메뉴 건너뛰기




Volumn , Issue , 2014, Pages 1346-1355

Focused clustering and outlier detection in large attributed graphs

Author keywords

attributed graphs; clustering; distance metric learning; focused graph mining; infer user preference; outlier mining

Indexed keywords


EID: 84907031417     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2623330.2623682     Document Type: Conference Paper
Times cited : (220)

References (34)
  • 1
    • 77956209162 scopus 로고    scopus 로고
    • OddBall: Spotting anomalies in weighted graphs
    • L. Akoglu, M. McGlohon, and C. Faloutsos. OddBall: Spotting anomalies in weighted graphs. In PAKDD, 2010.
    • (2010) PAKDD
    • Akoglu, L.1    McGlohon, M.2    Faloutsos, C.3
  • 2
    • 84880243365 scopus 로고    scopus 로고
    • PICS: Parameter-free identification of cohesive subgroups in large attributed graphs
    • L. Akoglu, H. Tong, B. Meeder, and C. Faloutsos. PICS: Parameter-free identification of cohesive subgroups in large attributed graphs. In SIAM SDM, pages 439-450, 2012.
    • (2012) SIAM SDM , pp. 439-450
    • Akoglu, L.1    Tong, H.2    Meeder, B.3    Faloutsos, C.4
  • 3
    • 38749085661 scopus 로고    scopus 로고
    • Local graph partitioning using pagerank vectors
    • R. Andersen, F. Chung, and K. Lang. Local graph partitioning using pagerank vectors. In FOCS, 2006.
    • (2006) FOCS
    • Andersen, R.1    Chung, F.2    Lang, K.3
  • 4
    • 65449133435 scopus 로고    scopus 로고
    • Multi-way clustering on relation graphs
    • A. Banerjee, S. Basu, and S. Merugu. Multi-way clustering on relation graphs. In SIAM SDM, 2007.
    • (2007) SIAM SDM
    • Banerjee, A.1    Basu, S.2    Merugu, S.3
  • 8
    • 27244456660 scopus 로고    scopus 로고
    • Finding local community structure in networks
    • A. Clauset. Finding local community structure in networks. Physical Review E, 72(2):026132, 2005.
    • (2005) Physical Review E , vol.72 , Issue.2 , pp. 026132
    • Clauset, A.1
  • 9
    • 0035580899 scopus 로고    scopus 로고
    • Algorithms for graph partitioning on the planted partition model
    • A. Condon and R. M. Karp. Algorithms for graph partitioning on the planted partition model. Random Struct. Algorithms, 18(2):116-140, 2001.
    • (2001) Random Struct. Algorithms , vol.18 , Issue.2 , pp. 116-140
    • Condon, A.1    Karp, R.M.2
  • 10
    • 77952375075 scopus 로고    scopus 로고
    • Information-theoretic co-clustering
    • I. Dhillon, S. Mallela, and D. Modha. Information-theoretic co-clustering. In KDD, 2003.
    • (2003) KDD
    • Dhillon, I.1    Mallela, S.2    Modha, D.3
  • 11
    • 78149301227 scopus 로고    scopus 로고
    • A min-max cut algorithm for graph partitioning and data clustering
    • C. H. Q. Ding, X. He, H. Zha, M. Gu, and H. D. Simon. A min-max cut algorithm for graph partitioning and data clustering. In ICDM, 2001.
    • (2001) ICDM
    • Ding, C.H.Q.1    He, X.2    Zha, H.3    Gu, M.4    Simon, H.D.5
  • 12
    • 0034592749 scopus 로고    scopus 로고
    • Efficient identification of web communities
    • G. W. Flake, S. Lawrence, and C. L. Giles. Efficient identification of web communities. In KDD. 2000.
    • (2000) KDD
    • Flake, G.W.1    Lawrence, S.2    Giles, C.L.3
  • 14
    • 77956197036 scopus 로고    scopus 로고
    • On community outliers and their efficient detection in information networks
    • J. Gao, F. Liang, W. Fan, C. Wang, Y. Sun, and J. Han. On community outliers and their efficient detection in information networks. In KDD, pages 813-822, 2010.
    • (2010) KDD , pp. 813-822
    • Gao, J.1    Liang, F.2    Fan, W.3    Wang, C.4    Sun, Y.5    Han, J.6
  • 15
    • 84866034527 scopus 로고    scopus 로고
    • Vertex neighborhoods, low conductance cuts, and good seeds for local community methods
    • D. F. Gleich and C. Seshadhri. Vertex neighborhoods, low conductance cuts, and good seeds for local community methods. In KDD, pages 597-605, 2012.
    • (2012) KDD , pp. 597-605
    • Gleich, D.F.1    Seshadhri, C.2
  • 16
    • 79951736796 scopus 로고    scopus 로고
    • Subspace clustering meets dense subgraph mining: A synthesis of two paradigms
    • S. Günnemann, I. Färber, B. Boden, and T. Seidl.Subspace clustering meets dense subgraph mining: A synthesis of two paradigms. In ICDM, 2010.
    • (2010) ICDM
    • Günnemann, S.1    Färber, I.2    Boden, B.3    Seidl, T.4
  • 17
    • 0038014879 scopus 로고    scopus 로고
    • Co-clustering of biological networks and gene expression data
    • D. Hanisch, A. Zien, R. Zimmer, and T. Lengauer. Co-clustering of biological networks and gene expression data. In ISMB, pages 145-154, 2002.
    • (2002) ISMB , pp. 145-154
    • Hanisch, D.1    Zien, A.2    Zimmer, R.3    Lengauer, T.4
  • 18
    • 84907018868 scopus 로고    scopus 로고
    • Statistical selection of congruent subspaces for outlier detection on attributed graphs
    • P. Iglesias, E. Müller, F. Laforet, F. Keller, and K. Böhm.Statistical selection of congruent subspaces for outlier detection on attributed graphs. In ICDM, 2013.
    • (2013) ICDM
    • Iglesias, P.1    Müller, E.2    Laforet, F.3    Keller, F.4    Böhm, K.5
  • 19
    • 0009007122 scopus 로고    scopus 로고
    • Multilevel algorithms for multi-constraint graph partitioning
    • G. Karypis and V. Kumar. Multilevel algorithms for multi-constraint graph partitioning. In Proc. of Supercomputing, pages 1-13, 1998.
    • (1998) Proc. of Supercomputing , pp. 1-13
    • Karypis, G.1    Kumar, V.2
  • 20
    • 33749235905 scopus 로고    scopus 로고
    • Spectral clustering for multi-type relational data
    • B. Long, Z. Zhang, X. Wu, and P. S. Yu. Spectral clustering for multi-type relational data. In ICML, 2006.
    • (2006) ICML
    • Long, B.1    Zhang, Z.2    Wu, X.3    Yu, P.S.4
  • 22
    • 72749099065 scopus 로고    scopus 로고
    • Mining cohesive patterns from graphs with feature vectors
    • F. Moser, R. Colak, A. Rafiey, and M. Ester. Mining cohesive patterns from graphs with feature vectors. In SDM, 2009.
    • (2009) SDM
    • Moser, F.1    Colak, R.2    Rafiey, A.3    Ester, M.4
  • 23
    • 84881447667 scopus 로고    scopus 로고
    • Rankingoutlier nodes in subspaces of attributed graphs
    • E. Müller, P. I. Sanchez, Y. Mülle, and K. Böhm. Rankingoutlier nodes in subspaces of attributed graphs. In ICDE Workshops, pages 216-222, 2013.
    • (2013) ICDE Workshops , pp. 216-222
    • Müller, E.1    Sanchez, P.I.2    Mülle, Y.3    Böhm, K.4
  • 24
    • 0041875229 scopus 로고    scopus 로고
    • On spectral clustering: Analysis and an algorithm
    • A. Y. Ng, M. I. Jordan, and Y. Weiss. On spectral clustering: Analysis and an algorithm. In NIPS, 2001.
    • (2001) NIPS
    • Ng, A.Y.1    Jordan, M.I.2    Weiss, Y.3
  • 25
    • 12244268431 scopus 로고    scopus 로고
    • Graph-based anomaly detection
    • C. C. Noble and D. J. Cook. Graph-based anomaly detection. In KDD, pages 631-636, 2003.
    • (2003) KDD , pp. 631-636
    • Noble, C.C.1    Cook, D.J.2
  • 26
    • 84866052116 scopus 로고    scopus 로고
    • Unsupervised feature selection for linked social media data
    • J. Tang and H. Liu. Unsupervised feature selection for linked social media data. In KDD, pages 904-912, 2012.
    • (2012) KDD , pp. 904-912
    • Tang, J.1    Liu, H.2
  • 27
    • 57149123533 scopus 로고    scopus 로고
    • Efficient aggregation for graph summarization
    • Y. Tian, R. A. Hankins, and J. M. Patel. Efficient aggregation for graph summarization. In SIGMOD, 2008.
    • (2008) SIGMOD
    • Tian, Y.1    Hankins, R.A.2    Patel, J.M.3
  • 28
    • 84865437346 scopus 로고    scopus 로고
    • Non-negative residual matrix factorization with application to graph anomaly detection
    • H. Tong and C.-Y. Lin. Non-negative residual matrix factorization with application to graph anomaly detection. In SIAM SDM, pages 143-153, 2011.
    • (2011) SIAM SDM , pp. 143-153
    • Tong, H.1    Lin, C.-Y.2
  • 29
    • 84907018867 scopus 로고    scopus 로고
    • Distance metric learning in data mining
    • F. Wang and J. Sun. Distance metric learning in data mining. In SIAM SDM. Tutorials, 2012.
    • (2012) SIAM SDM. Tutorials
    • Wang, F.1    Sun, J.2
  • 30
    • 84889587455 scopus 로고    scopus 로고
    • Overlapping community detection using seed set expansion
    • J. Whang, D. Gleich, and I. Dhillon. Overlapping community detection using seed set expansion. In CIKM, pages 2099-2108, 2013.
    • (2013) CIKM , pp. 2099-2108
    • Whang, J.1    Gleich, D.2    Dhillon, I.3
  • 31
    • 84880106426 scopus 로고    scopus 로고
    • A spectral clustering approach to finding communities in graph
    • S. White and P. Smyth. A spectral clustering approach to finding communities in graph. In SDM, 2005.
    • (2005) SDM
    • White, S.1    Smyth, P.2
  • 32
    • 85133386144 scopus 로고    scopus 로고
    • Distance metric learning with application to clustering with side-information
    • E. P. Xing, A. Y. Ng, M. I. Jordan, and S. J. Russell. Distance metric learning with application to clustering with side-information. In NIPS, pages 505-512, 2002.
    • (2002) NIPS , pp. 505-512
    • Xing, E.P.1    Ng, A.Y.2    Jordan, M.I.3    Russell, S.J.4
  • 33
    • 84874243514 scopus 로고    scopus 로고
    • Overlapping community detection at scale: A nonnegative matrix factorization approach
    • J. Yang and J. Leskovec. Overlapping community detection at scale: a nonnegative matrix factorization approach. In WSDM, pages 587-596, 2013.
    • (2013) WSDM , pp. 587-596
    • Yang, J.1    Leskovec, J.2
  • 34
    • 77955045035 scopus 로고    scopus 로고
    • Graph clustering based on structural/attribute similarities
    • Y. Zhou, H. Cheng, and J. X. Yu. Graph clustering based on structural/attribute similarities. PVLDB, 2(1):718-729, 2009.
    • (2009) PVLDB , vol.2 , Issue.1 , pp. 718-729
    • Zhou, Y.1    Cheng, H.2    Yu, J.X.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.