3 , pp. 268-278
    • Forney, J.G.D.1
  • 64
    • 0037142572 scopus 로고    scopus 로고
    • Anomaly intrusion detection method based on HMM
    • DOI 10.1049/el:20020467
    • Y. Qiao, X.W. Xin, Y. Bin, and S. Ge, "Anomaly Intrusion Detection Method Based on Hmm," Electronics Letters, vol. 38, no. 13, pp. 663-664, 2002. (Pubitemid 34725625)
    • (2002) Electronics Letters , vol.38 , Issue.13 , pp. 663-664
    • Qiao, Y.1    Xin, X.W.2    Bin, Y.3    Ge, S.4
  • 66
    • 33845271242 scopus 로고    scopus 로고
    • Finding the most unusual time series subsequence: Algorithms and applications
    • E. Keogh, J. Lin, S.-H. Lee, and H.V. Herle, "Finding the Most Unusual Time Series Subsequence: Algorithms and Applications," Knowledge and Information Systems, vol. 11, no. 1, pp. 1-27, 2006.
    • (2006) Knowledge and Information Systems , vol.11 , Issue.1 , pp. 1-27
    • Keogh, E.1    Lin, J.2    Lee, S.-H.3    Herle, H.V.4
  • 67
    • 34548547034 scopus 로고    scopus 로고
    • HOT SAX: Efficiently finding the most unusual time series subsequence
    • DOI 10.1109/ICDM.2005.79, 1565683, Proceedings - Fifth IEEE International Conference on Data Mining, ICDM 2005
    • E. Keogh, J. Lin, and A. Fu, "Hot SAX: Efficiently Finding the Most Unusual Time Series Subsequence," Proc. Fifth IEEE Int'l Conf. Data Mining, pp. 226-233, 2005. (Pubitemid 47385697)
    • (2005) Proceedings - IEEE International Conference on Data Mining, ICDM , pp. 226-233
    • Keogh, E.1    Lin, J.2    Fu, A.3
  • 69
    • 34548093287 scopus 로고    scopus 로고
    • Experiencing SAX: A novel symbolic representation of time series
    • DOI 10.1007/s10618-007-0064-z
    • J. Lin, E. Keogh, L. Wei, and S. Lonardi, "Experiencing SAX: A Novel Symbolic Representation of Time Series," Data Mining and Knowledge Discovery, vol. 15, no. 2, pp. 107-144, 2007. (Pubitemid 47293484)
    • (2007) Data Mining and Knowledge Discovery , vol.15 , Issue.2 , pp. 107-144
    • Lin, J.1    Keogh, E.2    Wei, L.3    Lonardi, S.4
  • 72
    • 84878024340 scopus 로고    scopus 로고
    • SAXually explicit images: Finding unusual shapes
    • DOI 10.1109/ICDM.2006.138, 4053096, Proceedings - Sixth International Conference on Data Mining, ICDM 2006
    • L. Wei, E. Keogh, and X. Xi, "Saxually Explicit Images: Finding Unusual Shapes," Proc. Sixth Int'l Conf. Data Mining, pp. 711-720, 2006. (Pubitemid 47485849)
    • (2007) Proceedings - IEEE International Conference on Data Mining, ICDM , pp. 711-720
    • Wei, L.1    Keogh, E.2    Xi, A.3
  • 79
    • 23844441860 scopus 로고    scopus 로고
    • Reliable detection of episodes in event sequences
    • DOI 10.1007/s10115-004-0174-5
    • R. Gwadera, M. Atallah, and W. Szpankowski, "Reliable Detection of Episodes in Event Sequences," Knowledge and Information Systems, vol. 7, no. 4, pp. 415-437, 2005. (Pubitemid 41166793)
    • (2005) Knowledge and Information Systems , vol.7 , Issue.4 , pp. 415-437
    • Gwadera, R.1    Atallah, M.J.2    Szpankowski, W.3
  • 85
    • 33646006367 scopus 로고    scopus 로고
    • Efficient modeling of discrete events for anomaly detection using hidden markov models
    • G. Florez-Larrahondo, S.M. Bridges, and R. Vaughn, "Efficient Modeling of Discrete Events for Anomaly Detection Using Hidden Markov Models," Information Security, vol. 3650, pp. 506-514, 2005.
    • (2005) Information Security , vol.3650 , pp. 506-514
    • Florez-Larrahondo, G.1    Bridges, S.M.2    Vaughn, R.3
  • 87
    • 49749105200 scopus 로고    scopus 로고
    • Disk aware discord discovery: Finding unusual time series in terabyte sized datasets
    • D. Yankov, E.J. Keogh, and U. Rebbapragada, "Disk Aware Discord Discovery: Finding Unusual Time Series in Terabyte Sized Datasets," Proc. Int'l Conf. Data Mining, pp. 381-390, 2007.
    • (2007) Proc. Int'l Conf. Data Mining , pp. 381-390
    • Yankov, D.1    Keogh, E.J.2    Rebbapragada, U.3
  • 91
    • 52649111580 scopus 로고    scopus 로고
    • Detection of shape anomalies: A probabilistic approach using hidden markov models
    • Apr
    • Z. Liu, J.X. Yu, L. Chen, and D. Wu, "Detection of Shape Anomalies: A Probabilistic Approach Using Hidden Markov Models," Proc. IEEE 24th Int'l Conf. Data Eng., pp. 1325-1327, Apr. 2008.
    • (2008) Proc. IEEE 24th Int'l Conf. Data Eng , pp. 1325-1327
    • Liu, Z.1    Yu, J.X.2    Chen, L.3    Wu, D.4
  • 94
    • 52649167834 scopus 로고    scopus 로고
    • Mining abnormal patterns from heterogeneous time-series with irrelevant features for fault event detection
    • R. Fujimaki, T. Nakata, H. Tsukahara, and A. Sato, "Mining Abnormal Patterns from Heterogeneous Time-Series with Irrelevant Features for Fault Event Detection," Proc. SIAM Int'l Conf. Data Mining, pp. 472-482, 2008.
    • (2008) Proc. SIAM Int'l Conf. Data Mining , pp. 472-482
    • Fujimaki, R.1    Nakata, T.2    Tsukahara, H.3    Sato, A.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.