-
1
-
-
0032090765
-
Automatic subspace clustering of high dimensional data for data mining applications
-
R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan, "Automatic subspace clustering of high dimensional data for data mining applications," in SIGMOD, 1998, pp. 94-105.
-
(1998)
SIGMOD
, pp. 94-105
-
-
Agrawal, R.1
Gehrke, J.2
Gunopulos, D.3
Raghavan, P.4
-
2
-
-
0347718066
-
Fast algorithms for projected clustering
-
C. C. Aggarwal, J. L. Wolf, P. S. Yu, C. Procopiuc, and J. S. Park, "Fast algorithms for projected clustering," in SIGMOD, 1999, pp. 61-72.
-
(1999)
SIGMOD
, pp. 61-72
-
-
Aggarwal, C.C.1
Wolf, J.L.2
Yu, P.S.3
Procopiuc, C.4
Park, J.S.5
-
3
-
-
20844440247
-
Frequent-pattern based iterative projected clustering
-
M. L. Yiu and N. Mamoulis, "Frequent-pattern based iterative projected clustering," in ICDM, 2003, pp. 689-692.
-
(2003)
ICDM
, pp. 689-692
-
-
Yiu, M.L.1
Mamoulis, N.2
-
4
-
-
19544389465
-
SCHISM: A new approach for interesting subspace mining
-
K. Sequeira and M. Zaki, "SCHISM: A new approach for interesting subspace mining," in ICDM, 2004, pp. 186-193.
-
(2004)
ICDM
, pp. 186-193
-
-
Sequeira, K.1
Zaki, M.2
-
5
-
-
34547251368
-
A generic framework for efficient subspace clustering of highdimensional data
-
H.-P. Kriegel, P. Kröger, M. Renz, and S. Wurst, "A generic framework for efficient subspace clustering of highdimensional data," in ICDM, 2005, pp. 250-257.
-
(2005)
ICDM
, pp. 250-257
-
-
Kriegel, H.-P.1
Kröger, P.2
Renz, M.3
Wurst, S.4
-
6
-
-
67049137962
-
INSCY: Indexing subspace clusters with in-process-removal of redundancy
-
I. Assent, R. Krieger, E. Müller, and T. Seidl, "INSCY: Indexing subspace clusters with in-process-removal of redundancy," in ICDM, 2008, pp. 719-724.
-
(2008)
ICDM
, pp. 719-724
-
-
Assent, I.1
Krieger, R.2
Müller, E.3
Seidl, T.4
-
7
-
-
65449163900
-
Finding non-redundant, statistically significant regions in high dimensional data: A novel approach to projected and subspace clustering
-
G. Moise and J. Sander, "Finding non-redundant, statistically significant regions in high dimensional data: a novel approach to projected and subspace clustering," in KDD, 2008, pp. 533-541.
-
(2008)
KDD
, pp. 533-541
-
-
Moise, G.1
Sander, J.2
-
8
-
-
77951149821
-
Relevant subspace clustering: Mining the most interesting non-redundant concepts in high dimensional data
-
E. Müller, I. Assent, S. Günnemann, R. Krieger, and T. Seidl, "Relevant Subspace Clustering: Mining the Most Interesting Non-redundant Concepts in High Dimensional Data," in ICDM, 2009, pp. 377-386.
-
(2009)
ICDM
, pp. 377-386
-
-
Müller, E.1
Assent, I.2
Günnemann, S.3
Krieger, R.4
Seidl, T.5
-
9
-
-
84874060906
-
A survey on enhanced subspace clustering
-
K. Sim, V. Gopalkrishnan, A. Zimek, and G. Cong, "A Survey on Enhanced Subspace Clustering," DMKD, 2012.
-
(2012)
DMKD
-
-
Sim, K.1
Gopalkrishnan, V.2
Zimek, A.3
Cong, G.4
-
10
-
-
84865086248
-
Evaluating clustering in subspace projections of high dimensional data
-
E. Müller, S. Günnemann, I. Assent, and T. Seidl, "Evaluating clustering in subspace projections of high dimensional data," PVLDB, vol. 2, no. 1, pp. 1270-1281, 2009.
-
(2009)
PVLDB
, vol.2
, Issue.1
, pp. 1270-1281
-
-
Müller, E.1
Günnemann, S.2
Assent, I.3
Seidl, T.4
-
11
-
-
0034832620
-
Outlier detection for high dimensional data
-
C. C. Aggarwal and P. S. Yu, "Outlier detection for high dimensional data," in SIGMOD, 2001, pp. 37-46.
-
(2001)
SIGMOD
, pp. 37-46
-
-
Aggarwal, C.C.1
Yu, P.S.2
-
12
-
-
67650661596
-
Outlier detection in axis-parallel subspaces of high dimensional data
-
H.-P. Kriegel, E. Schubert, A. Zimek, and P. Kröger, "Outlier detection in axis-parallel subspaces of high dimensional data," in PAKDD, 2009, pp. 831-838.
-
(2009)
PAKDD
, pp. 831-838
-
-
Kriegel, H.-P.1
Schubert, E.2
Zimek, A.3
Kröger, P.4
-
13
-
-
79957856197
-
Statistical selection of relevant subspace projections for outlier ranking
-
E. Müller, M. Schiffer, and T. Seidl, "Statistical selection of relevant subspace projections for outlier ranking," in ICDE, 2011, pp. 434-445.
-
(2011)
ICDE
, pp. 434-445
-
-
Müller, E.1
Schiffer, M.2
Seidl, T.3
-
14
-
-
50249129339
-
OutRank: Ranking outliers in high dimensional data
-
IEEE
-
E. Müller, I. Assent, U. Steinhausen, and T. Seidl, "OutRank: ranking outliers in high dimensional data," in ICDE Workshops, DBRank. IEEE, 2008, pp. 600-603.
-
(2008)
ICDE Workshops, DBRank.
, pp. 600-603
-
-
Müller, E.1
Assent, I.2
Steinhausen, U.3
Seidl, T.4
-
16
-
-
68049121093
-
Anomaly detection: A survey
-
July
-
V. Chandola, A. Banerjee, and A. Kumar, "Anomaly detection: A survey," ACM Computing Surveys, Vol. 41, No.3, July 2009.
-
(2009)
ACM Computing Surveys
, vol.41
, Issue.3
-
-
Chandola, V.1
Banerjee, A.2
Kumar, A.3
-
17
-
-
85170282443
-
A densitybased algorithm for discovering clusters in large spatial databases
-
M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, "A densitybased algorithm for discovering clusters in large spatial databases," in Proc. KDD, 1996, pp. 226-231.
-
(1996)
Proc. KDD
, pp. 226-231
-
-
Ester, M.1
Kriegel, H.-P.2
Sander, J.3
Xu, X.4
-
18
-
-
0039253819
-
LOF: Identifying density-based local outliers
-
M. Breunig, H.-P. Kriegel, R. Ng, and J. Sander, "LOF: Identifying density-based local outliers," in SIGMOD, 2000, pp. 93-104.
-
(2000)
SIGMOD
, pp. 93-104
-
-
Breunig, M.1
Kriegel, H.-P.2
Ng, R.3
Sander, J.4
-
21
-
-
0345359208
-
LOCI: Fast outlier detection using the local correlation integral
-
S. Papadimitriou, H. Kitagawa, P. Gibbons, and C. Faloutsos, "LOCI: Fast outlier detection using the local correlation integral," in ICDE, 2003, pp. 315-326.
-
(2003)
ICDE
, pp. 315-326
-
-
Papadimitriou, S.1
Kitagawa, H.2
Gibbons, P.3
Faloutsos, C.4
-
23
-
-
32344440279
-
Feature bagging for outlier detection
-
A. Lazarevic and V. Kumar, "Feature bagging for outlier detection," in KDD, 2005, pp. 157-166.
-
(2005)
KDD
, pp. 157-166
-
-
Lazarevic, A.1
Kumar, V.2
-
24
-
-
33646023117
-
An introduction to roc analysis
-
T. Fawcett, "An introduction to roc analysis," Pattern recognition letters, vol. 27, no. 8, pp. 861-874, 2006.
-
(2006)
Pattern Recognition Letters
, vol.27
, Issue.8
, pp. 861-874
-
-
Fawcett, T.1
-
25
-
-
77958047461
-
SOREX: Subspace outlier ranking exploration toolkit
-
E. Müller, M. Schiffer, P. Gerwert, M. Hannen, T. Jansen, and T. Seidl, "SOREX: Subspace outlier ranking exploration toolkit," in ECML PKDD, 2010, pp. 607-610.
-
(2010)
ECML PKDD
, pp. 607-610
-
-
Müller, E.1
Schiffer, M.2
Gerwert, P.3
Hannen, M.4
Jansen, T.5
Seidl, T.6
-
27
-
-
79951760482
-
Discovering multiple clustering solutions: Grouping objects in different views of the data
-
E. Müller, S. Günnemann, I. Färber, and T. Seidl, "Discovering multiple clustering solutions: Grouping objects in different views of the data," in ICDM, 2010, p. 1220.
-
(2010)
ICDM
, pp. 1220
-
-
Müller, E.1
Günnemann, S.2
Färber, I.3
Seidl, T.4
-
28
-
-
84873117260
-
Coala: A novel approach for the extraction of an alternate clustering of high quality and high dissimilarity
-
E. Bae and J. Bailey, "Coala: A novel approach for the extraction of an alternate clustering of high quality and high dissimilarity," in ICDM, 2006, pp. 53-62.
-
(2006)
ICDM
, pp. 53-62
-
-
Bae, E.1
Bailey, J.2
-
29
-
-
70350663111
-
A principled and flexible framework for finding alternative clusterings
-
Z. Qi and I. Davidson, "A principled and flexible framework for finding alternative clusterings," in KDD, 2009, pp. 717-726.
-
(2009)
KDD
, pp. 717-726
-
-
Qi, Z.1
Davidson, I.2
-
30
-
-
77956508144
-
Multiple non-redundant spectral clustering views
-
D. Niu, J. Dy, and M. Jordan, "Multiple Non-Redundant Spectral Clustering Views," in ICML, 2010.
-
(2010)
ICML
-
-
Niu, D.1
Dy, J.2
Jordan, M.3
|