메뉴 건너뛰기




Volumn 26, Issue 9, 2014, Pages 2250-2267

Outlier Detection for Temporal Data: A Survey

Author keywords

Data mining; Mining methods and algorithms

Indexed keywords

COMPUTER HARDWARE; DATA HANDLING; HARDWARE; INFORMATION MANAGEMENT; RECONFIGURABLE HARDWARE; SOFTWARE ENGINEERING; STATISTICS; SURVEYS; TIME SERIES;

EID: 84959505571     PISSN: 10414347     EISSN: None     Source Type: Journal    
DOI: 10.1109/TKDE.2013.184     Document Type: Review
Times cited : (837)

References (162)
  • 2
    • 68049121093 scopus 로고    scopus 로고
    • Anomaly detection: A survey
    • V. Chandola, A. Banerjee, and V. Kumar, "Anomaly detection: A survey," ACM Comput. Surv., vol. 41, no. 3, pp. 15:1-15:58, 2009.
    • (2009) ACM Comput. Surv. , vol.41 , Issue.3 , pp. 15:1-15:58
    • Chandola, V.1    Banerjee, A.2    Kumar, V.3
  • 3
    • 7544223741 scopus 로고    scopus 로고
    • A survey of outlier detection methodologies
    • V. J. Hodge and J. Austin, "A survey of outlier detection methodologies," Artif. Intell. Rev., vol. 22, no. 2, pp. 85-126, 2004.
    • (2004) Artif. Intell. Rev. , vol.22 , Issue.2 , pp. 85-126
    • Hodge, V.J.1    Austin, J.2
  • 5
    • 0034832620 scopus 로고    scopus 로고
    • Outlier detection for high dimensional data
    • May
    • C. C. Aggarwal and P. S. Yu, "Outlier detection for high dimensional data," SIGMOD Rec., vol. 30, pp. 37-46, May 2001.
    • (2001) SIGMOD Rec. , vol.30 , pp. 37-46
    • Aggarwal, C.C.1    Yu, P.S.2
  • 8
    • 70349669537 scopus 로고    scopus 로고
    • On abnormality detection in spuriously populated data streams
    • C. C. Aggarwal, "On abnormality detection in spuriously populated data streams," in Proc. 2005 SIAM Int. Conf. SDM, pp. 80-91.
    • Proc. 2005 SIAM Int. Conf. SDM , pp. 80-91
    • Aggarwal, C.C.1
  • 9
    • 79957832478 scopus 로고    scopus 로고
    • Outlier detection in graph streams
    • Hannover, Germany
    • C. C. Aggarwal, Y. Zhao, and P. S. Yu, "Outlier detection in graph streams," in Proc. 27th ICDE, Hannover, Germany, 2011, pp. 399-409.
    • (2011) Proc. 27th ICDE , pp. 399-409
    • Aggarwal, C.C.1    Zhao, Y.2    Yu, P.S.3
  • 10
    • 77956197036 scopus 로고    scopus 로고
    • On community outliers and their efficient detection in information networks
    • J. Gao et al., "On community outliers and their efficient detection in information networks," in Proc. 16th ACM Int. Conf. KDD, 2010, pp. 813-822.
    • (2010) Proc. 16th ACM Int. Conf. KDD , pp. 813-822
    • Gao, J.1
  • 11
    • 19544370003 scopus 로고    scopus 로고
    • LOADED: Link-based outlier and anomaly detection in evolving data sets
    • A. Ghoting, M. E. Otey, and S. Parthasarathy, "LOADED: Link-based outlier and anomaly detection in evolving data sets," in Proc. 4th IEEE ICDM, 2004, pp. 387-390.
    • (2004) Proc. 4th IEEE ICDM , pp. 387-390
    • Ghoting, A.1    Otey, M.E.2    Parthasarathy, S.3
  • 12
    • 84866852738 scopus 로고    scopus 로고
    • Community trend outlier detection using soft temporal pattern mining
    • Bristol, U.K.
    • M. Gupta, J. Gao, Y. Sun, and J. Han, "Community trend outlier detection using soft temporal pattern mining," in Proc. ECML PKDD, Bristol, U.K., 2012, pp. 692-708.
    • (2012) Proc. ECML PKDD , pp. 692-708
    • Gupta, M.1    Gao, J.2    Sun, Y.3    Han, J.4
  • 13
    • 84866005624 scopus 로고    scopus 로고
    • Integrating community matching and outlier detection for mining evolutionary community outliers
    • Beijing, China
    • M. Gupta, J. Gao, Y. Sun, and J. Han, "Integrating community matching and outlier detection for mining evolutionary community outliers," in Proc. 18th ACM Int. Conf. KDD, Beijing, China, 2012, pp. 859-867.
    • (2012) Proc. 18th ACM Int. Conf. KDD , pp. 859-867
    • Gupta, M.1    Gao, J.2    Sun, Y.3    Han, J.4
  • 15
    • 0000033779 scopus 로고
    • Outliers in time series
    • A. J. Fox, "Outliers in time series," J. Roy. Statist. Soc. B Methodol., vol. 34, no. 3, pp. 350-363, 1972.
    • (1972) J. Roy. Statist. Soc. B Methodol. , vol.34 , Issue.3 , pp. 350-363
    • Fox, A.J.1
  • 16
    • 40749141227 scopus 로고    scopus 로고
    • OutlierD: An R package for outlier detection using quantile regression on mass spectrometry data
    • H. Cho, Y. jin Kim, H. J. Jung, S.-W. Lee, and J. W. Lee, "OutlierD: An R package for outlier detection using quantile regression on mass spectrometry data," Bioinformatics, vol. 24, no. 6, pp. 882-884, 2008.
    • (2008) Bioinformatics , vol.24 , Issue.6 , pp. 882-884
    • Cho, H.1    Kim Y.Jin2    Jung, H.J.3    Lee, S.-W.4    Lee, J.W.5
  • 22
    • 58649111729 scopus 로고    scopus 로고
    • Anomaly detection and diagnosis algorithms for discrete symbol sequences with applications to airline safety
    • Jan
    • S. Budalakoti, A. N. Srivastava, and M. E. Otey, "Anomaly detection and diagnosis algorithms for discrete symbol sequences with applications to airline safety," IEEE Trans. Syst., Man, Cybern., C, Appl. Rev., vol. 39, no. 1, pp. 101-113, Jan. 2009.
    • (2009) IEEE Trans. Syst., Man, Cybern., C, Appl. Rev. , vol.39 , Issue.1 , pp. 101-113
    • Budalakoti, S.1    Srivastava, A.N.2    Otey, M.E.3
  • 23
    • 67049142361 scopus 로고    scopus 로고
    • A comparative evaluation of anomaly detection techniques for sequence data
    • Pisa, Italy
    • V. Chandola, V. Mithal, and V. Kumar, "A comparative evaluation of anomaly detection techniques for sequence data," in Proc. 2008 8th IEEE ICDM, Pisa, Italy, pp. 743-748.
    • Proc. 2008 8th IEEE ICDM , pp. 743-748
    • Chandola, V.1    Mithal, V.2    Kumar, V.3
  • 24
    • 0242456797 scopus 로고    scopus 로고
    • ADMIT: Anomaly-based data mining for intrusions
    • New York, NY, USA
    • K. Sequeira and M. Zaki, "ADMIT: Anomaly-based data mining for intrusions," in Proc. 8th ACM Int. Conf. KDD, New York, NY, USA, 2002, pp. 386-395.
    • (2002) Proc. 8th ACM Int. Conf. KDD , pp. 386-395
    • Sequeira, K.1    Zaki, M.2
  • 25
    • 0032734299 scopus 로고    scopus 로고
    • A system for the analysis of jet engine vibration data
    • Jan
    • A. Nairac et al., "A system for the analysis of jet engine vibration data," Integr. Comput. Aided Eng., vol. 6, no. 1, pp. 53-66, Jan. 1999.
    • (1999) Integr. Comput. Aided Eng. , vol.6 , Issue.1 , pp. 53-66
    • Nairac, A.1
  • 28
    • 0038663185 scopus 로고    scopus 로고
    • Intrusion detection with unlabeled data using clustering
    • L. Portnoy, E. Eskin, and S. Stolfo, "Intrusion detection with unlabeled data using clustering," in Proc. ACM CSS Workshop DMSA, 2001, pp. 5-8.
    • (2001) Proc. ACM CSS Workshop DMSA , pp. 5-8
    • Portnoy, L.1    Eskin, E.2    Stolfo, S.3
  • 29
    • 84930681165 scopus 로고    scopus 로고
    • Context-aware time series anomaly detection for complex systems
    • M. Gupta, A. B. Sharma, H. Chen, and G. Jiang, "Context-aware time series anomaly detection for complex systems," in Proc. SDM Workshop, 2013.
    • (2013) Proc. SDM Workshop
    • Gupta, M.1    Sharma, A.B.2    Chen, H.3    Jiang, G.4
  • 32
    • 0141682928 scopus 로고    scopus 로고
    • Time-series novelty detection using one-class support vector machines
    • Jul
    • J. Ma and S. Perkins, "Time-series novelty detection using one-class support vector machines," in Proc. IJCNN, Jul. 2003, pp. 1741-1745.
    • (2003) Proc. IJCNN , pp. 1741-1745
    • Ma, J.1    Perkins, S.2
  • 33
  • 34
    • 3543106606 scopus 로고    scopus 로고
    • Anomaly detection using real-valued negative selection
    • Dec
    • F. A. González and D. Dasgupta, "Anomaly detection using real-valued negative selection," Genet. Program. Evolvable Mach., vol. 4, no. 4, pp. 383-403, Dec. 2003.
    • (2003) Genet. Program. Evolvable Mach. , vol.4 , Issue.4 , pp. 383-403
    • González, F.A.1    Dasgupta, D.2
  • 35
    • 0034593307 scopus 로고    scopus 로고
    • Characterizing the behavior of a program using multiple-length n-grams
    • C. Marceau, "Characterizing the behavior of a program using multiple-length n-grams," in Proc. 2000 NSPW, pp. 101-110.
    • Proc. 2000 NSPW , pp. 101-110
    • Marceau, C.1
  • 36
    • 33947272541 scopus 로고    scopus 로고
    • Two state-based approaches to program-based anomaly detection
    • New Orleans, LA, USA
    • C. C. Michael and A. Ghosh, "Two state-based approaches to program-based anomaly detection," in Proc. 16th ACSAC, New Orleans, LA, USA, 2000, pp. 21-30.
    • (2000) Proc. 16th ACSAC , pp. 21-30
    • Michael, C.C.1    Ghosh, A.2
  • 37
    • 29144509475 scopus 로고    scopus 로고
    • Learning states and rules for detecting anomalies in time series
    • Dec
    • S. Salvador and P. Chan, "Learning states and rules for detecting anomalies in time series," Appl. Intell., vol. 23, no. 3, pp. 241-255, Dec. 2005.
    • (2005) Appl. Intell. , vol.23 , Issue.3 , pp. 241-255
    • Salvador, S.1    Chan, P.2
  • 38
    • 0003201842 scopus 로고    scopus 로고
    • A Markov chain model of temporal behavior for anomaly detection
    • N. Ye, "A Markov chain model of temporal behavior for anomaly detection," in Proc. 2000 IEEE SMC Inform. Assur. Security Workshop, vol. 166. pp. 171-174.
    • Proc. 2000 IEEE SMC Inform. Assur. Security Workshop , vol.166 , pp. 171-174
    • Ye, N.1
  • 39
    • 0345359233 scopus 로고    scopus 로고
    • CLUSEQ: Efficient and effective sequence clustering
    • J. Yang and W. Wang, "CLUSEQ: Efficient and effective sequence clustering," in Proc. 19th ICDE, 2003, pp. 101-112.
    • (2003) Proc. 19th ICDE , pp. 101-112
    • Yang, J.1    Wang, W.2
  • 41
    • 84964540406 scopus 로고    scopus 로고
    • Modeling system calls for intrusion detection with dynamic window sizes
    • E. Eskin, W. Lee, and S. Stolfo, "Modeling system calls for intrusion detection with dynamic window sizes," in Proc. DISCEX, vol. 1. 2001, pp. 165-175.
    • (2001) Proc. DISCEX , vol.1 , pp. 165-175
    • Eskin, E.1    Lee, W.2    Stolfo, S.3
  • 43
    • 33646006367 scopus 로고    scopus 로고
    • Efficient modeling of discrete events for anomaly detection using hidden Markov models
    • G. Florez-Larrahondo, S. M. Bridges, and R. Vaughn, "Efficient modeling of discrete events for anomaly detection using hidden Markov models," in Proc. 8th Int. Conf. ISC, 2005, pp. 506-514.
    • (2005) Proc. 8th Int. Conf. ISC , pp. 506-514
    • Florez-Larrahondo, G.1    Bridges, S.M.2    Vaughn, R.3
  • 44
    • 0036928078 scopus 로고    scopus 로고
    • HMMs (Hidden Markov Models) based on anomaly intrusion detection method
    • B. Gao, H.-Y. Ma, and Y.-H. Yang, "HMMs (Hidden Markov Models) based on anomaly intrusion detection method," in Proc. Int. Conf. Mach. Learn. Cybern., 2002, pp. 381-385.
    • (2002) Proc. Int. Conf. Mach. Learn. Cybern. , pp. 381-385
    • Gao, B.1    Ma, H.-Y.2    Yang, Y.-H.3
  • 45
    • 0037142572 scopus 로고    scopus 로고
    • Anomaly intrusion detection method based on HMM
    • Jun
    • Y. Qiao, X. Xin, Y. Bin, and S. Ge, "Anomaly intrusion detection method based on HMM," Electron. Lett., vol. 38, no. 13, pp. 663-664, Jun. 2002.
    • (2002) Electron. Lett. , vol.38 , Issue.13 , pp. 663-664
    • Qiao, Y.1    Xin, X.2    Bin, Y.3    Ge, S.4
  • 46
    • 1642464756 scopus 로고    scopus 로고
    • A new anomaly detection method based on hierarchical HMM
    • Aug
    • X. Zhang, P. Fan, and Z. Zhu, "A new anomaly detection method based on hierarchical HMM," in Proc. 4th Int. Conf. PDCAT, Aug. 2003, pp. 249-252.
    • (2003) Proc. 4th Int. Conf. PDCAT , pp. 249-252
    • Zhang, X.1    Fan, P.2    Zhu, Z.3
  • 47
    • 85011049882 scopus 로고    scopus 로고
    • Mining approximate top-k subspace anomalies in multi-dimensional time-series data
    • Vienna, Austria
    • X. Li and J. Han, "Mining approximate top-k subspace anomalies in multi-dimensional time-series data," in Proc. 33rd Int. Conf. VLDB, Vienna, Austria, 2007, pp. 447-458.
    • (2007) Proc. 33rd Int. Conf. VLDB , pp. 447-458
    • Li, X.1    Han, J.2
  • 48
    • 85084163349 scopus 로고    scopus 로고
    • Data mining approaches for intrusion detection
    • Berkeley, CA, USA
    • W. Lee and S. J. Stolfo, "Data mining approaches for intrusion detection," in Proc. 7th Conf. USENIX SSYM, Berkeley, CA, USA, 1998, pp. 6-20.
    • (1998) Proc. 7th Conf. USENIX SSYM , pp. 6-20
    • Lee, W.1    Stolfo, S.J.2
  • 49
    • 0142222738 scopus 로고    scopus 로고
    • Detection and classification of intrusions and faults using sequences of system calls
    • Dec
    • J. B. D. Cabrera, L. Lewis, and R. K. Mehra, "Detection and classification of intrusions and faults using sequences of system calls," SIGMOD Rec., vol. 30, no. 4, pp. 25-34, Dec. 2001.
    • (2001) SIGMOD Rec. , vol.30 , Issue.4 , pp. 25-34
    • Cabrera, J.B.D.1    Lewis, L.2    Mehra, R.K.3
  • 50
    • 0034505717 scopus 로고    scopus 로고
    • A comparison of negative and positive selection algorithms in novel pattern detection
    • Nashville, TN, USA
    • D. Dasgupta and F. Nino, "A comparison of negative and positive selection algorithms in novel pattern detection," in Proc. IEEE Int. Conf. SMC, Nashville, TN, USA, 2000, pp. 125-130.
    • (2000) Proc. IEEE Int. Conf. SMC , pp. 125-130
    • Dasgupta, D.1    Nino, F.2
  • 51
    • 85036529638 scopus 로고    scopus 로고
    • Intrusion detection applying machine learning to solaris audit data
    • Phoenix, AZ, USA
    • D. Endler, "Intrusion detection applying machine learning to solaris audit data," in Proc. 14th ACSAC, Phoenix, AZ, USA, 1998, pp. 268-279.
    • (1998) Proc. 14th ACSAC , pp. 268-279
    • Endler, D.1
  • 52
    • 85019678573 scopus 로고    scopus 로고
    • Detecting anomalous and unknown intrusions against programs
    • Phoenix, AZ, USA
    • A. K. Gosh, J. Wanken, and F. Charron, "Detecting anomalous and unknown intrusions against programs," in Proc. 14th ACSAC, Phoenix, AZ, USA, 1998, pp. 259-267.
    • (1998) Proc. 14th ACSAC , pp. 259-267
    • Gosh, A.K.1    Wanken, J.2    Charron, F.3
  • 54
    • 85084160308 scopus 로고    scopus 로고
    • A study in using neural networks for anomaly and misuse detection
    • Berkeley, CA, USA
    • A. K. Ghosh and A. Schwartzbard, "A study in using neural networks for anomaly and misuse detection," in Proc. 8th Conf. USENIX SSYM, Berkeley, CA, USA, 1999, pp. 12-23.
    • (1999) Proc. 8th Conf. USENIX SSYM , pp. 12-23
    • Ghosh, A.K.1    Schwartzbard, A.2
  • 55
    • 33745906794 scopus 로고    scopus 로고
    • Motion-alert: Automatic anomaly detection in massive moving objects
    • San Diego, CA, USA
    • X. Li, J. Han, and S. Kim, "Motion-alert: Automatic anomaly detection in massive moving objects," in Proc. 4th IEEE Int. Conf. ISI, San Diego, CA, USA, 2006, pp. 166-177.
    • (2006) Proc. 4th IEEE Int. Conf. ISI , pp. 166-177
    • Li, X.1    Han, J.2    Kim, S.3
  • 56
    • 24944517527 scopus 로고    scopus 로고
    • Learning classifiers for misuse detection using a bag of system calls representation
    • Atlanta, GA, USA
    • D.-K. Kang, D. Fuller, and V. Honavar, "Learning classifiers for misuse detection using a bag of system calls representation," in Proc. 3rd IEEE Int. Conf. ISI, Atlanta, GA, USA, 2005, pp. 511-516.
    • (2005) Proc. 3rd IEEE Int. Conf. ISI , pp. 511-516
    • Kang, D.-K.1    Fuller, D.2    Honavar, V.3
  • 57
    • 33846005488 scopus 로고    scopus 로고
    • Sequence-similarity kernels for SVMs to detect anomalies in system calls
    • Jan
    • S. Tian, S. Mu, and C. Yin, "Sequence-similarity kernels for SVMs to detect anomalies in system calls," Neurocomputing, vol. 70, no. 4-6, pp. 859-866, Jan. 2007.
    • (2007) Neurocomputing , vol.70 , Issue.4-6 , pp. 859-866
    • Tian, S.1    Mu, S.2    Yin, C.3
  • 58
    • 33845397865 scopus 로고    scopus 로고
    • Native API based windows anomaly intrusion detection method using SVM
    • M. Wang, C. Zhang, and J. Yu, "Native API based windows anomaly intrusion detection method using SVM," in Proc. IEEE Int. Conf. SUTC, vol 1. 2006, pp. 514-519.
    • (2006) Proc. IEEE Int. Conf. SUTC , vol.1 , pp. 514-519
    • Wang, M.1    Zhang, C.2    Yu, J.3
  • 59
    • 70449100637 scopus 로고    scopus 로고
    • ROAM: Rule- and motif-based anomaly detection in massive moving object data sets
    • X. Li, J. Han, S. Kim, and H. Gonzalez, "ROAM: Rule- and motif-based anomaly detection in massive moving object data sets," in Proc. 7th SIAM Int. Conf. SDM, 2007, pp. 273-284.
    • (2007) Proc. 7th SIAM Int. Conf. SDM , pp. 273-284
    • Li, X.1    Han, J.2    Kim, S.3    Gonzalez, H.4
  • 60
    • 0002365658 scopus 로고    scopus 로고
    • Using program behavior profiles for intrusion detection
    • A. Ghosh et al., "Using program behavior profiles for intrusion detection," in Proc. SANS Intrusion Detection Workshop, 1999.
    • (1999) Proc. SANS Intrusion Detection Workshop
    • Ghosh, A.1
  • 61
    • 0032313923 scopus 로고    scopus 로고
    • Intrusion detection using sequences of system calls
    • Aug
    • S. A. Hofmeyr, S. Forrest, and A. Somayaji, "Intrusion detection using sequences of system calls," J. Comput. Security, vol. 6, no. 3, pp. 151-180, Aug. 1998.
    • (1998) J. Comput. Security , vol.6 , Issue.3 , pp. 151-180
    • Hofmeyr, S.A.1    Forrest, S.2    Somayaji, A.3
  • 62
    • 0003027845 scopus 로고    scopus 로고
    • An application of machine learning to anomaly detection
    • T. Lane and C. E. Brodley, "An application of machine learning to anomaly detection," in Proc. 20th NISSC, 1997, pp. 366-380.
    • (1997) Proc. 20th NISSC , pp. 366-380
    • Lane, T.1    Brodley, C.E.2
  • 63
    • 0032218214 scopus 로고    scopus 로고
    • Temporal sequence learning and data reduction for anomaly detection
    • T. Lane and C. E. Brodley, "Temporal sequence learning and data reduction for anomaly detection," in Proc. 5th ACM Conf. CCS, 1998, pp. 150-158.
    • (1998) Proc. 5th ACM Conf. CCS , pp. 150-158
    • Lane, T.1    Brodley, C.E.2
  • 65
    • 84901453196 scopus 로고    scopus 로고
    • Anomaly detection in multidimensional data using negative selection algorithm
    • Honolulu, HI, USA
    • D. Dasgupta and N. Majumdar, "Anomaly detection in multidimensional data using negative selection algorithm," in Proc. Congr. CEC, Honolulu, HI, USA, 2002, pp. 1039-1044.
    • (2002) Proc. Congr. CEC , pp. 1039-1044
    • Dasgupta, D.1    Majumdar, N.2
  • 66
    • 0029718285 scopus 로고    scopus 로고
    • An immunological approach to change detection: Algorithms, analysis and implications
    • Oakland, CA, USA, May
    • P. D'haeseleer, S. Forrest, and P. Helman, "An immunological approach to change detection: Algorithms, analysis and implications," in Proc. IEEE Symp. Security Privacy, Oakland, CA, USA, May 1996, pp. 110-119.
    • (1996) Proc. IEEE Symp. Security Privacy , pp. 110-119
    • D'Haeseleer, P.1    Forrest, S.2    Helman, P.3
  • 68
    • 0141463039 scopus 로고    scopus 로고
    • Finding surprising patterns in a time series database in linear time and space
    • Edmonton, AB, Canada
    • E. Keogh, S. Lonardi, and B. Y.-C. Chiu, "Finding surprising patterns in a time series database in linear time and space," in Proc. 8th ACM Int. Conf. KDD, Edmonton, AB, Canada, 2002, pp. 550-556.
    • (2002) Proc. 8th ACM Int. Conf. KDD , pp. 550-556
    • Keogh, E.1    Lonardi, S.2    Chiu, B.Y.-C.3
  • 69
    • 19544382513 scopus 로고    scopus 로고
    • Detection of significant sets of episodes in event sequences
    • M. Atallah, R. Gwadera, and W. Szpankowski, "Detection of significant sets of episodes in event sequences," in Proc. 4th IEEE ICDM, 2004, pp. 3-10.
    • (2004) Proc. 4th IEEE ICDM , pp. 3-10
    • Atallah, M.1    Gwadera, R.2    Szpankowski, W.3
  • 70
    • 33745781710 scopus 로고    scopus 로고
    • A symbolic representation of time series, with implications for streaming algorithms
    • San Diego, CA, USA
    • J. Lin, E. Keogh, S. Lonardi, and B. Chiu, "A symbolic representation of time series, with implications for streaming algorithms," in Proc. 8th ACM SIGMOD Workshop Research Issues DMKD, San Diego, CA, USA, 2003, pp. 2-11.
    • (2003) Proc. 8th ACM SIGMOD Workshop Research Issues DMKD , pp. 2-11
    • Lin, J.1    Keogh, E.2    Lonardi, S.3    Chiu, B.4
  • 71
    • 34548093287 scopus 로고    scopus 로고
    • Experiencing SAX: A novel symbolic representation of time series
    • Oct
    • J. Lin, E. Keogh, L. Wei, and S. Lonardi, "Experiencing SAX: A novel symbolic representation of time series," Data Mining Knowl. Discov., vol. 15, no. 2, pp. 107-144, Oct. 2007.
    • (2007) Data Mining Knowl. Discov. , vol.15 , Issue.2 , pp. 107-144
    • Lin, J.1    Keogh, E.2    Wei, L.3    Lonardi, S.4
  • 73
    • 23844441860 scopus 로고    scopus 로고
    • Reliable detection of episodes in event sequences
    • May
    • R. Gwadera, M. J. Atallah, and W. Szpankowski, "Reliable detection of episodes in event sequences," Knowl. Inform. Syst., vol. 7, no. 4, pp. 415-437, May 2005.
    • (2005) Knowl. Inform. Syst. , vol.7 , Issue.4 , pp. 415-437
    • Gwadera, R.1    Atallah, M.J.2    Szpankowski, W.3
  • 74
    • 33947361528 scopus 로고    scopus 로고
    • Automatic outlier detection for time series: An application to sensor data
    • Feb
    • S. Basu and M. Meckesheimer, "Automatic outlier detection for time series: An application to sensor data," Knowl. Inform. Syst., vol. 11, no. 2, pp. 137-154, Feb. 2007.
    • (2007) Knowl. Inform. Syst. , vol.11 , Issue.2 , pp. 137-154
    • Basu, S.1    Meckesheimer, M.2
  • 75
    • 77954860904 scopus 로고    scopus 로고
    • Anomaly detection in streaming environmental sensor data: A data-driven modeling approach
    • Sep
    • D. J. Hill and B. S. Minsker, "Anomaly detection in streaming environmental sensor data: A data-driven modeling approach," Environ. Modell. Softw., vol. 25, no. 9, pp. 1014-1022, Sep. 2010.
    • (2010) Environ. Modell. Softw. , vol.25 , Issue.9 , pp. 1014-1022
    • Hill, D.J.1    Minsker, B.S.2
  • 76
    • 70350649248 scopus 로고    scopus 로고
    • Online novelty detection on temporal sequences
    • New York, NY, USA
    • J. Ma and S. Perkins, "Online novelty detection on temporal sequences," in Proc. 9th ACM Int. Conf KDD, New York, NY, USA, 2003, pp. 613-618.
    • (2003) Proc. 9th ACM Int. Conf KDD , pp. 613-618
    • Ma, J.1    Perkins, S.2
  • 77
    • 0030327109 scopus 로고    scopus 로고
    • Modeling flat stretches, bursts, and outliers in time series using mixture transition distribution models
    • N. D. Le, R. D. Martin, and A. E. Raftery, "Modeling flat stretches, bursts, and outliers in time series using mixture transition distribution models," J. Amer. Statist. Assoc., vol. 91, no. 436, pp. 1504-1515, 1996.
    • (1996) J. Amer. Statist. Assoc. , vol.91 , Issue.436 , pp. 1504-1515
    • Le, N.D.1    Martin, R.D.2    Raftery, A.E.3
  • 78
    • 0038365156 scopus 로고    scopus 로고
    • Outliers in multivariate time series
    • R. S. Tsay, D. Pena, and A. E. Pankratz, "Outliers in multivariate time series," Biometrika, vol. 87, no. 4, pp. 789-804, 2000.
    • (2000) Biometrika , vol.87 , Issue.4 , pp. 789-804
    • Tsay, R.S.1    Pena, D.2    Pankratz, A.E.3
  • 79
    • 0004378138 scopus 로고    scopus 로고
    • Detecting possibly non-consecutive outliers in industrial time series
    • A. Luceno, "Detecting possibly non-consecutive outliers in industrial time series," J. Roy. Statist. Soc. B, Statist. Methodol., vol. 60, no. 2, pp. 295-310, 1998.
    • (1998) J. Roy. Statist. Soc. B, Statist. Methodol. , vol.60 , Issue.2 , pp. 295-310
    • Luceno, A.1
  • 80
    • 0346405510 scopus 로고    scopus 로고
    • Detection of outlier patches in autoregressive time series
    • A. Justel, D. Pena, and R. S. Tsay, "Detection of outlier patches in autoregressive time series," Statist. Sinica, vol. 11, no. 3, pp. 651-674, 2001.
    • (2001) Statist. Sinica , vol.11 , Issue.3 , pp. 651-674
    • Justel, A.1    Pena, D.2    Tsay, R.S.3
  • 81
    • 0035678283 scopus 로고    scopus 로고
    • Outlier detection in regression models with ARIMA errors using robust estimates
    • Dec
    • A. M. Bianco, M. García Ben, E. J. Martínez, and V. J. Yohai, "Outlier detection in regression models with ARIMA errors using robust estimates," J. Forecasting, vol. 20, no. 8, pp. 565-579, Dec. 2001.
    • (2001) J. Forecasting , vol.20 , Issue.8 , pp. 565-579
    • Bianco, A.M.1    García Ben, M.2    Martínez, E.J.3    Yohai, V.J.4
  • 82
    • 0024012372 scopus 로고
    • Estimation of time series parameters in the presence of outliers
    • I. Chang, G. C. Tiao, and C. Chen, "Estimation of time series parameters in the presence of outliers," Technometrics, vol. 30, no. 2, pp. 193-204, 1988.
    • (1988) Technometrics , vol.30 , Issue.2 , pp. 193-204
    • Chang, I.1    Tiao, G.C.2    Chen, C.3
  • 83
    • 21144473917 scopus 로고
    • Joint estimation of model parameters and outlier effects in time series
    • C. Chen and L.-M. Liu, "Joint estimation of model parameters and outlier effects in time series," J. Amer. Statist. Assoc., vol. 88, no. 421, pp. 284-297, 1993.
    • (1993) J. Amer. Statist. Assoc. , vol.88 , Issue.421 , pp. 284-297
    • Chen, C.1    Liu, L.-M.2
  • 84
    • 0000875323 scopus 로고
    • Time series model specification in the presence of outliers
    • R. S. Tsay, "Time series model specification in the presence of outliers," J. Amer. Statist. Assoc., vol. 81, no. 393, pp. 132-141, 1986.
    • (1986) J. Amer. Statist. Assoc. , vol.81 , Issue.393 , pp. 132-141
    • Tsay, R.S.1
  • 85
    • 33745652986 scopus 로고    scopus 로고
    • Outlier detection in multivariate time series by projection pursuit
    • P. Galeano, D. Pena, and R. S. Tsay, "Outlier detection in multivariate time series by projection pursuit," J. Amer. Statist. Assoc., vol. 101, no. 474, pp. 654-669, 2006.
    • (2006) J. Amer. Statist. Assoc. , vol.101 , Issue.474 , pp. 654-669
    • Galeano, P.1    Pena, D.2    Tsay, R.S.3
  • 86
    • 34548718106 scopus 로고    scopus 로고
    • Tiresias: Black-box failure prediction in distributed systems
    • Long Beach, CA, USA
    • A. W. Williams, S. M. Pertet, and P. Narasimhan, "Tiresias: Black-box failure prediction in distributed systems," in Proc. 21st IPDPS, Long Beach, CA, USA, 2007, pp. 1-8.
    • (2007) Proc. 21st IPDPS , pp. 1-8
    • Williams, A.W.1    Pertet, S.M.2    Narasimhan, P.3
  • 90
    • 33845271242 scopus 로고    scopus 로고
    • Finding the most unusual time series subsequence: Algorithms and applications
    • Dec
    • E. Keogh, J. Lin, S.-H. Lee, and H. Van Herle, "Finding the most unusual time series subsequence: Algorithms and applications," Knowl. Inform. Syst., vol. 11, no. 1, pp. 1-27, Dec. 2006.
    • (2006) Knowl. Inform. Syst. , vol.11 , Issue.1 , pp. 1-27
    • Keogh, E.1    Lin, J.2    Lee, S.-H.3    Van Herle, H.4
  • 91
    • 34548547034 scopus 로고    scopus 로고
    • HOT SAX: Efficiently finding the most unusual time series subsequence
    • E. Keogh, J. Lin, and A. Fu, "HOT SAX: Efficiently finding the most unusual time series subsequence," in Proc. 5th IEEE ICDM, 2005, pp. 226-233.
    • (2005) Proc. 5th IEEE ICDM , pp. 226-233
    • Keogh, E.1    Lin, J.2    Fu, A.3
  • 92
    • 84878024340 scopus 로고    scopus 로고
    • SAXually explicit images: Finding unusual shapes
    • Hong Kong
    • L. Wei, E. Keogh, and X. Xi, "SAXually explicit images: Finding unusual shapes," in Proc. 6th ICDM, Hong Kong, 2006, pp. 711-720.
    • (2006) Proc. 6th ICDM , pp. 711-720
    • Wei, L.1    Keogh, E.2    Xi, X.3
  • 93
    • 70449102568 scopus 로고    scopus 로고
    • WAT: Finding top-k discords in time series database
    • Y. Bu et al., "WAT: Finding top-k discords in time series database," in Proc. 7th SIAM Int. Conf. SDM, 2007, pp. 449-454.
    • (2007) Proc. 7th SIAM Int. Conf. SDM , pp. 449-454
    • Bu, Y.1
  • 94
    • 33749406603 scopus 로고    scopus 로고
    • Finding time series discords based on haar transform
    • Xi'an, China
    • A. W.-C. Fu, O. T.-W. Leung, E. Keogh, and J. Lin, "Finding time series discords based on haar transform," in Proc. 2nd Int. Conf. ADMA, Xi'an, China, 2006, pp. 31-41.
    • (2006) Proc. 2nd Int. Conf. ADMA , pp. 31-41
    • Fu, A.W.-C.1    Leung, O.T.-W.2    Keogh, E.3    Lin, J.4
  • 95
    • 27544465147 scopus 로고    scopus 로고
    • Approximations to magic: Finding unusual medical time series
    • J. Lin, E. Keogh, A. Fu, and H. Van Herle, "Approximations to magic: Finding unusual medical time series," in Proc. 18th IEEE Symp. CBMS, 2005, pp. 329-334.
    • (2005) Proc. 18th IEEE Symp. CBMS , pp. 329-334
    • Lin, J.1    Keogh, E.2    Fu, A.3    Van Herle, H.4
  • 97
    • 56749152114 scopus 로고    scopus 로고
    • Disk aware discord discovery: Finding unusual time series in terabyte sized datasets
    • Nov
    • D. Yankov, E. Keogh, and U. Rebbapragada, "Disk aware discord discovery: Finding unusual time series in terabyte sized datasets," Knowl. Inform. Syst., vol. 17, no. 2, pp. 241-262, Nov. 2008.
    • (2008) Knowl. Inform. Syst. , vol.17 , Issue.2 , pp. 241-262
    • Yankov, D.1    Keogh, E.2    Rebbapragada, U.3
  • 98
    • 38949121665 scopus 로고    scopus 로고
    • Multi-scale anomaly detection algorithm based on infrequent pattern of time series
    • Apr
    • X.-Y. Chen and Y.-Y. Zhan, "Multi-scale anomaly detection algorithm based on infrequent pattern of time series," J. Comput. Appl. Math., vol. 214, no. 1, pp. 227-237, Apr. 2008.
    • (2008) J. Comput. Appl. Math. , vol.214 , Issue.1 , pp. 227-237
    • Chen, X.-Y.1    Zhan, Y.-Y.2
  • 99
    • 53949108553 scopus 로고    scopus 로고
    • TSA-tree: A wavelet-based approach to improve the efficiency of multi-level surprise and trend queries on time-series data
    • Berlin, Germany
    • C. Shahabi, X. Tian, and W. Zhao, "TSA-tree: A wavelet-based approach to improve the efficiency of multi-level surprise and trend queries on time-series data," in Proc. 12th Int. Conf. SSDBM, Berlin, Germany, 2000, pp. 55-68.
    • (2000) Proc. 12th Int. Conf. SSDBM , pp. 55-68
    • Shahabi, C.1    Tian, X.2    Zhao, W.3
  • 100
    • 84876028837 scopus 로고    scopus 로고
    • Assumption-free anomaly detection in time series
    • Berkeley, CA, USA
    • L. Wei et al., "Assumption-free anomaly detection in time series," in Proc. 17th Int. Conf. SSDBM, Berkeley, CA, USA, 2005, pp. 237-240.
    • (2005) Proc. 17th Int. Conf. SSDBM , pp. 237-240
    • Wei, L.1
  • 101
    • 77952383186 scopus 로고    scopus 로고
    • Efficient elastic burst detection in data streams
    • New York, NY, USA
    • Y. Zhu and D. Shasha, "Efficient elastic burst detection in data streams," in Proc. 9th ACM Int. Conf KDD, New York, NY, USA, 2003, pp. 336-345.
    • (2003) Proc. 9th ACM Int. Conf KDD , pp. 336-345
    • Zhu, Y.1    Shasha, D.2
  • 102
    • 0242540409 scopus 로고    scopus 로고
    • A unifying framework for detecting outliers and change points from non-stationary time series data
    • Edmonton, AB, Canada
    • K. Yamanishi and J.-I. Takeuchi, "A unifying framework for detecting outliers and change points from non-stationary time series data," in Proc. 8th ACM Int. Conf. KDD, Edmonton, AB, Canada, 2002, pp. 676-681.
    • (2002) Proc. 8th ACM Int. Conf. KDD , pp. 676-681
    • Yamanishi, K.1    Takeuchi, J.-I.2
  • 103
    • 3543125360 scopus 로고    scopus 로고
    • On-line unsupervised outlier detection using finite mixtures with discounting learning algorithms
    • May
    • K. Yamanishi, J.-I. Takeuchi, G. Williams, and P. Milne, "On-line unsupervised outlier detection using finite mixtures with discounting learning algorithms," Data Mining Knowl. Discov., vol. 8, no. 3, pp. 275-300, May 2004.
    • (2004) Data Mining Knowl. Discov. , vol.8 , Issue.3 , pp. 275-300
    • Yamanishi, K.1    Takeuchi, J.-I.2    Williams, G.3    Milne, P.4
  • 104
    • 0004118981 scopus 로고
    • The NIDES statistical component description and justification
    • Menlo Park, CA, USA, Tech. Rep. Mar
    • A. V. Harold and S. Javitz, "The NIDES statistical component description and justification," SRI Int., Menlo Park, CA, USA, Tech. Rep. A010, Mar. 1994.
    • (1994) SRI Int.
    • Harold, A.V.1    Javitz, S.2
  • 105
    • 77954953912 scopus 로고    scopus 로고
    • On clustering massive text and categorical data streams
    • C. C. Aggarwal and P. S. Yu, "On clustering massive text and categorical data streams," Knowl. Inform. Syst., vol. 24, no. 2, pp. 171-196, 2010.
    • (2010) Knowl. Inform. Syst. , vol.24 , Issue.2 , pp. 171-196
    • Aggarwal, C.C.1    Yu, P.S.2
  • 106
    • 80053029610 scopus 로고    scopus 로고
    • Real-time Bayesian anomaly detection for environmental sensor data
    • D. J. Hill, B. S. Minsker, and E. Amir, "Real-time Bayesian anomaly detection for environmental sensor data," in Proc. 32nd Conf. IAHR, 2007.
    • (2007) Proc. 32nd Conf. IAHR
    • Hill, D.J.1    Minsker, B.S.2    Amir, E.3
  • 107
    • 0002948319 scopus 로고    scopus 로고
    • Algorithms for mining distance-based outliers in large datasets
    • New York, NY, USA
    • E. M. Knorr and R. T. Ng, "Algorithms for mining distance-based outliers in large datasets," in Proc. 24th Int. Conf. VLDB, New York, NY, USA, 1998, pp. 392-403.
    • (1998) Proc. 24th Int. Conf. VLDB , pp. 392-403
    • Knorr, E.M.1    Ng, R.T.2
  • 108
    • 56749094018 scopus 로고    scopus 로고
    • Detecting distance-based outliers in streams of data
    • Lisboa, Portugal
    • F. Angiulli and F. Fassetti, "Detecting distance-based outliers in streams of data," in Proc. 16th ACM CIKM, Lisboa, Portugal, 2007, pp. 811-820.
    • (2007) Proc. 16th ACM CIKM , pp. 811-820
    • Angiulli, F.1    Fassetti, F.2
  • 109
    • 70349083626 scopus 로고    scopus 로고
    • Neighbor-based pattern detection for windows over streaming data
    • D. Yang, E. A. Rundensteiner, and M. O. Ward, "Neighbor-based pattern detection for windows over streaming data," in Proc. 12th Int. Conf. EDBT, 2009, pp. 529-540.
    • (2009) Proc. 12th Int. Conf. EDBT , pp. 529-540
    • Yang, D.1    Rundensteiner, E.A.2    Ward, M.O.3
  • 110
    • 70350671491 scopus 로고    scopus 로고
    • Efficient anomaly monitoring over moving object trajectory streams
    • Paris, France
    • Y. Bu, L. Chen, A. W.-C. Fu, and D. Liu, "Efficient anomaly monitoring over moving object trajectory streams," in Proc. 15th ACM Int. Conf. KDD, Paris, France, 2009, pp. 159-168.
    • (2009) Proc. 15th ACM Int. Conf. KDD , pp. 159-168
    • Bu, Y.1    Chen, L.2    Fu, A.W.-C.3    Liu, D.4
  • 113
    • 34548752457 scopus 로고    scopus 로고
    • Incremental local outlier detection for data streams
    • Honolulu, HI, USA, Apr
    • D. Pokrajac, A. Lazarevic, and L. J. Latecki, "Incremental local outlier detection for data streams," in Proc. IEEE Symp. CIDM, Honolulu, HI, USA, Apr. 2007, pp. 504-515.
    • (2007) Proc. IEEE Symp. CIDM , pp. 504-515
    • Pokrajac, D.1    Lazarevic, A.2    Latecki, L.J.3
  • 114
    • 52749087746 scopus 로고    scopus 로고
    • SPOT: A system for detecting projected outliers from high-dimensional data streams
    • Cancun, Mexico
    • J. Zhang, Q. Gao, and H. Wang, "SPOT: A system for detecting projected outliers from high-dimensional data streams," in Proc. 24th ICDE, Cancun, Mexico, 2008, pp. 1628-1631.
    • (2008) Proc. 24th ICDE , pp. 1628-1631
    • Zhang, J.1    Gao, Q.2    Wang, H.3
  • 116
    • 33646553013 scopus 로고    scopus 로고
    • Fast distributed outlier detection in mixed-attribute data sets
    • May
    • M. E. Otey, A. Ghoting, and S. Parthasarathy, "Fast distributed outlier detection in mixed-attribute data sets," Data Mining Knowl. Discov., vol. 12, nos. 2-3, pp. 203-228, May 2006.
    • (2006) Data Mining Knowl. Discov. , vol.12 , Issue.2-3 , pp. 203-228
    • Otey, M.E.1    Ghoting, A.2    Parthasarathy, S.3
  • 118
    • 14344259796 scopus 로고    scopus 로고
    • Distributed deviation detection in sensor networks
    • Dec
    • T. Palpanas, D. Papadopoulos, V. Kalogeraki, and D. Gunopulos, "Distributed deviation detection in sensor networks," SIGMOD Rec., vol. 32, no. 4, pp. 77-82, Dec. 2003.
    • (2003) SIGMOD Rec. , vol.32 , Issue.4 , pp. 77-82
    • Palpanas, T.1    Papadopoulos, D.2    Kalogeraki, V.3    Gunopulos, D.4
  • 120
    • 77955063100 scopus 로고    scopus 로고
    • Distributed spatio-temporal outlier detection in sensor networks
    • M. Jun, H. Jeong, and C. Kuo, "Distributed spatio-temporal outlier detection in sensor networks," in Proc. SPIE, 2005, pp. 760-763.
    • (2005) Proc. SPIE , pp. 760-763
    • Jun, M.1    Jeong, H.2    Kuo, C.3
  • 121
    • 62449325312 scopus 로고    scopus 로고
    • Detection and exploration of outlier regions in sensor data streams
    • Pisa, Italy
    • C. Franke and M. Gertz, "Detection and exploration of outlier regions in sensor data streams," in Proc. IEEE ICDMW, Pisa, Italy, 2008, pp. 375-384.
    • (2008) Proc. IEEE ICDMW , pp. 375-384
    • Franke, C.1    Gertz, M.2
  • 122
    • 70849127921 scopus 로고    scopus 로고
    • ORDEN: Outlier region detection and exploration in sensor networks
    • Providence, RI, USA
    • C. Franke and M. Gertz, "ORDEN: Outlier region detection and exploration in sensor networks," in Proc. ACM SIGMOD, Providence, RI, USA, 2009, pp. 1075-1078.
    • (2009) Proc. ACM SIGMOD , pp. 1075-1078
    • Franke, C.1    Gertz, M.2
  • 123
    • 85032420421 scopus 로고    scopus 로고
    • Spatio-temporal outlier detection in large databases
    • D. Birant and A. Kut, "Spatio-temporal outlier detection in large databases," J. Comput. Inform. Technol., vol. 14, no. 4, pp. 291-297, 2006.
    • (2006) J. Comput. Inform. Technol. , vol.14 , Issue.4 , pp. 291-297
    • Birant, D.1    Kut, A.2
  • 124
    • 85170282443 scopus 로고    scopus 로고
    • A density-based algorithm for discovering clusters in large spatial databases with noise
    • M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, "A density-based algorithm for discovering clusters in large spatial databases with noise," in Proc. 2nd ACM Int. Conf. KDD, 1996, pp. 226-231.
    • (1996) Proc. 2nd ACM Int. Conf. KDD , pp. 226-231
    • Ester, M.1    Kriegel, H.-P.2    Sander, J.3    Xu, X.4
  • 125
    • 33745456050 scopus 로고    scopus 로고
    • A hybrid approach to detect spatial-temporal outliers
    • T. Cheng and Z. Li, "A hybrid approach to detect spatial-temporal outliers," in Proc. 12th Int. Conf. Geoinformatics, 2004, pp. 173-178.
    • (2004) Proc. 12th Int. Conf. Geoinformatics , pp. 173-178
    • Cheng, T.1    Li, Z.2
  • 126
    • 33644761839 scopus 로고    scopus 로고
    • A multiscale approach for spatio-temporal outlier detection
    • T. Cheng and Z. Li, "A multiscale approach for spatio-temporal outlier detection," Trans. GIS, vol. 10, no. 2, pp. 253-263, 2006.
    • (2006) Trans. GIS , vol.10 , Issue.2 , pp. 253-263
    • Cheng, T.1    Li, Z.2
  • 127
    • 2442514313 scopus 로고    scopus 로고
    • Neighborhood based detection of anomalies in high dimensional spatio-temporal sensor datasets
    • Nicosia, Cyprus
    • N. R. Adam, V. P. Janeja, and V. Atluri, "Neighborhood based detection of anomalies in high dimensional spatio-temporal sensor datasets," in Proc. ACM SAC, Nicosia, Cyprus, 2004, pp. 576-583.
    • (2004) Proc. ACM SAC , pp. 576-583
    • Adam, N.R.1    Janeja, V.P.2    Atluri, V.3
  • 128
    • 77957892129 scopus 로고    scopus 로고
    • Spatio-temporal outlier detection in precipitation data
    • Las Vegas, NV, USA
    • E. Wu, W. Liu, and S. Chawla, "Spatio-temporal outlier detection in precipitation data," in Proc. 2nd Int. Conf. Sensor KDD, Las Vegas, NV, USA, 2010, pp. 115-133.
    • (2010) Proc. 2nd Int. Conf. Sensor KDD , pp. 115-133
    • Wu, E.1    Liu, W.2    Chawla, S.3
  • 129
    • 19544375966 scopus 로고    scopus 로고
    • Wavelet fuzzy classification for detecting and tracking region outliers in meteorological data
    • C.-T. Lu and L. R. Liang, "Wavelet fuzzy classification for detecting and tracking region outliers in meteorological data," in Proc. 12th Annu. ACM Int. Workshop GIS, 2004, pp. 258-265.
    • (2004) Proc. 12th Annu. ACM Int. Workshop GIS , pp. 258-265
    • Lu, C.-T.1    Liang, L.R.2
  • 130
    • 52649161757 scopus 로고    scopus 로고
    • Trajectory outlier detection: A partition-and-detect framework
    • Washington, DC, USA
    • J.-G. Lee, J. Han, and X. Li, "Trajectory outlier detection: A partition-and-detect framework," in Proc. IEEE 24th ICDE, Washington, DC, USA, 2008, pp. 140-149.
    • (2008) Proc. IEEE 24th ICDE , pp. 140-149
    • Lee, J.-G.1    Han, J.2    Li, X.3
  • 131
    • 78651325235 scopus 로고    scopus 로고
    • Top-eye: Top-k evolving trajectory outlier detection
    • Toronto, ON, Canada
    • Y. Ge et al., "Top-eye: Top-k evolving trajectory outlier detection," in Proc. 19th ACM Int. CIKM, Toronto, ON, Canada, 2010, pp. 1733-1736.
    • (2010) Proc. 19th ACM Int. CIKM , pp. 1733-1736
    • Ge, Y.1
  • 132
    • 67649653756 scopus 로고    scopus 로고
    • Temporal outlier detection in vehicle traffic data
    • Shanghai, China
    • X. Li, Z. Li, J. Han, and J.-G. Lee, "Temporal outlier detection in vehicle traffic data," in Proc. 2009 IEEE ICDE, Shanghai, China, pp. 1319-1322.
    • Proc. 2009 IEEE ICDE , pp. 1319-1322
    • Li, X.1    Li, Z.2    Han, J.3    Lee, J.-G.4
  • 133
    • 84874254173 scopus 로고    scopus 로고
    • Anomaly detection in time series of graphs using ARMA processes
    • B. Pincombe, "Anomaly detection in time series of graphs using ARMA processes," ASOR Bull., vol. 24, no. 4, pp. 2-10, 2005.
    • (2005) ASOR Bull. , vol.24 , Issue.4 , pp. 2-10
    • Pincombe, B.1
  • 135
    • 63449131883 scopus 로고    scopus 로고
    • Detection of abnormal change in dynamic networks
    • Adelaide, SA, Australia
    • P. Shoubridge, M. Kraetzl, and D. Ray, "Detection of abnormal change in dynamic networks," in Proc. Int. Conf. IDC, Adelaide, SA, Australia, 1999, pp. 557-562.
    • (1999) Proc. Int. Conf. IDC , pp. 557-562
    • Shoubridge, P.1    Kraetzl, M.2    Ray, D.3
  • 136
    • 84870572500 scopus 로고    scopus 로고
    • Investigation of graph edit distance cost functions for detection of network anomalies
    • Oct
    • K. M. Kapsabelis, P. J. Dickinson, and K. Dogancay, "Investigation of graph edit distance cost functions for detection of network anomalies," in Proc. 13th Biennial CTAC, vol. 48. Oct. 2007, pp. C436-C449.
    • (2007) Proc. 13th Biennial CTAC , vol.48 , pp. C436-C449
    • Kapsabelis, K.M.1    Dickinson, P.J.2    Dogancay, K.3
  • 137
    • 33746459352 scopus 로고    scopus 로고
    • Median graphs and anomalous change detection in communication networks
    • Adelaide, SA, Australia, Feb
    • P. Dickinson, H. Bunke, A. Dadej, and M. Kraetzl, "Median graphs and anomalous change detection in communication networks," in Proc. Int. Conf. Inform., Decis. Control, Adelaide, SA, Australia, Feb. 2002, pp. 59-64.
    • (2002) Proc. Int. Conf. Inform., Decis. Control , pp. 59-64
    • Dickinson, P.1    Bunke, H.2    Dadej, A.3    Kraetzl, M.4
  • 138
    • 33750904572 scopus 로고    scopus 로고
    • Graph diameter as a pseudo-metric for change detection in dynamic networks
    • Jun
    • M. Gaston, M. Kraetzl, and W. Wallis, "Graph diameter as a pseudo-metric for change detection in dynamic networks," Austr. J. Combinatorics, vol. 35, pp. 299-312, Jun. 2006.
    • (2006) Austr. J. Combinatorics , vol.35 , pp. 299-312
    • Gaston, M.1    Kraetzl, M.2    Wallis, W.3
  • 139
    • 84901687582 scopus 로고    scopus 로고
    • Novel approaches in modelling dynamics of networked surveillance environment
    • Cairns, QLD, Australia
    • P. Dickinson and M. Kraetzl, "Novel approaches in modelling dynamics of networked surveillance environment," in Proc. 6th Int. Conf. Inform. Fusion, vol. 1. Cairns, QLD, Australia, 2003, pp. 302-309.
    • (2003) Proc. 6th Int. Conf. Inform. Fusion , vol.1 , pp. 302-309
    • Dickinson, P.1    Kraetzl, M.2
  • 141
    • 80052707774 scopus 로고    scopus 로고
    • Finding top-k shortest path distance changes in an evolutionary network
    • Minneapolis, MN, USA
    • M. Gupta, C. C. Aggarwal, and J. Han, "Finding top-k shortest path distance changes in an evolutionary network," in Proc. 12th Int. Conf. Adv. SSTD, Minneapolis, MN, USA, 2011, pp. 130-148.
    • (2011) Proc. 12th Int. Conf. Adv. SSTD , pp. 130-148
    • Gupta, M.1    Aggarwal, C.C.2    Han, J.3
  • 142
    • 12244300520 scopus 로고    scopus 로고
    • Eigenspace-based anomaly detection in computer systems
    • Seattle, WA, USA
    • T. Idé and H. Kashima, "Eigenspace-based anomaly detection in computer systems," in Proc. 10th ACM Int. Conf. KDD, Seattle, WA, USA, 2004, pp. 440-449.
    • (2004) Proc. 10th ACM Int. Conf. KDD , pp. 440-449
    • Idé, T.1    Kashima, H.2
  • 143
    • 84873619448 scopus 로고    scopus 로고
    • Event detection in time series of mobile communication graphs
    • L. Akoglu and C. Faloutsos, "Event detection in time series of mobile communication graphs," in Proc. Army Science Conf., 2010.
    • (2010) Proc. Army Science Conf.
    • Akoglu, L.1    Faloutsos, C.2
  • 145
    • 84886529024 scopus 로고    scopus 로고
    • Community distribution outlier detection in heterogeneous information networks
    • Prague, Czech Republic
    • M. Gupta, J. Gao, and J. Han, "Community distribution outlier detection in heterogeneous information networks," in Proc. 2013 ECML PKDD, Prague, Czech Republic, pp. 557-573.
    • Proc. 2013 ECML PKDD , pp. 557-573
    • Gupta, M.1    Gao, J.2    Han, J.3
  • 146
    • 33745713822 scopus 로고    scopus 로고
    • Detecting spatio-temporal outliers in climate dataset: A method study
    • Y. Sun et al., "Detecting spatio-temporal outliers in climate dataset: A method study," in Proc. 2005 IEEE IGARSS, pp. 760-763.
    • Proc. 2005 IEEE IGARSS , pp. 760-763
    • Sun, Y.1
  • 147
    • 0027449735 scopus 로고
    • An analysis of Australian seasonal rainfall anomalies: 1950-1987
    • W. Drosdowsky, "An analysis of Australian seasonal rainfall anomalies: 1950-1987," Int. J. Climatol., vol. 13, no. 1, pp. 1-30, 1993.
    • (1993) Int. J. Climatol. , vol.13 , Issue.1 , pp. 1-30
    • Drosdowsky, W.1
  • 148
    • 33645029606 scopus 로고    scopus 로고
    • On the use of principal component analysis (PCA) for evaluating interannual vegetation anomalies from SPOT/VEGETATION NDVI temporal series
    • R. Lasaponara, "On the use of principal component analysis (PCA) for evaluating interannual vegetation anomalies from SPOT/VEGETATION NDVI temporal series," Ecol. Modell., vol. 194, no. 4, pp. 429-434, 2006.
    • (2006) Ecol. Modell. , vol.194 , Issue.4 , pp. 429-434
    • Lasaponara, R.1
  • 149
    • 0012021893 scopus 로고    scopus 로고
    • Novelty detection in time series data using ideas from immunology
    • Reno, NV, USA
    • D. Dasgupta and S. Forrest, "Novelty detection in time series data using ideas from immunology," in Proc. 5th Int. Conf. Intelligent Systems, Reno, NV, USA, 1996.
    • (1996) Proc. 5th Int. Conf. Intelligent Systems
    • Dasgupta, D.1    Forrest, S.2
  • 150
    • 38549142402 scopus 로고    scopus 로고
    • Anomaly detection using temporal data mining in a smart home environment
    • V. Jakkula and D. J. Cook, "Anomaly detection using temporal data mining in a smart home environment," Methods Inform. Med., vol. 47, no. 1, pp. 70-75, 2008.
    • (2008) Methods Inform. Med. , vol.47 , Issue.1 , pp. 70-75
    • Jakkula, V.1    Cook, D.J.2
  • 152
    • 14944367267 scopus 로고    scopus 로고
    • Characterization of network-wide anomalies in traffic flows
    • Taormina, Italy
    • A. Lakhina, M. Crovella, and C. Diot, "Characterization of network-wide anomalies in traffic flows," in Proc. 4th ACM SIGCOMM IMC, Taormina, Italy, 2004, pp. 201-206.
    • (2004) Proc. 4th ACM SIGCOMM IMC , pp. 201-206
    • Lakhina, A.1    Crovella, M.2    Diot, C.3
  • 153
    • 33845564157 scopus 로고    scopus 로고
    • Tracking probabilistic correlation of monitoring data for fault detection in complex systems
    • Philadelphia, PA, USA
    • Z. Guo, G. Jiang, H. Chen, and K. Yoshihira, "Tracking probabilistic correlation of monitoring data for fault detection in complex systems," in Proc. ICDSN, Philadelphia, PA, USA, 2006, pp. 259-268.
    • (2006) Proc. ICDSN , pp. 259-268
    • Guo, Z.1    Jiang, G.2    Chen, H.3    Yoshihira, K.4
  • 154
    • 33751532154 scopus 로고    scopus 로고
    • Modeling and tracking of transaction flow dynamics for fault detection in complex systems
    • Oct
    • G. Jiang, H. Chen, and K. Yoshihira, "Modeling and tracking of transaction flow dynamics for fault detection in complex systems," IEEE Trans. Depend. Secur. Comput., vol. 3, no. 4, pp. 312-326, Oct. 2006.
    • (2006) IEEE Trans. Depend. Secur. Comput. , vol.3 , Issue.4 , pp. 312-326
    • Jiang, G.1    Chen, H.2    Yoshihira, K.3
  • 155
    • 84863771926 scopus 로고    scopus 로고
    • On the spatiotemporal burstiness of terms
    • T. Lappas, M. R. Vieira, D. Gunopulos, and V. J. Tsotras, "On the spatiotemporal burstiness of terms," Proc. VLDB, vol. 5, no. 9, pp. 836-847, 2012.
    • (2012) Proc. VLDB , vol.5 , Issue.9 , pp. 836-847
    • Lappas, T.1    Vieira, M.R.2    Gunopulos, D.3    Tsotras, V.J.4
  • 156
    • 81455159027 scopus 로고    scopus 로고
    • Identifying, attributing and describing spatial bursts
    • M. Mathioudakis, N. Bansal, and N. Koudas, "Identifying, attributing and describing spatial bursts," Proc. VLDB, vol. 3, no. 1, pp. 1091-1102, 2010.
    • (2010) Proc. VLDB , vol.3 , Issue.1 , pp. 1091-1102
    • Mathioudakis, M.1    Bansal, N.2    Koudas, N.3
  • 159
    • 84859722266 scopus 로고    scopus 로고
    • Anomaly detection for discrete sequences: A survey
    • May
    • V. Chandola, A. Banerjee, and V. Kumar, "Anomaly detection for discrete sequences: A survey," IEEE Trans. Knowl. Data Eng., vol. 24, no. 5, pp. 823-839, May 2012.
    • (2012) IEEE Trans. Knowl. Data Eng. , vol.24 , Issue.5 , pp. 823-839
    • Chandola, V.1    Banerjee, A.2    Kumar, V.3
  • 160
    • 0142063407 scopus 로고    scopus 로고
    • Novelty detection: A Review - Part 1: Statistical approaches
    • M. Markou and S. Singh, "Novelty detection: A Review - Part 1: Statistical approaches," Signal Process., vol. 83, no. 12, pp. 2481-2497, 2003.
    • (2003) Signal Process. , vol.83 , Issue.12 , pp. 2481-2497
    • Markou, M.1    Singh, S.2
  • 161
    • 0142126712 scopus 로고    scopus 로고
    • Novelty detection: A review - Part 2: Neural network based approaches
    • M. Markou and S. Singh, "Novelty detection: A review - Part 2: Neural network based approaches," Signal Process., vol. 83, no. 12, pp. 2499-2521, 2003.
    • (2003) Signal Process. , vol.83 , Issue.12 , pp. 2499-2521
    • Markou, M.1    Singh, S.2
  • 162


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.