메뉴 건너뛰기




Volumn , Issue , 2013, Pages 216-222

Ranking outlier nodes in subspaces of attributed graphs

Author keywords

[No Author keywords available]

Indexed keywords

ATTRIBUTED GRAPHS; BINARY DETECTION; DATA MINING TASKS; GRAPH STRUCTURES; MULTI DIMENSIONAL; OUTLIER ANALYSIS; RANKING TECHNIQUE; SUSPICIOUS OBJECTS;

EID: 84881447667     PISSN: 10844627     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICDEW.2013.6547453     Document Type: Conference Paper
Times cited : (99)

References (32)
  • 2
    • 0003858566 scopus 로고    scopus 로고
    • Algorithms for mining distance-based outliers in large datasets
    • E. Knorr and R. Ng, "Algorithms for Mining Distance-Based Outliers in Large Datasets," in VLDB, 1998, pp. 392-403.
    • (1998) VLDB , pp. 392-403
    • Knorr, E.1    Ng, R.2
  • 4
    • 33749416395 scopus 로고    scopus 로고
    • Relevance search and anomaly detection in bipartite graphs
    • J. Sun, H. Qu, D. Chakrabarti, and C. Faloutsos, "Relevance search and anomaly detection in bipartite graphs," SIGKDD Explorations, vol. 7, no. 2, pp. 48-55, 2005.
    • (2005) SIGKDD Explorations , vol.7 , Issue.2 , pp. 48-55
    • Sun, J.1    Qu, H.2    Chakrabarti, D.3    Faloutsos, C.4
  • 6
    • 0039253819 scopus 로고    scopus 로고
    • LOF: Identifying density-based local outliers
    • M. Breunig, H. Kriegel, R. Ng, J. Sander et al., "LOF: identifying density-based local outliers," Sigmod Record, vol. 29, no. 2, pp. 93-104, 2000.
    • (2000) Sigmod Record , vol.29 , Issue.2 , pp. 93-104
    • Breunig, M.1    Kriegel, H.2    Ng, R.3    Sander, J.4
  • 7
    • 0345359208 scopus 로고    scopus 로고
    • LOCI: Fast outlier detection using the local correlation integral
    • S. Papadimitriou, H. Kitagawa, P. Gibbons, and C. Faloutsos, "LOCI: Fast outlier detection using the local correlation integral," in ICDE, 2003, pp. 315-326.
    • (2003) ICDE , pp. 315-326
    • Papadimitriou, S.1    Kitagawa, H.2    Gibbons, P.3    Faloutsos, C.4
  • 9
    • 32344440279 scopus 로고    scopus 로고
    • Feature bagging for outlier detection
    • A. Lazarevic and V. Kumar, "Feature bagging for outlier detection," in KDD, 2005, pp. 157-166.
    • (2005) KDD , pp. 157-166
    • Lazarevic, A.1    Kumar, V.2
  • 11
    • 67650661596 scopus 로고    scopus 로고
    • Outlier detection in axis-parallel subspaces of high dimensional data
    • H.-P. Kriegel, P. Kroger, E. Schubert, and A. Zimek, "Outlier detection in axis-parallel subspaces of high dimensional data," in PAKDD, 2009, pp. 831-838.
    • (2009) PAKDD , pp. 831-838
    • Kriegel, H.-P.1    Kroger, P.2    Schubert, E.3    Zimek, A.4
  • 12
    • 79957856197 scopus 로고    scopus 로고
    • Statistical selection of relevant subspace projections for outlier ranking
    • E. Muller, M. Schiffer, and T. Seidl, "Statistical selection of relevant subspace projections for outlier ranking," in ICDE, 2011, pp. 434-445.
    • (2011) ICDE , pp. 434-445
    • Muller, E.1    Schiffer, M.2    Seidl, T.3
  • 13
    • 84864188417 scopus 로고    scopus 로고
    • HiCS: High contrast subspaces for density-based outlier ranking
    • F. Keller, E. Muller, and K. Bohm, "HiCS: High contrast subspaces for density-based outlier ranking," in ICDE, 2012.
    • (2012) ICDE
    • Keller, F.1    Muller, E.2    Bohm, K.3
  • 14
    • 84874104427 scopus 로고    scopus 로고
    • Outlier ranking via subspace analysis in multiple views of the data
    • E. Muller, I. Assent, P. Iglesias, Y. Mulle, and K. Bohm, "Outlier ranking via subspace analysis in multiple views of the data," in ICDM, 2012.
    • (2012) ICDM
    • Muller, E.1    Assent, I.2    Iglesias, P.3    Mulle, Y.4    Bohm, K.5
  • 15
    • 34548571606 scopus 로고    scopus 로고
    • Autopart: Parameter-free graph partitioning and outlier detection
    • D. Chakrabarti, "Autopart: Parameter-free graph partitioning and outlier detection," in PKDD, 2004, pp. 112-124.
    • (2004) PKDD , pp. 112-124
    • Chakrabarti, D.1
  • 16
    • 12244268431 scopus 로고    scopus 로고
    • Graph-based anomaly detection
    • C. C. Noble and D. J. Cook, "Graph-based anomaly detection," in KDD, 2003, pp. 631-636.
    • (2003) KDD , pp. 631-636
    • Noble, C.C.1    Cook, D.J.2
  • 17
    • 49549087903 scopus 로고    scopus 로고
    • Discovering structural anomalies in graphbased data
    • W. Eberle and L. B. Holder, "Discovering structural anomalies in graphbased data," in ICDM Workshops, 2007, pp. 393-398.
    • (2007) ICDM Workshops , pp. 393-398
    • Eberle, W.1    Holder, L.B.2
  • 18
    • 79956316709 scopus 로고    scopus 로고
    • Oddball: Spotting anomalies in weighted graphs
    • L. Akoglu, M. McGlohon, and C. Faloutsos, "oddball: Spotting anomalies in weighted graphs," in PAKDD, 2010, pp. 410-421.
    • (2010) PAKDD , pp. 410-421
    • Akoglu, L.1    McGlohon, M.2    Faloutsos, C.3
  • 19
    • 36949010345 scopus 로고    scopus 로고
    • Scan: A structural clustering algorithm for networks
    • X. Xu, N. Yuruk, Z. Feng, and T. A. J. Schweiger, "Scan: a structural clustering algorithm for networks," in KDD, 2007, pp. 824-833.
    • (2007) KDD , pp. 824-833
    • Xu, X.1    Yuruk, N.2    Feng, Z.3    Schweiger, T.A.J.4
  • 20
    • 77955045035 scopus 로고    scopus 로고
    • Graph clustering based on structural/attribute similarities
    • Y. Zhou, H. Cheng, and J. X. Yu, "Graph clustering based on structural/attribute similarities," PVLDB, vol. 2, no. 1, pp. 718-729, 2009.
    • (2009) PVLDB , vol.2 , Issue.1 , pp. 718-729
    • Zhou, Y.1    Cheng, H.2    Yu, J.X.3
  • 21
    • 74549169516 scopus 로고    scopus 로고
    • Mining cohesive patterns from graphs with feature vectors
    • F. Moser, R. Colak, A. Rafiey, and M. Ester, "Mining cohesive patterns from graphs with feature vectors," in SDM, 2009, pp. 593-604.
    • (2009) SDM , pp. 593-604
    • Moser, F.1    Colak, R.2    Rafiey, A.3    Ester, M.4
  • 22
    • 79951736796 scopus 로고    scopus 로고
    • Subspace clustering meets dense subgraph mining: A synthesis of two paradigms
    • S. Gunnemann, I. Farber, B. Boden, and T. Seidl, "Subspace clustering meets dense subgraph mining: A synthesis of two paradigms," in ICDM, 2010, pp. 845-850.
    • (2010) ICDM , pp. 845-850
    • Gunnemann, S.1    Farber, I.2    Boden, B.3    Seidl, T.4
  • 23
    • 84880243365 scopus 로고    scopus 로고
    • Pics: Parameter-free identification of cohesive subgroups in large attributedgraphs
    • L. Akoglu, H. Tong, B. Meeder, and C. Faloutsos, "Pics: Parameter-free identification of cohesive subgroups in large attributedgraphs," in SDM, 2012.
    • (2012) SDM
    • Akoglu, L.1    Tong, H.2    Meeder, B.3    Faloutsos, C.4
  • 24
    • 77956197036 scopus 로고    scopus 로고
    • On community outliers and their efficient detection in information networks
    • J. Gao, F. Liang, W. Fan, C. Wang, Y. Sun, and J. Han, "On community outliers and their efficient detection in information networks," in KDD, 2010, pp. 813-822.
    • (2010) KDD , pp. 813-822
    • Gao, J.1    Liang, F.2    Fan, W.3    Wang, C.4    Sun, Y.5    Han, J.6
  • 25
    • 84865086248 scopus 로고    scopus 로고
    • Evaluating clustering in subspace projections of high dimensional data
    • E. Muller, S. Gunnemann, I. Assent, and T. Seidl, "Evaluating clustering in subspace projections of high dimensional data," PVLDB, vol. 2, no. 1, pp. 1270-1281, 2009.
    • (2009) PVLDB , vol.2 , Issue.1 , pp. 1270-1281
    • Muller, E.1    Gunnemann, S.2    Assent, I.3    Seidl, T.4
  • 26
    • 67149084291 scopus 로고    scopus 로고
    • Clustering high-dimensional data: A survey on subspace clustering, pattern-based clustering, and correlation clustering
    • H.-P. Kriegel, P. Kroger, and A. Zimek, "Clustering High-Dimensional Data: A Survey on Subspace Clustering, Pattern-Based Clustering, and Correlation Clustering," TKDD, vol. 3, no. 1, pp. 1-58, 2009.
    • (2009) TKDD , vol.3 , Issue.1 , pp. 1-58
    • Kriegel, H.-P.1    Kroger, P.2    Zimek, A.3
  • 31
    • 33749560883 scopus 로고    scopus 로고
    • Coherent closed quasiclique discovery from large dense graph databases
    • Z. Zeng, J. Wang, L. Zhou, and G. Karypis, "Coherent closed quasiclique discovery from large dense graph databases," in KDD, 2006, pp. 797-802.
    • (2006) KDD , pp. 797-802
    • Zeng, Z.1    Wang, J.2    Zhou, L.3    Karypis, G.4
  • 32
    • 79951760482 scopus 로고    scopus 로고
    • Discovering multiple clustering solutions: Grouping objects in different views of the data
    • E. Muller, S. Gunnemann, I. Farber, and T. Seidl, "Discovering multiple clustering solutions: Grouping objects in different views of the data," in ICDM, 2010, p. 1220.
    • (2010) ICDM , pp. 1220
    • Muller, E.1    Gunnemann, S.2    Farber, I.3    Seidl, T.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.