메뉴 건너뛰기




Volumn , Issue , 2013, Pages 28-36

NetSpot: Spotting significant anomalous regions on dynamic networks

Author keywords

[No Author keywords available]

Indexed keywords

APPROXIMATION ALGORITHMS; CHEMICAL ATTACK; DATA MINING; DENIAL-OF-SERVICE ATTACK; LARGE DATASET; OIL SPILLS; ROADS AND STREETS; SYNTHETIC APERTURE RADAR; ACCIDENTS; ALGORITHMS; TELECOMMUNICATION NETWORKS;

EID: 84960496443     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1137/1.9781611972832.4     Document Type: Conference Paper
Times cited : (92)

References (33)
  • 1
    • 84960180101 scopus 로고    scopus 로고
    • Afgh. News Cntr. http://www.afghanistannewscenter.com/news/2009/november/nov212009.html.
    • Afgh. News Cntr1
  • 2
    • 79951745920 scopus 로고    scopus 로고
    • Detecting novel discrepancies in communication networks
    • J. Abello, T. Eliassirad, and N. Devanur, Detecting Novel Discrepancies in Communication Networks, ICDM, (2010).
    • (2010) ICDM
    • Abello, J.1    Eliassirad, T.2    Devanur, N.3
  • 3
    • 84867980790 scopus 로고    scopus 로고
    • A survey of very large-scale neighborhood search techniques
    • R. K. Ahuja, O. Ergun, J. B. Orlin, and A. P. Punnen, A survey of very large-scale neighborhood search techniques, Discr. Appl. Math., 123 (2002), pp. 75-102.
    • (2002) Discr. Appl. Math. , vol.123 , pp. 75-102
    • Ahuja, R.K.1    Ergun, O.2    Orlin, J.B.3    Punnen, A.P.4
  • 4
    • 84873619448 scopus 로고    scopus 로고
    • Event detection in time series of mobile communication graphs
    • L. Akoglu and C. Faloutsos, Event detection in time series of mobile communication graphs, in Army Sc. Conf., 2010.
    • (2010) Army Sc. Conf.
    • Akoglu, L.1    Faloutsos, C.2
  • 5
    • 80052730841 scopus 로고    scopus 로고
    • OddBall: Spotting anomalies in weighted graphs
    • L. Akoglu, M. McGlohon, and C. Faloutsos, OddBall: Spotting Anomalies in Weighted Graphs, in PAKDD, 2010.
    • (2010) PAKDD
    • Akoglu, L.1    McGlohon, M.2    Faloutsos, C.3
  • 6
    • 84855838632 scopus 로고    scopus 로고
    • On the use of pattern matching for rapid anomaly detection in smart grid infrastructures
    • oct.
    • Z. Baig, On the use of pattern matching for rapid anomaly detection in smart grid infrastructures, in SmartGrid-Comm, oct. 2011, pp. 214 -219.
    • (2011) SmartGrid-Comm , pp. 214-219
    • Baig, Z.1
  • 7
    • 84863395320 scopus 로고    scopus 로고
    • Mining heavy subgraphs in time-evolving networks
    • P. Bogdanov, M. Mongiovi, and A. K. Singh, Mining heavy subgraphs in time-evolving networks, in ICDM, 2011.
    • (2011) ICDM
    • Bogdanov, P.1    Mongiovi, M.2    Singh, A.K.3
  • 8
    • 80052910270 scopus 로고    scopus 로고
    • Leveraging social networks to detect anomalous insider actions in collaborative environments
    • Y. Chen, S. Nyemba, W. Zhang, and B. Malin, Leveraging social networks to detect anomalous insider actions in collaborative environments, in ISI, 2011.
    • (2011) ISI
    • Chen, Y.1    Nyemba, S.2    Zhang, W.3    Malin, B.4
  • 9
    • 83055191198 scopus 로고    scopus 로고
    • Detecting anomalies in graphs with numeric labels
    • M. Davis, W. Liu, P. Miller, and G. Redpath, Detecting anomalies in graphs with numeric labels, in CIKM, 2011.
    • (2011) CIKM
    • Davis, M.1    Liu, W.2    Miller, P.3    Redpath, G.4
  • 10
    • 46249128543 scopus 로고    scopus 로고
    • Identifying functional modules in protein-protein interaction networks: An integrated exact approach
    • M. T. Dittrich, G. W. Klau, A. Rosenwald, T. Dandekar, and T. Mller, Identifying functional modules in protein-protein interaction networks: an integrated exact approach, J. of Bioinformatics, (2008).
    • (2008) J. of Bioinformatics
    • Dittrich, M.T.1    Klau, G.W.2    Rosenwald, A.3    Dandekar, T.4    Mller, T.5
  • 11
    • 49549087903 scopus 로고    scopus 로고
    • Discovering structural anomalies in graph-based data
    • W. Eberle and L. Holder, Discovering structural anomalies in graph-based data, in ICDMW, 2007.
    • (2007) ICDMW
    • Eberle, W.1    Holder, L.2
  • 12
    • 84874059066 scopus 로고    scopus 로고
    • Graph-based approaches to insider threat detection
    • W. Eberle and L. Holder, Graph-based approaches to insider threat detection, in CSIIRW, 2009.
    • (2009) CSIIRW
    • Eberle, W.1    Holder, L.2
  • 14
    • 84861227591 scopus 로고    scopus 로고
    • Large-scale IP network behavior anomaly detection and identification using substructure-based approach and multivariate time series mining
    • W. He, G. Hu, and Y. Zhou, Large-scale IP network behavior anomaly detection and identification using substructure-based approach and multivariate time series mining, Telecom. Syst., (2012).
    • (2012) Telecom. Syst.
    • He, W.1    Hu, G.2    Zhou, Y.3
  • 16
    • 79961208671 scopus 로고    scopus 로고
    • An efficient graph-mining method for complicated and noisy data with realworld applications
    • Y. Jia, J. Zhang, and J. Huan, An efficient graph-mining method for complicated and noisy data with realworld applications, Knowledge and Information Systems, 28 (2011), pp. 423-447.
    • (2011) Knowledge and Information Systems , vol.28 , pp. 423-447
    • Jia, Y.1    Zhang, J.2    Huan, J.3
  • 17
    • 85026985466 scopus 로고    scopus 로고
    • Trafic dispersion graph based anomaly detection
    • D. Q. Le, T. Jeong, H. E. Roman, and J. W.K. Hong, Trafic dispersion graph based anomaly detection, in SoICT, 2011.
    • (2011) SoICT
    • Le, D.Q.1    Jeong, T.2    Roman, H.E.3    Hong, J.W.K.4
  • 18
    • 78149310672 scopus 로고    scopus 로고
    • Unsupervised link discovery in multi-relational data via rarity analysis
    • S. Lin and H. Chalupsky, Unsupervised link discovery in multi-relational data via rarity analysis, in ICDM, 2003.
    • (2003) ICDM
    • Lin, S.1    Chalupsky, H.2
  • 19
    • 79957820462 scopus 로고    scopus 로고
    • Continuous, online monitoring and analysis in large water distribution networks
    • X. Ma, H. Xiao, S. Xie, Q. Li, Q. Luo, and C. Tian, Continuous, online monitoring and analysis in large water distribution networks, in ICDE, 2011.
    • (2011) ICDE
    • Ma, X.1    Xiao, H.2    Xie, S.3    Li, Q.4    Luo, Q.5    Tian, C.6
  • 21
    • 77953023188 scopus 로고    scopus 로고
    • A multivariate Bayesian scan statistic for early event detection and characterization
    • D. Neill and G. Cooper, A multivariate bayesian scan statistic for early event detection and characterization, Machine Learning, 79 (2010), pp. 261-282. 10.1007/s10994-009-5144-4.
    • (2010) Machine Learning , vol.79 , pp. 261-282
    • Neill, D.1    Cooper, G.2
  • 22
    • 12244282691 scopus 로고    scopus 로고
    • Rapid detection of significant spatial clusters
    • D. B. Neill and A. W. Moore, Rapid detection of significant spatial clusters, in KDD, 2004.
    • (2004) KDD
    • Neill, D.B.1    Moore, A.W.2
  • 24
    • 12244268431 scopus 로고    scopus 로고
    • Graph-based anomaly detection
    • C. C. Noble and D. J. Cook, Graph-based anomaly detection, in KDD, 2003.
    • (2003) KDD
    • Noble, C.C.1    Cook, D.J.2
  • 28
    • 72949091217 scopus 로고    scopus 로고
    • Link-based event detection in email communication networks
    • X. Wan, E. Milios, N. Kalyaniwalla, and J. Janssen, Link-based event detection in email communication networks, in SAC, 2009.
    • (2009) SAC
    • Wan, X.1    Milios, E.2    Kalyaniwalla, N.3    Janssen, J.4
  • 29
  • 31
    • 84960180110 scopus 로고    scopus 로고
    • Botnet detection by monitoring similar communication patterns
    • abs/1004.1232
    • H. R. Zeidanloo and A. B. A. Manaf, Botnet detection by monitoring similar communication patterns, CoRR, abs/1004.1232 (2010).
    • (2010) CoRR
    • Zeidanloo, H.R.1    Manaf, A.B.A.2
  • 32
    • 72749114319 scopus 로고    scopus 로고
    • Using graph to detect network trafic anomaly
    • Y. Zhou, G. Hu, and W. He, Using graph to detect network trafic anomaly, in ICCCAS, 2009.
    • (2009) ICCCAS
    • Zhou, Y.1    Hu, G.2    He, W.3
  • 33
    • 84871815902 scopus 로고    scopus 로고
    • Supplemental material. http://www.cs.ucsb.edu/~dbl/papers/mongiovi-sdm-2013-supplement.pdf.
    • Supplemental Material


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.