-
7
-
-
0033721503
-
-
A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan, R. Stata, A. Tomkins, and J. Wiener, Comput. Netw. 33, 309 (2000).
-
(2000)
Comput. Netw.
, vol.33
, pp. 309
-
-
Broder, A.1
Kumar, R.2
Maghoul, F.3
Raghavan, P.4
Rajagopalan, S.5
Stata, R.6
Tomkins, A.7
Wiener, J.8
-
14
-
-
0034609791
-
-
H. Jeong, B. Tombor, R. Albert, Z. N. Oltvai, and A.-L. Barabási, Nature (London) 407, 651 (2000).
-
(2000)
Nature (London)
, vol.407
, pp. 651
-
-
Jeong, H.1
Tombor, B.2
Albert, R.3
Oltvai, Z.N.4
Barabási, A.-L.5
-
22
-
-
0034633749
-
-
L. A. N. Amaral, A. Scala, M. Barthélémy, and H. E. Stanley, Proc. Natl. Acad. Sci. U.S.A. 97, 11149 (2000).
-
(2000)
Proc. Natl. Acad. Sci. U.S.A.
, vol.97
, pp. 11149
-
-
Amaral, L.A.N.1
Scala, A.2
Barthélémy, M.3
Stanley, H.E.4
-
26
-
-
0005914572
-
-
Stichting Mathematicsh Centrum, Amsterdam (unpublished)
-
J. M. Anthonisse, Technical Report BN 9/71, Stichting Mathematicsh Centrum, Amsterdam (1971) (unpublished).
-
(1971)
Technical Report
, vol.BN 9-71
-
-
Anthonisse, J.M.1
-
28
-
-
0003515463
-
-
Prentice Hall. Upper Saddle River, NJ
-
R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network Flows: Theory, Algorithms, and Applications (Prentice Hall. Upper Saddle River, NJ, 1993).
-
(1993)
Network Flows: Theory, Algorithms, and Applications
-
-
Ahuja, R.K.1
Magnanti, T.L.2
Orlin, J.B.3
-
29
-
-
0004116989
-
-
MIT Press, Cambridge, MA
-
T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms, 2nd ed. (MIT Press, Cambridge, MA, 2001).
-
(2001)
Introduction to Algorithms, 2nd Ed.
-
-
Cormen, T.H.1
Leiserson, C.E.2
Rivest, R.L.3
Stein, C.4
-
39
-
-
0042311400
-
-
D. Lusseau, K. Schneider, O. J. Boisseau, P. Haase, E. Slooten, and S. M. Dawson, Behav. Ecol. Sociobiol. 54, 396 (2003).
-
(2003)
Behav. Ecol. Sociobiol.
, vol.54
, pp. 396
-
-
Lusseau, D.1
Schneider, K.2
Boisseau, O.J.3
Haase, P.4
Slooten, E.5
Dawson, S.M.6
-
41
-
-
0036497195
-
-
G. W. Flake, S. R. Lawrence, C. L. Giles, and F. M. Coetzee, IEEE Computer 35, 66 (2002).
-
(2002)
IEEE Computer
, vol.35
, pp. 66
-
-
Flake, G.W.1
Lawrence, S.R.2
Giles, C.L.3
Coetzee, F.M.4
-
44
-
-
33645048345
-
-
D. Wilkinson and B. A. Huberman, e-print cond-mat/0210147
-
D. Wilkinson and B. A. Huberman, e-print cond-mat/0210147.
-
-
-
-
45
-
-
33645080340
-
-
P. Gleiser and L. Danon, e-print cond-mat/0307434
-
P. Gleiser and L. Danon, e-print cond-mat/0307434.
-
-
-
-
46
-
-
1842616539
-
-
R. Guimerà, L. Danon, A. Díaz-Guilera, F. Giralt, and A. Arenas, Phys. Rev. E 65, 065103 (2003).
-
(2003)
Phys. Rev. E
, vol.65
, pp. 065103
-
-
Guimerà, R.1
Danon, L.2
Díaz-Guilera, A.3
Giralt, F.4
Arenas, A.5
-
47
-
-
33645046542
-
-
edited by M. Huysman, E. Wenger, and V. Wulf (Kluwer, Dordrecht)
-
J. R. Tyler, D. M. Wilkinson, and B. A. Huberman, in Proceedings of the First International Conference on Communities and Technologies, edited by M. Huysman, E. Wenger, and V. Wulf (Kluwer, Dordrecht, 2003).
-
(2003)
Proceedings of the First International Conference on Communities and Technologies
-
-
Tyler, J.R.1
Wilkinson, D.M.2
Huberman, B.A.3
-
48
-
-
33645070096
-
-
http://jung.sourceforge.net/
-
Following the publication of Ref. [25], the algorithm has been implemented in the software packages UCISET and NETDRAW and in the open-source network library JUNG. (See http://www.analytictech.com/ and http://jung. sourceforge.net/.)
-
-
-
-
49
-
-
33645052877
-
-
note
-
In fact, we have tried counting each traversal separately, but this method gives extremely poor results, confirming our intuition that this would not be a good betweenness measure.
-
-
-
-
50
-
-
33645061674
-
-
note
-
ij - the same edge should not appear both above and below the diagonal. Alternatively, an edge linking communities i and j can be split, half-and-half, between the ij and ji elements, which has the advantage of making the matrix symmetric. Either way, there are a number of factors of 2 in the calculation that must be watched carefully, lest they escape one's attention and make mischief.
-
-
-
-
51
-
-
33645066527
-
-
note
-
In Ref. [34], the measure was normalized by dividing by its value on a network with perfect mixing, so that we always get 1 for such a network. We find, however, that doing this in the present case masks some of the useful information to be gained from the value of Q, and hence that it is better to use the unnormalized measure. In general, this unnormalized measure will not reach a value of 1, even on a perfectly mixed network.
-
-
-
-
52
-
-
33645084954
-
-
note
-
The graph is one of the test graphs from the graph drawing competition held in conjunction with the Symposium on Graph Drawing, Berkeley, California, September 18-20, 1996.
-
-
-
|