-
2
-
-
68049121093
-
Anomaly detection: A survey
-
V. Chandola, A. Banerjee, and V. Kumar, "Anomaly detection: A survey," ACM Comput. Surv., vol. 41, no. 3, pp. 15:1-15:58, 2009.
-
(2009)
ACM Comput. Surv.
, vol.41
, Issue.3
, pp. 15:1-15:58
-
-
Chandola, V.1
Banerjee, A.2
Kumar, V.3
-
3
-
-
7544223741
-
A survey of outlier detection methodologies
-
V. J. Hodge and J. Austin, "A survey of outlier detection methodologies," Artif. Intell. Rev., vol. 22, no. 2, pp. 85-126, 2004.
-
(2004)
Artif. Intell. Rev.
, vol.22
, Issue.2
, pp. 85-126
-
-
Hodge, V.J.1
Austin, J.2
-
4
-
-
63149180032
-
-
Centre Telemat. Inform. Technol. Univ. Twente, Enschede, The Netherlands, Tech. Rep. Oct
-
Y. Zhang, N. Meratnia, and P. J. M. Havinga, "Outlier detection techniques for wireless sensor networks: A survey," Centre Telemat. Inform. Technol. Univ. Twente, Enschede, The Netherlands, Tech. Rep. TR-CTIT-08-59, Oct. 2008.
-
(2008)
Outlier Detection Techniques for Wireless Sensor Networks: A Survey
-
-
Zhang, Y.1
Meratnia, N.2
Havinga, P.J.M.3
-
5
-
-
0034832620
-
Outlier detection for high dimensional data
-
May
-
C. C. Aggarwal and P. S. Yu, "Outlier detection for high dimensional data," SIGMOD Rec., vol. 30, pp. 37-46, May 2001.
-
(2001)
SIGMOD Rec.
, vol.30
, pp. 37-46
-
-
Aggarwal, C.C.1
Yu, P.S.2
-
8
-
-
70349669537
-
On abnormality detection in spuriously populated data streams
-
C. C. Aggarwal, "On abnormality detection in spuriously populated data streams," in Proc. 2005 SIAM Int. Conf. SDM, pp. 80-91.
-
Proc. 2005 SIAM Int. Conf. SDM
, pp. 80-91
-
-
Aggarwal, C.C.1
-
9
-
-
79957832478
-
Outlier detection in graph streams
-
Hannover, Germany
-
C. C. Aggarwal, Y. Zhao, and P. S. Yu, "Outlier detection in graph streams," in Proc. 27th ICDE, Hannover, Germany, 2011, pp. 399-409.
-
(2011)
Proc. 27th ICDE
, pp. 399-409
-
-
Aggarwal, C.C.1
Zhao, Y.2
Yu, P.S.3
-
10
-
-
77956197036
-
On community outliers and their efficient detection in information networks
-
J. Gao et al., "On community outliers and their efficient detection in information networks," in Proc. 16th ACM Int. Conf. KDD, 2010, pp. 813-822.
-
(2010)
Proc. 16th ACM Int. Conf. KDD
, pp. 813-822
-
-
Gao, J.1
-
11
-
-
19544370003
-
LOADED: Link-based outlier and anomaly detection in evolving data sets
-
A. Ghoting, M. E. Otey, and S. Parthasarathy, "LOADED: Link-based outlier and anomaly detection in evolving data sets," in Proc. 4th IEEE ICDM, 2004, pp. 387-390.
-
(2004)
Proc. 4th IEEE ICDM
, pp. 387-390
-
-
Ghoting, A.1
Otey, M.E.2
Parthasarathy, S.3
-
12
-
-
84866852738
-
Community trend outlier detection using soft temporal pattern mining
-
Bristol, U.K.
-
M. Gupta, J. Gao, Y. Sun, and J. Han, "Community trend outlier detection using soft temporal pattern mining," in Proc. ECML PKDD, Bristol, U.K., 2012, pp. 692-708.
-
(2012)
Proc. ECML PKDD
, pp. 692-708
-
-
Gupta, M.1
Gao, J.2
Sun, Y.3
Han, J.4
-
13
-
-
84866005624
-
Integrating community matching and outlier detection for mining evolutionary community outliers
-
Beijing, China
-
M. Gupta, J. Gao, Y. Sun, and J. Han, "Integrating community matching and outlier detection for mining evolutionary community outliers," in Proc. 18th ACM Int. Conf. KDD, Beijing, China, 2012, pp. 859-867.
-
(2012)
Proc. 18th ACM Int. Conf. KDD
, pp. 859-867
-
-
Gupta, M.1
Gao, J.2
Sun, Y.3
Han, J.4
-
15
-
-
0000033779
-
Outliers in time series
-
A. J. Fox, "Outliers in time series," J. Roy. Statist. Soc. B Methodol., vol. 34, no. 3, pp. 350-363, 1972.
-
(1972)
J. Roy. Statist. Soc. B Methodol.
, vol.34
, Issue.3
, pp. 350-363
-
-
Fox, A.J.1
-
16
-
-
40749141227
-
OutlierD: An R package for outlier detection using quantile regression on mass spectrometry data
-
H. Cho, Y. jin Kim, H. J. Jung, S.-W. Lee, and J. W. Lee, "OutlierD: An R package for outlier detection using quantile regression on mass spectrometry data," Bioinformatics, vol. 24, no. 6, pp. 882-884, 2008.
-
(2008)
Bioinformatics
, vol.24
, Issue.6
, pp. 882-884
-
-
Cho, H.1
Kim Y.Jin2
Jung, H.J.3
Lee, S.-W.4
Lee, J.W.5
-
21
-
-
67049085174
-
-
NASA Ames Res. Center, Mountain View, CA, USA, Tech. Rep
-
S. Budalakoti, A. Srivastava, R. Akella, and E. Turkov, "Anomaly detection in large sets of high-dimensional symbol sequences," NASA Ames Res. Center, Mountain View, CA, USA, Tech. Rep. NASA TM-2006-214553, 2006.
-
(2006)
Anomaly Detection in Large Sets of High-dimensional Symbol Sequences
-
-
Budalakoti, S.1
Srivastava, A.2
Akella, R.3
Turkov, E.4
-
22
-
-
58649111729
-
Anomaly detection and diagnosis algorithms for discrete symbol sequences with applications to airline safety
-
Jan
-
S. Budalakoti, A. N. Srivastava, and M. E. Otey, "Anomaly detection and diagnosis algorithms for discrete symbol sequences with applications to airline safety," IEEE Trans. Syst., Man, Cybern., C, Appl. Rev., vol. 39, no. 1, pp. 101-113, Jan. 2009.
-
(2009)
IEEE Trans. Syst., Man, Cybern., C, Appl. Rev.
, vol.39
, Issue.1
, pp. 101-113
-
-
Budalakoti, S.1
Srivastava, A.N.2
Otey, M.E.3
-
23
-
-
67049142361
-
A comparative evaluation of anomaly detection techniques for sequence data
-
Pisa, Italy
-
V. Chandola, V. Mithal, and V. Kumar, "A comparative evaluation of anomaly detection techniques for sequence data," in Proc. 2008 8th IEEE ICDM, Pisa, Italy, pp. 743-748.
-
Proc. 2008 8th IEEE ICDM
, pp. 743-748
-
-
Chandola, V.1
Mithal, V.2
Kumar, V.3
-
24
-
-
0242456797
-
ADMIT: Anomaly-based data mining for intrusions
-
New York, NY, USA
-
K. Sequeira and M. Zaki, "ADMIT: Anomaly-based data mining for intrusions," in Proc. 8th ACM Int. Conf. KDD, New York, NY, USA, 2002, pp. 386-395.
-
(2002)
Proc. 8th ACM Int. Conf. KDD
, pp. 386-395
-
-
Sequeira, K.1
Zaki, M.2
-
25
-
-
0032734299
-
A system for the analysis of jet engine vibration data
-
Jan
-
A. Nairac et al., "A system for the analysis of jet engine vibration data," Integr. Comput. Aided Eng., vol. 6, no. 1, pp. 53-66, Jan. 1999.
-
(1999)
Integr. Comput. Aided Eng.
, vol.6
, Issue.1
, pp. 53-66
-
-
Nairac, A.1
-
26
-
-
77955134387
-
Ganesha: BlackBox diagnosis of mapReduce systems
-
Jan
-
X. Pan, J. Tan, S. Kavulya, R. Gandhi, and P. Narasimhan, "Ganesha: BlackBox diagnosis of mapReduce systems," SIGMETRICS Perform. Eval. Rev., vol. 37, no. 3, pp. 8-13, Jan. 2010.
-
(2010)
SIGMETRICS Perform. Eval. Rev.
, vol.37
, Issue.3
, pp. 8-13
-
-
Pan, X.1
Tan, J.2
Kavulya, S.3
Gandhi, R.4
Narasimhan, P.5
-
27
-
-
60349127820
-
Finding anomalous periodic time series
-
Mar
-
U. Rebbapragada, P. Protopapas, C. E. Brodley, and C. Alcock, "Finding anomalous periodic time series," J. Mach. Learn., vol. 74, no. 3, pp. 281-313, Mar. 2009.
-
(2009)
J. Mach. Learn.
, vol.74
, Issue.3
, pp. 281-313
-
-
Rebbapragada, U.1
Protopapas, P.2
Brodley, C.E.3
Alcock, C.4
-
28
-
-
0038663185
-
Intrusion detection with unlabeled data using clustering
-
L. Portnoy, E. Eskin, and S. Stolfo, "Intrusion detection with unlabeled data using clustering," in Proc. ACM CSS Workshop DMSA, 2001, pp. 5-8.
-
(2001)
Proc. ACM CSS Workshop DMSA
, pp. 5-8
-
-
Portnoy, L.1
Eskin, E.2
Stolfo, S.3
-
29
-
-
84930681165
-
Context-aware time series anomaly detection for complex systems
-
M. Gupta, A. B. Sharma, H. Chen, and G. Jiang, "Context-aware time series anomaly detection for complex systems," in Proc. SDM Workshop, 2013.
-
(2013)
Proc. SDM Workshop
-
-
Gupta, M.1
Sharma, A.B.2
Chen, H.3
Jiang, G.4
-
30
-
-
0141797880
-
A geometric framework for unsupervised anomaly detection: Detecting intrusions in unlabeled data
-
E. Eskin, A. Arnold, M. Prerau, L. Portnoy, and S. Stolfo, "A geometric framework for unsupervised anomaly detection: Detecting intrusions in unlabeled data," in Proc. Appl. Data Mining Comput. Security, 2002.
-
(2002)
Proc. Appl. Data Mining Comput. Security
-
-
Eskin, E.1
Arnold, A.2
Prerau, M.3
Portnoy, L.4
Stolfo, S.5
-
31
-
-
58649116329
-
Fuzzy ROC curves for the 1 class SVM: Application to intrusion detection
-
P. Evangelista, P. Bonnisone, M. Embrechts, and B. Szymanski, "Fuzzy ROC curves for the 1 class SVM: Application to intrusion detection," in Proc. 13th Eur. Symp. Artif. Neural Netw., 2005, pp. 345-350.
-
(2005)
Proc. 13th Eur. Symp. Artif. Neural Netw.
, pp. 345-350
-
-
Evangelista, P.1
Bonnisone, P.2
Embrechts, M.3
Szymanski, B.4
-
32
-
-
0141682928
-
Time-series novelty detection using one-class support vector machines
-
Jul
-
J. Ma and S. Perkins, "Time-series novelty detection using one-class support vector machines," in Proc. IJCNN, Jul. 2003, pp. 1741-1745.
-
(2003)
Proc. IJCNN
, pp. 1741-1745
-
-
Ma, J.1
Perkins, S.2
-
34
-
-
3543106606
-
Anomaly detection using real-valued negative selection
-
Dec
-
F. A. González and D. Dasgupta, "Anomaly detection using real-valued negative selection," Genet. Program. Evolvable Mach., vol. 4, no. 4, pp. 383-403, Dec. 2003.
-
(2003)
Genet. Program. Evolvable Mach.
, vol.4
, Issue.4
, pp. 383-403
-
-
González, F.A.1
Dasgupta, D.2
-
35
-
-
0034593307
-
Characterizing the behavior of a program using multiple-length n-grams
-
C. Marceau, "Characterizing the behavior of a program using multiple-length n-grams," in Proc. 2000 NSPW, pp. 101-110.
-
Proc. 2000 NSPW
, pp. 101-110
-
-
Marceau, C.1
-
36
-
-
33947272541
-
Two state-based approaches to program-based anomaly detection
-
New Orleans, LA, USA
-
C. C. Michael and A. Ghosh, "Two state-based approaches to program-based anomaly detection," in Proc. 16th ACSAC, New Orleans, LA, USA, 2000, pp. 21-30.
-
(2000)
Proc. 16th ACSAC
, pp. 21-30
-
-
Michael, C.C.1
Ghosh, A.2
-
37
-
-
29144509475
-
Learning states and rules for detecting anomalies in time series
-
Dec
-
S. Salvador and P. Chan, "Learning states and rules for detecting anomalies in time series," Appl. Intell., vol. 23, no. 3, pp. 241-255, Dec. 2005.
-
(2005)
Appl. Intell.
, vol.23
, Issue.3
, pp. 241-255
-
-
Salvador, S.1
Chan, P.2
-
38
-
-
0003201842
-
A Markov chain model of temporal behavior for anomaly detection
-
N. Ye, "A Markov chain model of temporal behavior for anomaly detection," in Proc. 2000 IEEE SMC Inform. Assur. Security Workshop, vol. 166. pp. 171-174.
-
Proc. 2000 IEEE SMC Inform. Assur. Security Workshop
, vol.166
, pp. 171-174
-
-
Ye, N.1
-
39
-
-
0345359233
-
CLUSEQ: Efficient and effective sequence clustering
-
J. Yang and W. Wang, "CLUSEQ: Efficient and effective sequence clustering," in Proc. 19th ICDE, 2003, pp. 101-112.
-
(2003)
Proc. 19th ICDE
, pp. 101-112
-
-
Yang, J.1
Wang, W.2
-
40
-
-
33745447341
-
Mining for outliers in sequential databases
-
P. Sun, S. Chawla, and B. Arunasalam, "Mining for outliers in sequential databases," in Proc. 6th SIAM Int. Conf. SDM, 2006, pp. 94-105.
-
(2006)
Proc. 6th SIAM Int. Conf. SDM
, pp. 94-105
-
-
Sun, P.1
Chawla, S.2
Arunasalam, B.3
-
41
-
-
84964540406
-
Modeling system calls for intrusion detection with dynamic window sizes
-
E. Eskin, W. Lee, and S. Stolfo, "Modeling system calls for intrusion detection with dynamic window sizes," in Proc. DISCEX, vol. 1. 2001, pp. 165-175.
-
(2001)
Proc. DISCEX
, vol.1
, pp. 165-175
-
-
Eskin, E.1
Lee, W.2
Stolfo, S.3
-
42
-
-
0002774999
-
Learning patterns from unix process execution traces for intrusion detection
-
W. Lee, S. J. Stolfo, and P. K. Chan, "Learning patterns from unix process execution traces for intrusion detection," in Proc. AAAI Workshop AI Approaches Fraud Detection Risk Manage., 1997, pp. 50-56.
-
(1997)
Proc. AAAI Workshop AI Approaches Fraud Detection Risk Manage.
, pp. 50-56
-
-
Lee, W.1
Stolfo, S.J.2
Chan, P.K.3
-
43
-
-
33646006367
-
Efficient modeling of discrete events for anomaly detection using hidden Markov models
-
G. Florez-Larrahondo, S. M. Bridges, and R. Vaughn, "Efficient modeling of discrete events for anomaly detection using hidden Markov models," in Proc. 8th Int. Conf. ISC, 2005, pp. 506-514.
-
(2005)
Proc. 8th Int. Conf. ISC
, pp. 506-514
-
-
Florez-Larrahondo, G.1
Bridges, S.M.2
Vaughn, R.3
-
44
-
-
0036928078
-
HMMs (Hidden Markov Models) based on anomaly intrusion detection method
-
B. Gao, H.-Y. Ma, and Y.-H. Yang, "HMMs (Hidden Markov Models) based on anomaly intrusion detection method," in Proc. Int. Conf. Mach. Learn. Cybern., 2002, pp. 381-385.
-
(2002)
Proc. Int. Conf. Mach. Learn. Cybern.
, pp. 381-385
-
-
Gao, B.1
Ma, H.-Y.2
Yang, Y.-H.3
-
45
-
-
0037142572
-
Anomaly intrusion detection method based on HMM
-
Jun
-
Y. Qiao, X. Xin, Y. Bin, and S. Ge, "Anomaly intrusion detection method based on HMM," Electron. Lett., vol. 38, no. 13, pp. 663-664, Jun. 2002.
-
(2002)
Electron. Lett.
, vol.38
, Issue.13
, pp. 663-664
-
-
Qiao, Y.1
Xin, X.2
Bin, Y.3
Ge, S.4
-
46
-
-
1642464756
-
A new anomaly detection method based on hierarchical HMM
-
Aug
-
X. Zhang, P. Fan, and Z. Zhu, "A new anomaly detection method based on hierarchical HMM," in Proc. 4th Int. Conf. PDCAT, Aug. 2003, pp. 249-252.
-
(2003)
Proc. 4th Int. Conf. PDCAT
, pp. 249-252
-
-
Zhang, X.1
Fan, P.2
Zhu, Z.3
-
47
-
-
85011049882
-
Mining approximate top-k subspace anomalies in multi-dimensional time-series data
-
Vienna, Austria
-
X. Li and J. Han, "Mining approximate top-k subspace anomalies in multi-dimensional time-series data," in Proc. 33rd Int. Conf. VLDB, Vienna, Austria, 2007, pp. 447-458.
-
(2007)
Proc. 33rd Int. Conf. VLDB
, pp. 447-458
-
-
Li, X.1
Han, J.2
-
48
-
-
85084163349
-
Data mining approaches for intrusion detection
-
Berkeley, CA, USA
-
W. Lee and S. J. Stolfo, "Data mining approaches for intrusion detection," in Proc. 7th Conf. USENIX SSYM, Berkeley, CA, USA, 1998, pp. 6-20.
-
(1998)
Proc. 7th Conf. USENIX SSYM
, pp. 6-20
-
-
Lee, W.1
Stolfo, S.J.2
-
49
-
-
0142222738
-
Detection and classification of intrusions and faults using sequences of system calls
-
Dec
-
J. B. D. Cabrera, L. Lewis, and R. K. Mehra, "Detection and classification of intrusions and faults using sequences of system calls," SIGMOD Rec., vol. 30, no. 4, pp. 25-34, Dec. 2001.
-
(2001)
SIGMOD Rec.
, vol.30
, Issue.4
, pp. 25-34
-
-
Cabrera, J.B.D.1
Lewis, L.2
Mehra, R.K.3
-
50
-
-
0034505717
-
A comparison of negative and positive selection algorithms in novel pattern detection
-
Nashville, TN, USA
-
D. Dasgupta and F. Nino, "A comparison of negative and positive selection algorithms in novel pattern detection," in Proc. IEEE Int. Conf. SMC, Nashville, TN, USA, 2000, pp. 125-130.
-
(2000)
Proc. IEEE Int. Conf. SMC
, pp. 125-130
-
-
Dasgupta, D.1
Nino, F.2
-
51
-
-
85036529638
-
Intrusion detection applying machine learning to solaris audit data
-
Phoenix, AZ, USA
-
D. Endler, "Intrusion detection applying machine learning to solaris audit data," in Proc. 14th ACSAC, Phoenix, AZ, USA, 1998, pp. 268-279.
-
(1998)
Proc. 14th ACSAC
, pp. 268-279
-
-
Endler, D.1
-
52
-
-
85019678573
-
Detecting anomalous and unknown intrusions against programs
-
Phoenix, AZ, USA
-
A. K. Gosh, J. Wanken, and F. Charron, "Detecting anomalous and unknown intrusions against programs," in Proc. 14th ACSAC, Phoenix, AZ, USA, 1998, pp. 259-267.
-
(1998)
Proc. 14th ACSAC
, pp. 259-267
-
-
Gosh, A.K.1
Wanken, J.2
Charron, F.3
-
53
-
-
85042797742
-
Learning program behavior profiles for intrusion detection
-
Berkeley, CA, USA
-
A. Ghosh, A. Schwartzbard, and M. Schatz, "Learning program behavior profiles for intrusion detection," in Proc. 1st USENIX Workshop Intrusion Detection Network Monitoring, Berkeley, CA, USA, 1999, pp. 51-62.
-
(1999)
Proc. 1st USENIX Workshop Intrusion Detection Network Monitoring
, pp. 51-62
-
-
Ghosh, A.1
Schwartzbard, A.2
Schatz, M.3
-
54
-
-
85084160308
-
A study in using neural networks for anomaly and misuse detection
-
Berkeley, CA, USA
-
A. K. Ghosh and A. Schwartzbard, "A study in using neural networks for anomaly and misuse detection," in Proc. 8th Conf. USENIX SSYM, Berkeley, CA, USA, 1999, pp. 12-23.
-
(1999)
Proc. 8th Conf. USENIX SSYM
, pp. 12-23
-
-
Ghosh, A.K.1
Schwartzbard, A.2
-
55
-
-
33745906794
-
Motion-alert: Automatic anomaly detection in massive moving objects
-
San Diego, CA, USA
-
X. Li, J. Han, and S. Kim, "Motion-alert: Automatic anomaly detection in massive moving objects," in Proc. 4th IEEE Int. Conf. ISI, San Diego, CA, USA, 2006, pp. 166-177.
-
(2006)
Proc. 4th IEEE Int. Conf. ISI
, pp. 166-177
-
-
Li, X.1
Han, J.2
Kim, S.3
-
56
-
-
24944517527
-
Learning classifiers for misuse detection using a bag of system calls representation
-
Atlanta, GA, USA
-
D.-K. Kang, D. Fuller, and V. Honavar, "Learning classifiers for misuse detection using a bag of system calls representation," in Proc. 3rd IEEE Int. Conf. ISI, Atlanta, GA, USA, 2005, pp. 511-516.
-
(2005)
Proc. 3rd IEEE Int. Conf. ISI
, pp. 511-516
-
-
Kang, D.-K.1
Fuller, D.2
Honavar, V.3
-
57
-
-
33846005488
-
Sequence-similarity kernels for SVMs to detect anomalies in system calls
-
Jan
-
S. Tian, S. Mu, and C. Yin, "Sequence-similarity kernels for SVMs to detect anomalies in system calls," Neurocomputing, vol. 70, no. 4-6, pp. 859-866, Jan. 2007.
-
(2007)
Neurocomputing
, vol.70
, Issue.4-6
, pp. 859-866
-
-
Tian, S.1
Mu, S.2
Yin, C.3
-
58
-
-
33845397865
-
Native API based windows anomaly intrusion detection method using SVM
-
M. Wang, C. Zhang, and J. Yu, "Native API based windows anomaly intrusion detection method using SVM," in Proc. IEEE Int. Conf. SUTC, vol 1. 2006, pp. 514-519.
-
(2006)
Proc. IEEE Int. Conf. SUTC
, vol.1
, pp. 514-519
-
-
Wang, M.1
Zhang, C.2
Yu, J.3
-
59
-
-
70449100637
-
ROAM: Rule- and motif-based anomaly detection in massive moving object data sets
-
X. Li, J. Han, S. Kim, and H. Gonzalez, "ROAM: Rule- and motif-based anomaly detection in massive moving object data sets," in Proc. 7th SIAM Int. Conf. SDM, 2007, pp. 273-284.
-
(2007)
Proc. 7th SIAM Int. Conf. SDM
, pp. 273-284
-
-
Li, X.1
Han, J.2
Kim, S.3
Gonzalez, H.4
-
60
-
-
0002365658
-
Using program behavior profiles for intrusion detection
-
A. Ghosh et al., "Using program behavior profiles for intrusion detection," in Proc. SANS Intrusion Detection Workshop, 1999.
-
(1999)
Proc. SANS Intrusion Detection Workshop
-
-
Ghosh, A.1
-
61
-
-
0032313923
-
Intrusion detection using sequences of system calls
-
Aug
-
S. A. Hofmeyr, S. Forrest, and A. Somayaji, "Intrusion detection using sequences of system calls," J. Comput. Security, vol. 6, no. 3, pp. 151-180, Aug. 1998.
-
(1998)
J. Comput. Security
, vol.6
, Issue.3
, pp. 151-180
-
-
Hofmeyr, S.A.1
Forrest, S.2
Somayaji, A.3
-
62
-
-
0003027845
-
An application of machine learning to anomaly detection
-
T. Lane and C. E. Brodley, "An application of machine learning to anomaly detection," in Proc. 20th NISSC, 1997, pp. 366-380.
-
(1997)
Proc. 20th NISSC
, pp. 366-380
-
-
Lane, T.1
Brodley, C.E.2
-
63
-
-
0032218214
-
Temporal sequence learning and data reduction for anomaly detection
-
T. Lane and C. E. Brodley, "Temporal sequence learning and data reduction for anomaly detection," in Proc. 5th ACM Conf. CCS, 1998, pp. 150-158.
-
(1998)
Proc. 5th ACM Conf. CCS
, pp. 150-158
-
-
Lane, T.1
Brodley, C.E.2
-
64
-
-
0029716418
-
A sense of self for unix processes
-
Oakland, CA, USA
-
S. Forrest, S. A. Hofmeyr, A. Somayaji, and T. A. Longstaff, "A sense of self for unix processes," in Proc. IEEE Symp. Security Privacy, Oakland, CA, USA, 1996, pp. 120-128.
-
(1996)
Proc. IEEE Symp. Security Privacy
, pp. 120-128
-
-
Forrest, S.1
Hofmeyr, S.A.2
Somayaji, A.3
Longstaff, T.A.4
-
65
-
-
84901453196
-
Anomaly detection in multidimensional data using negative selection algorithm
-
Honolulu, HI, USA
-
D. Dasgupta and N. Majumdar, "Anomaly detection in multidimensional data using negative selection algorithm," in Proc. Congr. CEC, Honolulu, HI, USA, 2002, pp. 1039-1044.
-
(2002)
Proc. Congr. CEC
, pp. 1039-1044
-
-
Dasgupta, D.1
Majumdar, N.2
-
66
-
-
0029718285
-
An immunological approach to change detection: Algorithms, analysis and implications
-
Oakland, CA, USA, May
-
P. D'haeseleer, S. Forrest, and P. Helman, "An immunological approach to change detection: Algorithms, analysis and implications," in Proc. IEEE Symp. Security Privacy, Oakland, CA, USA, May 1996, pp. 110-119.
-
(1996)
Proc. IEEE Symp. Security Privacy
, pp. 110-119
-
-
D'Haeseleer, P.1
Forrest, S.2
Helman, P.3
-
67
-
-
0027961889
-
Self-nonself discrimination in a computer
-
Oakland, CA, USA
-
S. Forrest, A. S. Perelson, L. Allen, and R. Cherukuri, "Self-nonself discrimination in a computer," in Proc. IEEE Symp. Security Privacy, Oakland, CA, USA, 1994, pp. 202-212.
-
(1994)
Proc. IEEE Symp. Security Privacy
, pp. 202-212
-
-
Forrest, S.1
Perelson, A.S.2
Allen, L.3
Cherukuri, R.4
-
68
-
-
0141463039
-
Finding surprising patterns in a time series database in linear time and space
-
Edmonton, AB, Canada
-
E. Keogh, S. Lonardi, and B. Y.-C. Chiu, "Finding surprising patterns in a time series database in linear time and space," in Proc. 8th ACM Int. Conf. KDD, Edmonton, AB, Canada, 2002, pp. 550-556.
-
(2002)
Proc. 8th ACM Int. Conf. KDD
, pp. 550-556
-
-
Keogh, E.1
Lonardi, S.2
Chiu, B.Y.-C.3
-
69
-
-
19544382513
-
Detection of significant sets of episodes in event sequences
-
M. Atallah, R. Gwadera, and W. Szpankowski, "Detection of significant sets of episodes in event sequences," in Proc. 4th IEEE ICDM, 2004, pp. 3-10.
-
(2004)
Proc. 4th IEEE ICDM
, pp. 3-10
-
-
Atallah, M.1
Gwadera, R.2
Szpankowski, W.3
-
70
-
-
33745781710
-
A symbolic representation of time series, with implications for streaming algorithms
-
San Diego, CA, USA
-
J. Lin, E. Keogh, S. Lonardi, and B. Chiu, "A symbolic representation of time series, with implications for streaming algorithms," in Proc. 8th ACM SIGMOD Workshop Research Issues DMKD, San Diego, CA, USA, 2003, pp. 2-11.
-
(2003)
Proc. 8th ACM SIGMOD Workshop Research Issues DMKD
, pp. 2-11
-
-
Lin, J.1
Keogh, E.2
Lonardi, S.3
Chiu, B.4
-
71
-
-
34548093287
-
Experiencing SAX: A novel symbolic representation of time series
-
Oct
-
J. Lin, E. Keogh, L. Wei, and S. Lonardi, "Experiencing SAX: A novel symbolic representation of time series," Data Mining Knowl. Discov., vol. 15, no. 2, pp. 107-144, Oct. 2007.
-
(2007)
Data Mining Knowl. Discov.
, vol.15
, Issue.2
, pp. 107-144
-
-
Lin, J.1
Keogh, E.2
Wei, L.3
Lonardi, S.4
-
72
-
-
79956319997
-
Markov models for identification of significant episodes
-
R. Gwadera, M. J. Atallah, and W. Szpankowski, "Markov models for identification of significant episodes," in Proc. 5th SIAM Int. Conf. SDM, 2005, pp. 404-414.
-
(2005)
Proc. 5th SIAM Int. Conf. SDM
, pp. 404-414
-
-
Gwadera, R.1
Atallah, M.J.2
Szpankowski, W.3
-
73
-
-
23844441860
-
Reliable detection of episodes in event sequences
-
May
-
R. Gwadera, M. J. Atallah, and W. Szpankowski, "Reliable detection of episodes in event sequences," Knowl. Inform. Syst., vol. 7, no. 4, pp. 415-437, May 2005.
-
(2005)
Knowl. Inform. Syst.
, vol.7
, Issue.4
, pp. 415-437
-
-
Gwadera, R.1
Atallah, M.J.2
Szpankowski, W.3
-
74
-
-
33947361528
-
Automatic outlier detection for time series: An application to sensor data
-
Feb
-
S. Basu and M. Meckesheimer, "Automatic outlier detection for time series: An application to sensor data," Knowl. Inform. Syst., vol. 11, no. 2, pp. 137-154, Feb. 2007.
-
(2007)
Knowl. Inform. Syst.
, vol.11
, Issue.2
, pp. 137-154
-
-
Basu, S.1
Meckesheimer, M.2
-
75
-
-
77954860904
-
Anomaly detection in streaming environmental sensor data: A data-driven modeling approach
-
Sep
-
D. J. Hill and B. S. Minsker, "Anomaly detection in streaming environmental sensor data: A data-driven modeling approach," Environ. Modell. Softw., vol. 25, no. 9, pp. 1014-1022, Sep. 2010.
-
(2010)
Environ. Modell. Softw.
, vol.25
, Issue.9
, pp. 1014-1022
-
-
Hill, D.J.1
Minsker, B.S.2
-
76
-
-
70350649248
-
Online novelty detection on temporal sequences
-
New York, NY, USA
-
J. Ma and S. Perkins, "Online novelty detection on temporal sequences," in Proc. 9th ACM Int. Conf KDD, New York, NY, USA, 2003, pp. 613-618.
-
(2003)
Proc. 9th ACM Int. Conf KDD
, pp. 613-618
-
-
Ma, J.1
Perkins, S.2
-
77
-
-
0030327109
-
Modeling flat stretches, bursts, and outliers in time series using mixture transition distribution models
-
N. D. Le, R. D. Martin, and A. E. Raftery, "Modeling flat stretches, bursts, and outliers in time series using mixture transition distribution models," J. Amer. Statist. Assoc., vol. 91, no. 436, pp. 1504-1515, 1996.
-
(1996)
J. Amer. Statist. Assoc.
, vol.91
, Issue.436
, pp. 1504-1515
-
-
Le, N.D.1
Martin, R.D.2
Raftery, A.E.3
-
78
-
-
0038365156
-
Outliers in multivariate time series
-
R. S. Tsay, D. Pena, and A. E. Pankratz, "Outliers in multivariate time series," Biometrika, vol. 87, no. 4, pp. 789-804, 2000.
-
(2000)
Biometrika
, vol.87
, Issue.4
, pp. 789-804
-
-
Tsay, R.S.1
Pena, D.2
Pankratz, A.E.3
-
79
-
-
0004378138
-
Detecting possibly non-consecutive outliers in industrial time series
-
A. Luceno, "Detecting possibly non-consecutive outliers in industrial time series," J. Roy. Statist. Soc. B, Statist. Methodol., vol. 60, no. 2, pp. 295-310, 1998.
-
(1998)
J. Roy. Statist. Soc. B, Statist. Methodol.
, vol.60
, Issue.2
, pp. 295-310
-
-
Luceno, A.1
-
80
-
-
0346405510
-
Detection of outlier patches in autoregressive time series
-
A. Justel, D. Pena, and R. S. Tsay, "Detection of outlier patches in autoregressive time series," Statist. Sinica, vol. 11, no. 3, pp. 651-674, 2001.
-
(2001)
Statist. Sinica
, vol.11
, Issue.3
, pp. 651-674
-
-
Justel, A.1
Pena, D.2
Tsay, R.S.3
-
81
-
-
0035678283
-
Outlier detection in regression models with ARIMA errors using robust estimates
-
Dec
-
A. M. Bianco, M. García Ben, E. J. Martínez, and V. J. Yohai, "Outlier detection in regression models with ARIMA errors using robust estimates," J. Forecasting, vol. 20, no. 8, pp. 565-579, Dec. 2001.
-
(2001)
J. Forecasting
, vol.20
, Issue.8
, pp. 565-579
-
-
Bianco, A.M.1
García Ben, M.2
Martínez, E.J.3
Yohai, V.J.4
-
82
-
-
0024012372
-
Estimation of time series parameters in the presence of outliers
-
I. Chang, G. C. Tiao, and C. Chen, "Estimation of time series parameters in the presence of outliers," Technometrics, vol. 30, no. 2, pp. 193-204, 1988.
-
(1988)
Technometrics
, vol.30
, Issue.2
, pp. 193-204
-
-
Chang, I.1
Tiao, G.C.2
Chen, C.3
-
83
-
-
21144473917
-
Joint estimation of model parameters and outlier effects in time series
-
C. Chen and L.-M. Liu, "Joint estimation of model parameters and outlier effects in time series," J. Amer. Statist. Assoc., vol. 88, no. 421, pp. 284-297, 1993.
-
(1993)
J. Amer. Statist. Assoc.
, vol.88
, Issue.421
, pp. 284-297
-
-
Chen, C.1
Liu, L.-M.2
-
84
-
-
0000875323
-
Time series model specification in the presence of outliers
-
R. S. Tsay, "Time series model specification in the presence of outliers," J. Amer. Statist. Assoc., vol. 81, no. 393, pp. 132-141, 1986.
-
(1986)
J. Amer. Statist. Assoc.
, vol.81
, Issue.393
, pp. 132-141
-
-
Tsay, R.S.1
-
85
-
-
33745652986
-
Outlier detection in multivariate time series by projection pursuit
-
P. Galeano, D. Pena, and R. S. Tsay, "Outlier detection in multivariate time series by projection pursuit," J. Amer. Statist. Assoc., vol. 101, no. 474, pp. 654-669, 2006.
-
(2006)
J. Amer. Statist. Assoc.
, vol.101
, Issue.474
, pp. 654-669
-
-
Galeano, P.1
Pena, D.2
Tsay, R.S.3
-
86
-
-
34548718106
-
Tiresias: Black-box failure prediction in distributed systems
-
Long Beach, CA, USA
-
A. W. Williams, S. M. Pertet, and P. Narasimhan, "Tiresias: Black-box failure prediction in distributed systems," in Proc. 21st IPDPS, Long Beach, CA, USA, 2007, pp. 1-8.
-
(2007)
Proc. 21st IPDPS
, pp. 1-8
-
-
Williams, A.W.1
Pertet, S.M.2
Narasimhan, P.3
-
87
-
-
0028699882
-
Fault detection using neural networks
-
Orlando, FL, USA, Jun
-
G. Silvestri, F. Verona, M. Innocenti, and M. Napolitano, "Fault detection using neural networks," in Proc. IEEE Int. Conf. Neural Netw., Orlando, FL, USA, Jun. 1994, pp. 3796-3799.
-
(1994)
Proc. IEEE Int. Conf. Neural Netw.
, pp. 3796-3799
-
-
Silvestri, G.1
Verona, F.2
Innocenti, M.3
Napolitano, M.4
-
88
-
-
0038297552
-
Mining deviants in a time series database
-
Edinburgh, U.K.
-
H. V. Jagadish, N. Koudas, and S. Muthukrishnan, "Mining deviants in a time series database," in Proc. 25th Int. Conf. VLDB, Edinburgh, U.K., 1999, pp. 102-113.
-
(1999)
Proc. 25th Int. Conf. VLDB
, pp. 102-113
-
-
Jagadish, H.V.1
Koudas, N.2
Muthukrishnan, S.3
-
89
-
-
5444269989
-
Mining deviants in time series data streams
-
Jun
-
S. Muthukrishnan, R. Shah, and J. Vitter, "Mining deviants in time series data streams," in Proc. 16th Int. Conf. SSDBM, Jun. 2004, pp. 41-50.
-
(2004)
Proc. 16th Int. Conf. SSDBM
, pp. 41-50
-
-
Muthukrishnan, S.1
Shah, R.2
Vitter, J.3
-
90
-
-
33845271242
-
Finding the most unusual time series subsequence: Algorithms and applications
-
Dec
-
E. Keogh, J. Lin, S.-H. Lee, and H. Van Herle, "Finding the most unusual time series subsequence: Algorithms and applications," Knowl. Inform. Syst., vol. 11, no. 1, pp. 1-27, Dec. 2006.
-
(2006)
Knowl. Inform. Syst.
, vol.11
, Issue.1
, pp. 1-27
-
-
Keogh, E.1
Lin, J.2
Lee, S.-H.3
Van Herle, H.4
-
91
-
-
34548547034
-
HOT SAX: Efficiently finding the most unusual time series subsequence
-
E. Keogh, J. Lin, and A. Fu, "HOT SAX: Efficiently finding the most unusual time series subsequence," in Proc. 5th IEEE ICDM, 2005, pp. 226-233.
-
(2005)
Proc. 5th IEEE ICDM
, pp. 226-233
-
-
Keogh, E.1
Lin, J.2
Fu, A.3
-
92
-
-
84878024340
-
SAXually explicit images: Finding unusual shapes
-
Hong Kong
-
L. Wei, E. Keogh, and X. Xi, "SAXually explicit images: Finding unusual shapes," in Proc. 6th ICDM, Hong Kong, 2006, pp. 711-720.
-
(2006)
Proc. 6th ICDM
, pp. 711-720
-
-
Wei, L.1
Keogh, E.2
Xi, X.3
-
93
-
-
70449102568
-
WAT: Finding top-k discords in time series database
-
Y. Bu et al., "WAT: Finding top-k discords in time series database," in Proc. 7th SIAM Int. Conf. SDM, 2007, pp. 449-454.
-
(2007)
Proc. 7th SIAM Int. Conf. SDM
, pp. 449-454
-
-
Bu, Y.1
-
94
-
-
33749406603
-
Finding time series discords based on haar transform
-
Xi'an, China
-
A. W.-C. Fu, O. T.-W. Leung, E. Keogh, and J. Lin, "Finding time series discords based on haar transform," in Proc. 2nd Int. Conf. ADMA, Xi'an, China, 2006, pp. 31-41.
-
(2006)
Proc. 2nd Int. Conf. ADMA
, pp. 31-41
-
-
Fu, A.W.-C.1
Leung, O.T.-W.2
Keogh, E.3
Lin, J.4
-
95
-
-
27544465147
-
Approximations to magic: Finding unusual medical time series
-
J. Lin, E. Keogh, A. Fu, and H. Van Herle, "Approximations to magic: Finding unusual medical time series," in Proc. 18th IEEE Symp. CBMS, 2005, pp. 329-334.
-
(2005)
Proc. 18th IEEE Symp. CBMS
, pp. 329-334
-
-
Lin, J.1
Keogh, E.2
Fu, A.3
Van Herle, H.4
-
96
-
-
10644281769
-
Towards parameter-free data mining
-
Seattle, WA, USA
-
E. Keogh, S. Lonardi, and C. A. Ratanamahatana, "Towards parameter-free data mining," in Proc. 10th ACM Int. Conf. KDD, Seattle, WA, USA, 2004, pp. 206-215.
-
(2004)
Proc. 10th ACM Int. Conf. KDD
, pp. 206-215
-
-
Keogh, E.1
Lonardi, S.2
Ratanamahatana, C.A.3
-
97
-
-
56749152114
-
Disk aware discord discovery: Finding unusual time series in terabyte sized datasets
-
Nov
-
D. Yankov, E. Keogh, and U. Rebbapragada, "Disk aware discord discovery: Finding unusual time series in terabyte sized datasets," Knowl. Inform. Syst., vol. 17, no. 2, pp. 241-262, Nov. 2008.
-
(2008)
Knowl. Inform. Syst.
, vol.17
, Issue.2
, pp. 241-262
-
-
Yankov, D.1
Keogh, E.2
Rebbapragada, U.3
-
98
-
-
38949121665
-
Multi-scale anomaly detection algorithm based on infrequent pattern of time series
-
Apr
-
X.-Y. Chen and Y.-Y. Zhan, "Multi-scale anomaly detection algorithm based on infrequent pattern of time series," J. Comput. Appl. Math., vol. 214, no. 1, pp. 227-237, Apr. 2008.
-
(2008)
J. Comput. Appl. Math.
, vol.214
, Issue.1
, pp. 227-237
-
-
Chen, X.-Y.1
Zhan, Y.-Y.2
-
99
-
-
53949108553
-
TSA-tree: A wavelet-based approach to improve the efficiency of multi-level surprise and trend queries on time-series data
-
Berlin, Germany
-
C. Shahabi, X. Tian, and W. Zhao, "TSA-tree: A wavelet-based approach to improve the efficiency of multi-level surprise and trend queries on time-series data," in Proc. 12th Int. Conf. SSDBM, Berlin, Germany, 2000, pp. 55-68.
-
(2000)
Proc. 12th Int. Conf. SSDBM
, pp. 55-68
-
-
Shahabi, C.1
Tian, X.2
Zhao, W.3
-
100
-
-
84876028837
-
Assumption-free anomaly detection in time series
-
Berkeley, CA, USA
-
L. Wei et al., "Assumption-free anomaly detection in time series," in Proc. 17th Int. Conf. SSDBM, Berkeley, CA, USA, 2005, pp. 237-240.
-
(2005)
Proc. 17th Int. Conf. SSDBM
, pp. 237-240
-
-
Wei, L.1
-
101
-
-
77952383186
-
Efficient elastic burst detection in data streams
-
New York, NY, USA
-
Y. Zhu and D. Shasha, "Efficient elastic burst detection in data streams," in Proc. 9th ACM Int. Conf KDD, New York, NY, USA, 2003, pp. 336-345.
-
(2003)
Proc. 9th ACM Int. Conf KDD
, pp. 336-345
-
-
Zhu, Y.1
Shasha, D.2
-
102
-
-
0242540409
-
A unifying framework for detecting outliers and change points from non-stationary time series data
-
Edmonton, AB, Canada
-
K. Yamanishi and J.-I. Takeuchi, "A unifying framework for detecting outliers and change points from non-stationary time series data," in Proc. 8th ACM Int. Conf. KDD, Edmonton, AB, Canada, 2002, pp. 676-681.
-
(2002)
Proc. 8th ACM Int. Conf. KDD
, pp. 676-681
-
-
Yamanishi, K.1
Takeuchi, J.-I.2
-
103
-
-
3543125360
-
On-line unsupervised outlier detection using finite mixtures with discounting learning algorithms
-
May
-
K. Yamanishi, J.-I. Takeuchi, G. Williams, and P. Milne, "On-line unsupervised outlier detection using finite mixtures with discounting learning algorithms," Data Mining Knowl. Discov., vol. 8, no. 3, pp. 275-300, May 2004.
-
(2004)
Data Mining Knowl. Discov.
, vol.8
, Issue.3
, pp. 275-300
-
-
Yamanishi, K.1
Takeuchi, J.-I.2
Williams, G.3
Milne, P.4
-
104
-
-
0004118981
-
The NIDES statistical component description and justification
-
Menlo Park, CA, USA, Tech. Rep. Mar
-
A. V. Harold and S. Javitz, "The NIDES statistical component description and justification," SRI Int., Menlo Park, CA, USA, Tech. Rep. A010, Mar. 1994.
-
(1994)
SRI Int.
-
-
Harold, A.V.1
Javitz, S.2
-
105
-
-
77954953912
-
On clustering massive text and categorical data streams
-
C. C. Aggarwal and P. S. Yu, "On clustering massive text and categorical data streams," Knowl. Inform. Syst., vol. 24, no. 2, pp. 171-196, 2010.
-
(2010)
Knowl. Inform. Syst.
, vol.24
, Issue.2
, pp. 171-196
-
-
Aggarwal, C.C.1
Yu, P.S.2
-
106
-
-
80053029610
-
Real-time Bayesian anomaly detection for environmental sensor data
-
D. J. Hill, B. S. Minsker, and E. Amir, "Real-time Bayesian anomaly detection for environmental sensor data," in Proc. 32nd Conf. IAHR, 2007.
-
(2007)
Proc. 32nd Conf. IAHR
-
-
Hill, D.J.1
Minsker, B.S.2
Amir, E.3
-
107
-
-
0002948319
-
Algorithms for mining distance-based outliers in large datasets
-
New York, NY, USA
-
E. M. Knorr and R. T. Ng, "Algorithms for mining distance-based outliers in large datasets," in Proc. 24th Int. Conf. VLDB, New York, NY, USA, 1998, pp. 392-403.
-
(1998)
Proc. 24th Int. Conf. VLDB
, pp. 392-403
-
-
Knorr, E.M.1
Ng, R.T.2
-
108
-
-
56749094018
-
Detecting distance-based outliers in streams of data
-
Lisboa, Portugal
-
F. Angiulli and F. Fassetti, "Detecting distance-based outliers in streams of data," in Proc. 16th ACM CIKM, Lisboa, Portugal, 2007, pp. 811-820.
-
(2007)
Proc. 16th ACM CIKM
, pp. 811-820
-
-
Angiulli, F.1
Fassetti, F.2
-
109
-
-
70349083626
-
Neighbor-based pattern detection for windows over streaming data
-
D. Yang, E. A. Rundensteiner, and M. O. Ward, "Neighbor-based pattern detection for windows over streaming data," in Proc. 12th Int. Conf. EDBT, 2009, pp. 529-540.
-
(2009)
Proc. 12th Int. Conf. EDBT
, pp. 529-540
-
-
Yang, D.1
Rundensteiner, E.A.2
Ward, M.O.3
-
110
-
-
70350671491
-
Efficient anomaly monitoring over moving object trajectory streams
-
Paris, France
-
Y. Bu, L. Chen, A. W.-C. Fu, and D. Liu, "Efficient anomaly monitoring over moving object trajectory streams," in Proc. 15th ACM Int. Conf. KDD, Paris, France, 2009, pp. 159-168.
-
(2009)
Proc. 15th ACM Int. Conf. KDD
, pp. 159-168
-
-
Bu, Y.1
Chen, L.2
Fu, A.W.-C.3
Liu, D.4
-
111
-
-
78650467471
-
Attribute outlier detection over data streams
-
Tsukuba, Japan
-
H. Cao, Y. Zhou, L. Shou, and G. Chen, "Attribute outlier detection over data streams," in Proc. 15th Int. Conf. DASFAA Part II, Tsukuba, Japan, 2010, pp. 216-230.
-
(2010)
Proc. 15th Int. Conf. DASFAA Part II
, pp. 216-230
-
-
Cao, H.1
Zhou, Y.2
Shou, L.3
Chen, G.4
-
112
-
-
0039253819
-
LOF: Identifying density-based local outliers
-
New York, NY, USA
-
M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander, "LOF: Identifying density-based local outliers," in Proc. ACM SIGMOD Int. Conf. SIGMOD, New York, NY, USA, 2000, pp. 93-104.
-
(2000)
Proc. ACM SIGMOD Int. Conf. SIGMOD
, pp. 93-104
-
-
Breunig, M.M.1
Kriegel, H.-P.2
Ng, R.T.3
Sander, J.4
-
113
-
-
34548752457
-
Incremental local outlier detection for data streams
-
Honolulu, HI, USA, Apr
-
D. Pokrajac, A. Lazarevic, and L. J. Latecki, "Incremental local outlier detection for data streams," in Proc. IEEE Symp. CIDM, Honolulu, HI, USA, Apr. 2007, pp. 504-515.
-
(2007)
Proc. IEEE Symp. CIDM
, pp. 504-515
-
-
Pokrajac, D.1
Lazarevic, A.2
Latecki, L.J.3
-
114
-
-
52749087746
-
SPOT: A system for detecting projected outliers from high-dimensional data streams
-
Cancun, Mexico
-
J. Zhang, Q. Gao, and H. Wang, "SPOT: A system for detecting projected outliers from high-dimensional data streams," in Proc. 24th ICDE, Cancun, Mexico, 2008, pp. 1628-1631.
-
(2008)
Proc. 24th ICDE
, pp. 1628-1631
-
-
Zhang, J.1
Gao, Q.2
Wang, H.3
-
115
-
-
33947612062
-
In-network outlier detection in wireless sensor networks
-
J. Branch, B. Szymanski, C. Giannella, R. Wolff, and H. Kargupta, "In-network outlier detection in wireless sensor networks," in Proc. 26th IEEE ICDCS, 2006, pp. 51-81.
-
(2006)
Proc. 26th IEEE ICDCS
, pp. 51-81
-
-
Branch, J.1
Szymanski, B.2
Giannella, C.3
Wolff, R.4
Kargupta, H.5
-
116
-
-
33646553013
-
Fast distributed outlier detection in mixed-attribute data sets
-
May
-
M. E. Otey, A. Ghoting, and S. Parthasarathy, "Fast distributed outlier detection in mixed-attribute data sets," Data Mining Knowl. Discov., vol. 12, nos. 2-3, pp. 203-228, May 2006.
-
(2006)
Data Mining Knowl. Discov.
, vol.12
, Issue.2-3
, pp. 203-228
-
-
Otey, M.E.1
Ghoting, A.2
Parthasarathy, S.3
-
117
-
-
35248830261
-
Online outlier detection in sensor data using non-parametric models
-
Seoul, Korea
-
S. Subramaniam, T. Palpanas, D. Papadopoulos, V. Kalogeraki, and D. Gunopulos, "Online outlier detection in sensor data using non-parametric models," in Proc. 32nd Int. Conf. VLDB, Seoul, Korea, 2006, pp. 187-198.
-
(2006)
Proc. 32nd Int. Conf. VLDB
, pp. 187-198
-
-
Subramaniam, S.1
Palpanas, T.2
Papadopoulos, D.3
Kalogeraki, V.4
Gunopulos, D.5
-
118
-
-
14344259796
-
Distributed deviation detection in sensor networks
-
Dec
-
T. Palpanas, D. Papadopoulos, V. Kalogeraki, and D. Gunopulos, "Distributed deviation detection in sensor networks," SIGMOD Rec., vol. 32, no. 4, pp. 77-82, Dec. 2003.
-
(2003)
SIGMOD Rec.
, vol.32
, Issue.4
, pp. 77-82
-
-
Palpanas, T.1
Papadopoulos, D.2
Kalogeraki, V.3
Gunopulos, D.4
-
120
-
-
77955063100
-
Distributed spatio-temporal outlier detection in sensor networks
-
M. Jun, H. Jeong, and C. Kuo, "Distributed spatio-temporal outlier detection in sensor networks," in Proc. SPIE, 2005, pp. 760-763.
-
(2005)
Proc. SPIE
, pp. 760-763
-
-
Jun, M.1
Jeong, H.2
Kuo, C.3
-
121
-
-
62449325312
-
Detection and exploration of outlier regions in sensor data streams
-
Pisa, Italy
-
C. Franke and M. Gertz, "Detection and exploration of outlier regions in sensor data streams," in Proc. IEEE ICDMW, Pisa, Italy, 2008, pp. 375-384.
-
(2008)
Proc. IEEE ICDMW
, pp. 375-384
-
-
Franke, C.1
Gertz, M.2
-
122
-
-
70849127921
-
ORDEN: Outlier region detection and exploration in sensor networks
-
Providence, RI, USA
-
C. Franke and M. Gertz, "ORDEN: Outlier region detection and exploration in sensor networks," in Proc. ACM SIGMOD, Providence, RI, USA, 2009, pp. 1075-1078.
-
(2009)
Proc. ACM SIGMOD
, pp. 1075-1078
-
-
Franke, C.1
Gertz, M.2
-
123
-
-
85032420421
-
Spatio-temporal outlier detection in large databases
-
D. Birant and A. Kut, "Spatio-temporal outlier detection in large databases," J. Comput. Inform. Technol., vol. 14, no. 4, pp. 291-297, 2006.
-
(2006)
J. Comput. Inform. Technol.
, vol.14
, Issue.4
, pp. 291-297
-
-
Birant, D.1
Kut, A.2
-
124
-
-
85170282443
-
A density-based algorithm for discovering clusters in large spatial databases with noise
-
M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, "A density-based algorithm for discovering clusters in large spatial databases with noise," in Proc. 2nd ACM Int. Conf. KDD, 1996, pp. 226-231.
-
(1996)
Proc. 2nd ACM Int. Conf. KDD
, pp. 226-231
-
-
Ester, M.1
Kriegel, H.-P.2
Sander, J.3
Xu, X.4
-
125
-
-
33745456050
-
A hybrid approach to detect spatial-temporal outliers
-
T. Cheng and Z. Li, "A hybrid approach to detect spatial-temporal outliers," in Proc. 12th Int. Conf. Geoinformatics, 2004, pp. 173-178.
-
(2004)
Proc. 12th Int. Conf. Geoinformatics
, pp. 173-178
-
-
Cheng, T.1
Li, Z.2
-
126
-
-
33644761839
-
A multiscale approach for spatio-temporal outlier detection
-
T. Cheng and Z. Li, "A multiscale approach for spatio-temporal outlier detection," Trans. GIS, vol. 10, no. 2, pp. 253-263, 2006.
-
(2006)
Trans. GIS
, vol.10
, Issue.2
, pp. 253-263
-
-
Cheng, T.1
Li, Z.2
-
127
-
-
2442514313
-
Neighborhood based detection of anomalies in high dimensional spatio-temporal sensor datasets
-
Nicosia, Cyprus
-
N. R. Adam, V. P. Janeja, and V. Atluri, "Neighborhood based detection of anomalies in high dimensional spatio-temporal sensor datasets," in Proc. ACM SAC, Nicosia, Cyprus, 2004, pp. 576-583.
-
(2004)
Proc. ACM SAC
, pp. 576-583
-
-
Adam, N.R.1
Janeja, V.P.2
Atluri, V.3
-
128
-
-
77957892129
-
Spatio-temporal outlier detection in precipitation data
-
Las Vegas, NV, USA
-
E. Wu, W. Liu, and S. Chawla, "Spatio-temporal outlier detection in precipitation data," in Proc. 2nd Int. Conf. Sensor KDD, Las Vegas, NV, USA, 2010, pp. 115-133.
-
(2010)
Proc. 2nd Int. Conf. Sensor KDD
, pp. 115-133
-
-
Wu, E.1
Liu, W.2
Chawla, S.3
-
129
-
-
19544375966
-
Wavelet fuzzy classification for detecting and tracking region outliers in meteorological data
-
C.-T. Lu and L. R. Liang, "Wavelet fuzzy classification for detecting and tracking region outliers in meteorological data," in Proc. 12th Annu. ACM Int. Workshop GIS, 2004, pp. 258-265.
-
(2004)
Proc. 12th Annu. ACM Int. Workshop GIS
, pp. 258-265
-
-
Lu, C.-T.1
Liang, L.R.2
-
130
-
-
52649161757
-
Trajectory outlier detection: A partition-and-detect framework
-
Washington, DC, USA
-
J.-G. Lee, J. Han, and X. Li, "Trajectory outlier detection: A partition-and-detect framework," in Proc. IEEE 24th ICDE, Washington, DC, USA, 2008, pp. 140-149.
-
(2008)
Proc. IEEE 24th ICDE
, pp. 140-149
-
-
Lee, J.-G.1
Han, J.2
Li, X.3
-
131
-
-
78651325235
-
Top-eye: Top-k evolving trajectory outlier detection
-
Toronto, ON, Canada
-
Y. Ge et al., "Top-eye: Top-k evolving trajectory outlier detection," in Proc. 19th ACM Int. CIKM, Toronto, ON, Canada, 2010, pp. 1733-1736.
-
(2010)
Proc. 19th ACM Int. CIKM
, pp. 1733-1736
-
-
Ge, Y.1
-
132
-
-
67649653756
-
Temporal outlier detection in vehicle traffic data
-
Shanghai, China
-
X. Li, Z. Li, J. Han, and J.-G. Lee, "Temporal outlier detection in vehicle traffic data," in Proc. 2009 IEEE ICDE, Shanghai, China, pp. 1319-1322.
-
Proc. 2009 IEEE ICDE
, pp. 1319-1322
-
-
Li, X.1
Li, Z.2
Han, J.3
Lee, J.-G.4
-
133
-
-
84874254173
-
Anomaly detection in time series of graphs using ARMA processes
-
B. Pincombe, "Anomaly detection in time series of graphs using ARMA processes," ASOR Bull., vol. 24, no. 4, pp. 2-10, 2005.
-
(2005)
ASOR Bull.
, vol.24
, Issue.4
, pp. 2-10
-
-
Pincombe, B.1
-
134
-
-
57349168426
-
Web graph similarity for anomaly detection
-
P. Papadimitriou, A. Dasdan, and H. Garcia-Molina, "Web graph similarity for anomaly detection," in Proc. 17th Int. Conf. WWW, 2008, pp. 1167-1168.
-
(2008)
Proc. 17th Int. Conf. WWW
, pp. 1167-1168
-
-
Papadimitriou, P.1
Dasdan, A.2
Garcia-Molina, H.3
-
135
-
-
63449131883
-
Detection of abnormal change in dynamic networks
-
Adelaide, SA, Australia
-
P. Shoubridge, M. Kraetzl, and D. Ray, "Detection of abnormal change in dynamic networks," in Proc. Int. Conf. IDC, Adelaide, SA, Australia, 1999, pp. 557-562.
-
(1999)
Proc. Int. Conf. IDC
, pp. 557-562
-
-
Shoubridge, P.1
Kraetzl, M.2
Ray, D.3
-
136
-
-
84870572500
-
Investigation of graph edit distance cost functions for detection of network anomalies
-
Oct
-
K. M. Kapsabelis, P. J. Dickinson, and K. Dogancay, "Investigation of graph edit distance cost functions for detection of network anomalies," in Proc. 13th Biennial CTAC, vol. 48. Oct. 2007, pp. C436-C449.
-
(2007)
Proc. 13th Biennial CTAC
, vol.48
, pp. C436-C449
-
-
Kapsabelis, K.M.1
Dickinson, P.J.2
Dogancay, K.3
-
137
-
-
33746459352
-
Median graphs and anomalous change detection in communication networks
-
Adelaide, SA, Australia, Feb
-
P. Dickinson, H. Bunke, A. Dadej, and M. Kraetzl, "Median graphs and anomalous change detection in communication networks," in Proc. Int. Conf. Inform., Decis. Control, Adelaide, SA, Australia, Feb. 2002, pp. 59-64.
-
(2002)
Proc. Int. Conf. Inform., Decis. Control
, pp. 59-64
-
-
Dickinson, P.1
Bunke, H.2
Dadej, A.3
Kraetzl, M.4
-
138
-
-
33750904572
-
Graph diameter as a pseudo-metric for change detection in dynamic networks
-
Jun
-
M. Gaston, M. Kraetzl, and W. Wallis, "Graph diameter as a pseudo-metric for change detection in dynamic networks," Austr. J. Combinatorics, vol. 35, pp. 299-312, Jun. 2006.
-
(2006)
Austr. J. Combinatorics
, vol.35
, pp. 299-312
-
-
Gaston, M.1
Kraetzl, M.2
Wallis, W.3
-
139
-
-
84901687582
-
Novel approaches in modelling dynamics of networked surveillance environment
-
Cairns, QLD, Australia
-
P. Dickinson and M. Kraetzl, "Novel approaches in modelling dynamics of networked surveillance environment," in Proc. 6th Int. Conf. Inform. Fusion, vol. 1. Cairns, QLD, Australia, 2003, pp. 302-309.
-
(2003)
Proc. 6th Int. Conf. Inform. Fusion
, vol.1
, pp. 302-309
-
-
Dickinson, P.1
Kraetzl, M.2
-
140
-
-
79952440288
-
Web graph similarity for anomaly detection
-
P. Papadimitriou, A. Dasdan, and H. Garcia-Molina, "Web graph similarity for anomaly detection," J. Internet Serv. Appl., vol. 1, no. 1, pp. 19-30, 2010.
-
(2010)
J. Internet Serv. Appl.
, vol.1
, Issue.1
, pp. 19-30
-
-
Papadimitriou, P.1
Dasdan, A.2
Garcia-Molina, H.3
-
141
-
-
80052707774
-
Finding top-k shortest path distance changes in an evolutionary network
-
Minneapolis, MN, USA
-
M. Gupta, C. C. Aggarwal, and J. Han, "Finding top-k shortest path distance changes in an evolutionary network," in Proc. 12th Int. Conf. Adv. SSTD, Minneapolis, MN, USA, 2011, pp. 130-148.
-
(2011)
Proc. 12th Int. Conf. Adv. SSTD
, pp. 130-148
-
-
Gupta, M.1
Aggarwal, C.C.2
Han, J.3
-
142
-
-
12244300520
-
Eigenspace-based anomaly detection in computer systems
-
Seattle, WA, USA
-
T. Idé and H. Kashima, "Eigenspace-based anomaly detection in computer systems," in Proc. 10th ACM Int. Conf. KDD, Seattle, WA, USA, 2004, pp. 440-449.
-
(2004)
Proc. 10th ACM Int. Conf. KDD
, pp. 440-449
-
-
Idé, T.1
Kashima, H.2
-
143
-
-
84873619448
-
Event detection in time series of mobile communication graphs
-
L. Akoglu and C. Faloutsos, "Event detection in time series of mobile communication graphs," in Proc. Army Science Conf., 2010.
-
(2010)
Proc. Army Science Conf.
-
-
Akoglu, L.1
Faloutsos, C.2
-
144
-
-
80052731815
-
Evolutionary clustering and analysis of bibliographic networks
-
M. Gupta, C. C. Aggarwal, J. Han, and Y. Sun, "Evolutionary clustering and analysis of bibliographic networks," in Proc. 2011 Int. Conf. ASONAM, pp. 63-70.
-
Proc. 2011 Int. Conf. ASONAM
, pp. 63-70
-
-
Gupta, M.1
Aggarwal, C.C.2
Han, J.3
Sun, Y.4
-
145
-
-
84886529024
-
Community distribution outlier detection in heterogeneous information networks
-
Prague, Czech Republic
-
M. Gupta, J. Gao, and J. Han, "Community distribution outlier detection in heterogeneous information networks," in Proc. 2013 ECML PKDD, Prague, Czech Republic, pp. 557-573.
-
Proc. 2013 ECML PKDD
, pp. 557-573
-
-
Gupta, M.1
Gao, J.2
Han, J.3
-
146
-
-
33745713822
-
Detecting spatio-temporal outliers in climate dataset: A method study
-
Y. Sun et al., "Detecting spatio-temporal outliers in climate dataset: A method study," in Proc. 2005 IEEE IGARSS, pp. 760-763.
-
Proc. 2005 IEEE IGARSS
, pp. 760-763
-
-
Sun, Y.1
-
147
-
-
0027449735
-
An analysis of Australian seasonal rainfall anomalies: 1950-1987
-
W. Drosdowsky, "An analysis of Australian seasonal rainfall anomalies: 1950-1987," Int. J. Climatol., vol. 13, no. 1, pp. 1-30, 1993.
-
(1993)
Int. J. Climatol.
, vol.13
, Issue.1
, pp. 1-30
-
-
Drosdowsky, W.1
-
148
-
-
33645029606
-
On the use of principal component analysis (PCA) for evaluating interannual vegetation anomalies from SPOT/VEGETATION NDVI temporal series
-
R. Lasaponara, "On the use of principal component analysis (PCA) for evaluating interannual vegetation anomalies from SPOT/VEGETATION NDVI temporal series," Ecol. Modell., vol. 194, no. 4, pp. 429-434, 2006.
-
(2006)
Ecol. Modell.
, vol.194
, Issue.4
, pp. 429-434
-
-
Lasaponara, R.1
-
149
-
-
0012021893
-
Novelty detection in time series data using ideas from immunology
-
Reno, NV, USA
-
D. Dasgupta and S. Forrest, "Novelty detection in time series data using ideas from immunology," in Proc. 5th Int. Conf. Intelligent Systems, Reno, NV, USA, 1996.
-
(1996)
Proc. 5th Int. Conf. Intelligent Systems
-
-
Dasgupta, D.1
Forrest, S.2
-
150
-
-
38549142402
-
Anomaly detection using temporal data mining in a smart home environment
-
V. Jakkula and D. J. Cook, "Anomaly detection using temporal data mining in a smart home environment," Methods Inform. Med., vol. 47, no. 1, pp. 70-75, 2008.
-
(2008)
Methods Inform. Med.
, vol.47
, Issue.1
, pp. 70-75
-
-
Jakkula, V.1
Cook, D.J.2
-
151
-
-
84880174811
-
Detecting intrusions using system calls: Alternative data models
-
Oakland, CA, USA
-
C. Warrender, S. Forrest, and B. Pearlmutter, "Detecting intrusions using system calls: Alternative data models," in Proc. 1999 IEEE Symp. Security Privacy, Oakland, CA, USA, pp. 133-145.
-
Proc. 1999 IEEE Symp. Security Privacy
, pp. 133-145
-
-
Warrender, C.1
Forrest, S.2
Pearlmutter, B.3
-
152
-
-
14944367267
-
Characterization of network-wide anomalies in traffic flows
-
Taormina, Italy
-
A. Lakhina, M. Crovella, and C. Diot, "Characterization of network-wide anomalies in traffic flows," in Proc. 4th ACM SIGCOMM IMC, Taormina, Italy, 2004, pp. 201-206.
-
(2004)
Proc. 4th ACM SIGCOMM IMC
, pp. 201-206
-
-
Lakhina, A.1
Crovella, M.2
Diot, C.3
-
153
-
-
33845564157
-
Tracking probabilistic correlation of monitoring data for fault detection in complex systems
-
Philadelphia, PA, USA
-
Z. Guo, G. Jiang, H. Chen, and K. Yoshihira, "Tracking probabilistic correlation of monitoring data for fault detection in complex systems," in Proc. ICDSN, Philadelphia, PA, USA, 2006, pp. 259-268.
-
(2006)
Proc. ICDSN
, pp. 259-268
-
-
Guo, Z.1
Jiang, G.2
Chen, H.3
Yoshihira, K.4
-
154
-
-
33751532154
-
Modeling and tracking of transaction flow dynamics for fault detection in complex systems
-
Oct
-
G. Jiang, H. Chen, and K. Yoshihira, "Modeling and tracking of transaction flow dynamics for fault detection in complex systems," IEEE Trans. Depend. Secur. Comput., vol. 3, no. 4, pp. 312-326, Oct. 2006.
-
(2006)
IEEE Trans. Depend. Secur. Comput.
, vol.3
, Issue.4
, pp. 312-326
-
-
Jiang, G.1
Chen, H.2
Yoshihira, K.3
-
155
-
-
84863771926
-
On the spatiotemporal burstiness of terms
-
T. Lappas, M. R. Vieira, D. Gunopulos, and V. J. Tsotras, "On the spatiotemporal burstiness of terms," Proc. VLDB, vol. 5, no. 9, pp. 836-847, 2012.
-
(2012)
Proc. VLDB
, vol.5
, Issue.9
, pp. 836-847
-
-
Lappas, T.1
Vieira, M.R.2
Gunopulos, D.3
Tsotras, V.J.4
-
156
-
-
81455159027
-
Identifying, attributing and describing spatial bursts
-
M. Mathioudakis, N. Bansal, and N. Koudas, "Identifying, attributing and describing spatial bursts," Proc. VLDB, vol. 3, no. 1, pp. 1091-1102, 2010.
-
(2010)
Proc. VLDB
, vol.3
, Issue.1
, pp. 1091-1102
-
-
Mathioudakis, M.1
Bansal, N.2
Koudas, N.3
-
157
-
-
31044446956
-
Scan statistics on Enron graphs
-
Oct
-
C. E. Priebe, J. M. Conroy, D. J. Marchette, and Y. Park, "Scan statistics on Enron graphs," Comput. Math. Org. Theory, vol. 11, no. 3, pp. 229-247, Oct. 2005.
-
(2005)
Comput. Math. Org. Theory
, vol.11
, Issue.3
, pp. 229-247
-
-
Priebe, C.E.1
Conroy, J.M.2
Marchette, D.J.3
Park, Y.4
-
158
-
-
85026928688
-
Outlier detection for temporal data
-
M. Gupta, J. Gao, C. C. Aggarwal, and J. Han, "Outlier detection for temporal data," in Proc. 13th SIAM Int. Conf. SDM, 2013.
-
(2013)
Proc. 13th SIAM Int. Conf. SDM
-
-
Gupta, M.1
Gao, J.2
Aggarwal, C.C.3
Han, J.4
-
159
-
-
84859722266
-
Anomaly detection for discrete sequences: A survey
-
May
-
V. Chandola, A. Banerjee, and V. Kumar, "Anomaly detection for discrete sequences: A survey," IEEE Trans. Knowl. Data Eng., vol. 24, no. 5, pp. 823-839, May 2012.
-
(2012)
IEEE Trans. Knowl. Data Eng.
, vol.24
, Issue.5
, pp. 823-839
-
-
Chandola, V.1
Banerjee, A.2
Kumar, V.3
-
160
-
-
0142063407
-
Novelty detection: A Review - Part 1: Statistical approaches
-
M. Markou and S. Singh, "Novelty detection: A Review - Part 1: Statistical approaches," Signal Process., vol. 83, no. 12, pp. 2481-2497, 2003.
-
(2003)
Signal Process.
, vol.83
, Issue.12
, pp. 2481-2497
-
-
Markou, M.1
Singh, S.2
-
161
-
-
0142126712
-
Novelty detection: A review - Part 2: Neural network based approaches
-
M. Markou and S. Singh, "Novelty detection: A review - Part 2: Neural network based approaches," Signal Process., vol. 83, no. 12, pp. 2499-2521, 2003.
-
(2003)
Signal Process.
, vol.83
, Issue.12
, pp. 2499-2521
-
-
Markou, M.1
Singh, S.2
-
162
-
-
84894663494
-
On anomalous hotspot discovery in graph streams
-
Dallas, TX, USA
-
W. Yu, C. C. Aggarwal, S. Ma, and H. Wang, "On anomalous hotspot discovery in graph streams," in Proc. 2013 IEEE ICDM, Dallas, TX, USA.
-
Proc. 2013 IEEE ICDM
-
-
Yu, W.1
Aggarwal, C.C.2
Ma, S.3
Wang, H.4
|