메뉴 건너뛰기




Volumn , Issue , 2011, Pages 663-671

It's who you know: Graph mining using recursive structural features

Author keywords

Feature extraction; Graph mining; Identity resolution; Network classification

Indexed keywords

CLASSIFICATION (OF INFORMATION); DATA MINING; EXTRACTION; GRAPH THEORY; GRAPHIC METHODS; INFORMATION USE;

EID: 80052674771     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2020408.2020512     Document Type: Conference Paper
Times cited : (236)

References (30)
  • 1
    • 79956316709 scopus 로고    scopus 로고
    • Oddball: Spotting anomalies in weighted graphs
    • L. Akoglu, M. McGlohon, and C. Faloutsos. Oddball: Spotting anomalies in weighted graphs. In PAKDD, pages 410-421, 2010.
    • (2010) PAKDD , pp. 410-421
    • Akoglu, L.1    Mcglohon, M.2    Faloutsos, C.3
  • 2
    • 0033539175 scopus 로고    scopus 로고
    • Diameter of the world wide web
    • R. Albert, H. Jeong, and A.-L. Barabasi. Diameter of the world wide web. Nature, (401):130-131, 1999.
    • (1999) Nature , Issue.401 , pp. 130-131
    • Albert, R.1    Jeong, H.2    Barabasi, A.-L.3
  • 4
    • 84860524227 scopus 로고    scopus 로고
    • Biographies, bollywood, boom-boxes and blenders: Domain adaptation for sentiment classification
    • J. Blitzer, M. Dredze, and F. Pereira. Biographies, bollywood, boom-boxes and blenders: Domain adaptation for sentiment classification. In ACL, 2007.
    • (2007) ACL
    • Blitzer, J.1    Dredze, M.2    Pereira, F.3
  • 5
    • 32344433867 scopus 로고    scopus 로고
    • R-MAT: A recursive model for graph mining
    • Apr
    • D. Chakrabarti, Y. Zhan, and C. Faloutsos. R-MAT: A recursive model for graph mining. In SDM, Apr. 2004.
    • (2004) SDM
    • Chakrabarti, D.1    Zhan, Y.2    Faloutsos, C.3
  • 6
    • 34547972773 scopus 로고    scopus 로고
    • Boosting for transfer learning
    • W. Dai, Q. Yang, G.-R. Xue, and Y. Yu. Boosting for transfer learning. In ICML, pages 193-200, 2007.
    • (2007) ICML , pp. 193-200
    • Dai, W.1    Yang, Q.2    Xue, G.-R.3    Yu, Y.4
  • 7
    • 0033204106 scopus 로고    scopus 로고
    • On power-law relationships of the Internet topology
    • DOI 10.1145/316194.316229
    • M. Faloutsos, P. Faloutsos, and C. Faloutsos. On power-law relationships of the internet topology. SIGCOMM, pages 251-262, Aug-Sept. 1999. (Pubitemid 32081870)
    • (1999) Computer Communication Review , vol.29 , Issue.4 , pp. 251-262
    • Faloutsos, M.1    Faloutsos, P.2    Faloutsos, C.3
  • 8
    • 70349251904 scopus 로고    scopus 로고
    • Structure feature selection for graph classification
    • H. Fei and J. Huan. Structure feature selection for graph classification. In CIKM, pages 991-1000, 2008.
    • (2008) CIKM , pp. 991-1000
    • Fei, H.1    Huan, J.2
  • 9
    • 0036497195 scopus 로고    scopus 로고
    • Self-organization and identification of web communities
    • Mar
    • G. Flake, S. Lawrence, C. L. Giles, and F. Coetzee. Self-organization and identification of web communities. IEEE Computer, 35(3), Mar. 2002.
    • (2002) IEEE Computer , vol.35 , Issue.3
    • Flake, G.1    Lawrence, S.2    Giles, C.L.3    Coetzee, F.4
  • 10
    • 78650094757 scopus 로고    scopus 로고
    • Leveraging label-independent features for classification in sparsely labeled networks: An empirical study
    • B. Gallagher and T. Eliassi-Rad. Leveraging label-independent features for classification in sparsely labeled networks: An empirical study. Lecture Notes in Computer Science, 5498:1-19, 2010.
    • (2010) Lecture Notes in Computer Science , vol.5498 , pp. 1-19
    • Gallagher, B.1    Eliassi-Rad, T.2
  • 11
    • 65449133627 scopus 로고    scopus 로고
    • Using ghost edges for classification in sparsely labeled networks
    • B. Gallagher, H. Tong, T. Eliassi-Rad, and C. Faloutsos. Using ghost edges for classification in sparsely labeled networks. In KDD, pages 256-264, 2008.
    • (2008) KDD , pp. 256-264
    • Gallagher, B.1    Tong, H.2    Eliassi-Rad, T.3    Faloutsos, C.4
  • 12
    • 65449181688 scopus 로고    scopus 로고
    • Knowledge transfer via multiple model local structure mapping
    • J. Gao, W. Fan, J. Jiang, and J. Han. Knowledge transfer via multiple model local structure mapping. In KDD, pages 283-291, 2008.
    • (2008) KDD , pp. 283-291
    • Gao, J.1    Fan, W.2    Jiang, J.3    Han, J.4
  • 14
    • 0037062448 scopus 로고    scopus 로고
    • Community structure in social and biological networks
    • M. Girvan and M. E. J. Newman. Community structure in social and biological networks. PNAS, 99:7821, 2002.
    • (2002) PNAS , vol.99 , pp. 7821
    • Girvan, M.1    Newman, M.E.J.2
  • 15
    • 74549211339 scopus 로고    scopus 로고
    • Graph-based transfer learning
    • J. He, Y. Liu, and R. D. Lawrence. Graph-based transfer learning. In CIKM, pages 937-946, 2009.
    • (2009) CIKM , pp. 937-946
    • He, J.1    Liu, Y.2    Lawrence, R.D.3
  • 18
    • 79951738010 scopus 로고    scopus 로고
    • Multi-label feature selection for graph classification
    • X. Kong and P. S. Yu. Multi-label feature selection for graph classification. In ICDM, pages 274-283, 2010.
    • (2010) ICDM , pp. 274-283
    • Kong, X.1    Yu, P.S.2
  • 19
    • 34547989609 scopus 로고    scopus 로고
    • Learning a meta-level prior for feature relevance from multiple related tasks
    • S.-I. Lee, V. Chatalbashev, D. Vickrey, and D. Koller. Learning a meta-level prior for feature relevance from multiple related tasks. In ICML, pages 489-496, 2007.
    • (2007) ICML , pp. 489-496
    • Lee, S.-I.1    Chatalbashev, V.2    Vickrey, D.3    Koller, D.4
  • 21
    • 77956192510 scopus 로고    scopus 로고
    • New perspectives and methods in link prediction
    • R. N. Lichtenwalter, J. T. Lussier, and N. V. Chawla. New perspectives and methods in link prediction. In KDD, pages 243-252, 2010.
    • (2010) KDD , pp. 243-252
    • Lichtenwalter, R.N.1    Lussier, J.T.2    Chawla, N.V.3
  • 22
    • 84880122671 scopus 로고    scopus 로고
    • Mining behavior graphs for "backtrace" of noncrashing bugs
    • C. Liu, X. Yan, H. Yu, J. Han, and P. S. Yu. Mining behavior graphs for "backtrace" of noncrashing bugs. In SDM, 2005.
    • (2005) SDM
    • Liu, C.1    Yan, X.2    Yu, H.3    Han, J.4    Yu, P.S.5
  • 24
    • 24744469980 scopus 로고    scopus 로고
    • Power laws, Pareto distributions and Zipf's law
    • DOI 10.1080/00107510500052444
    • M. E. J. Newman. Power laws, Pareto distributions and Zipf's law. Contemporary Physics, 46:323-351, 2005. (Pubitemid 41335662)
    • (2005) Contemporary Physics , vol.46 , Issue.5 , pp. 323-351
    • Newman, M.E.J.1
  • 25
    • 79952412572 scopus 로고    scopus 로고
    • Cross lingual text classification by mining multilingual topics from wikipedia
    • X. Ni, J.-T. Sun, J. Hu, and Z. Chen. Cross lingual text classification by mining multilingual topics from wikipedia. In WSDM, pages 375-384, 2011.
    • (2011) WSDM , pp. 375-384
    • Ni, X.1    Sun, J.-T.2    Hu, J.3    Chen, Z.4
  • 26
    • 12244268431 scopus 로고    scopus 로고
    • Graph-based anomaly detection
    • C. C. Noble and D. J. Cook. Graph-based anomaly detection. In KDD, pages 631-636, 2003.
    • (2003) KDD , pp. 631-636
    • Noble, C.C.1    Cook, D.J.2
  • 28
    • 33748902345 scopus 로고    scopus 로고
    • Data Mining: Practical Machine Learning Tools and Techniques, Second Edition (Morgan Kaufmann Series in Data Management Systems)
    • San Francisco, CA, USA
    • I. H. Witten and E. Frank. Data Mining: Practical Machine Learning Tools and Techniques, Second Edition (Morgan Kaufmann Series in Data Management Systems). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2005.
    • (2005) Morgan Kaufmann Publishers Inc.
    • Witten, I.H.1    Frank, E.2
  • 29
    • 80052662958 scopus 로고    scopus 로고
    • Collective cross-document relation extraction without labelled data
    • L. Yao, S. Riedel, and A. McCallum. Collective cross-document relation extraction without labelled data. In EMNLP, pages 1013-1023, 2010.
    • (2010) EMNLP , pp. 1013-1023
    • Yao, L.1    Riedel, S.2    McCallum, A.3
  • 30
    • 79951845184 scopus 로고    scopus 로고
    • Learning multiple related tasks using latent independent component analysis
    • J. Zhang, Z. Ghahramani, and Y. Yang. Learning multiple related tasks using latent independent component analysis. In NIPS, 2005.
    • (2005) NIPS
    • Zhang, J.1    Ghahramani, Z.2    Yang, Y.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.