메뉴 건너뛰기




Volumn , Issue , 2012, Pages 529-538

Outlier ranking via subspace analysis in multiple views of the data

Author keywords

Clusterings; Multiple subspaces; Outlier ranking

Indexed keywords

ATTRIBUTE SETS; CLUSTERINGS; EXPERIMENTAL EVALUATION; HIGH QUALITY; MULTIPLE SUBSPACES; MULTIPLE VIEWS; OUTLIER MINING; OUTLIER RANKING; SUBSPACE ANALYSIS;

EID: 84874104427     PISSN: 15504786     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICDM.2012.112     Document Type: Conference Paper
Times cited : (72)

References (30)
  • 1
    • 0032090765 scopus 로고    scopus 로고
    • Automatic subspace clustering of high dimensional data for data mining applications
    • R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan, "Automatic subspace clustering of high dimensional data for data mining applications," in SIGMOD, 1998, pp. 94-105.
    • (1998) SIGMOD , pp. 94-105
    • Agrawal, R.1    Gehrke, J.2    Gunopulos, D.3    Raghavan, P.4
  • 3
    • 20844440247 scopus 로고    scopus 로고
    • Frequent-pattern based iterative projected clustering
    • M. L. Yiu and N. Mamoulis, "Frequent-pattern based iterative projected clustering," in ICDM, 2003, pp. 689-692.
    • (2003) ICDM , pp. 689-692
    • Yiu, M.L.1    Mamoulis, N.2
  • 4
    • 19544389465 scopus 로고    scopus 로고
    • SCHISM: A new approach for interesting subspace mining
    • K. Sequeira and M. Zaki, "SCHISM: A new approach for interesting subspace mining," in ICDM, 2004, pp. 186-193.
    • (2004) ICDM , pp. 186-193
    • Sequeira, K.1    Zaki, M.2
  • 5
    • 34547251368 scopus 로고    scopus 로고
    • A generic framework for efficient subspace clustering of highdimensional data
    • H.-P. Kriegel, P. Kröger, M. Renz, and S. Wurst, "A generic framework for efficient subspace clustering of highdimensional data," in ICDM, 2005, pp. 250-257.
    • (2005) ICDM , pp. 250-257
    • Kriegel, H.-P.1    Kröger, P.2    Renz, M.3    Wurst, S.4
  • 6
    • 67049137962 scopus 로고    scopus 로고
    • INSCY: Indexing subspace clusters with in-process-removal of redundancy
    • I. Assent, R. Krieger, E. Müller, and T. Seidl, "INSCY: Indexing subspace clusters with in-process-removal of redundancy," in ICDM, 2008, pp. 719-724.
    • (2008) ICDM , pp. 719-724
    • Assent, I.1    Krieger, R.2    Müller, E.3    Seidl, T.4
  • 7
    • 65449163900 scopus 로고    scopus 로고
    • Finding non-redundant, statistically significant regions in high dimensional data: A novel approach to projected and subspace clustering
    • G. Moise and J. Sander, "Finding non-redundant, statistically significant regions in high dimensional data: a novel approach to projected and subspace clustering," in KDD, 2008, pp. 533-541.
    • (2008) KDD , pp. 533-541
    • Moise, G.1    Sander, J.2
  • 8
    • 77951149821 scopus 로고    scopus 로고
    • Relevant subspace clustering: Mining the most interesting non-redundant concepts in high dimensional data
    • E. Müller, I. Assent, S. Günnemann, R. Krieger, and T. Seidl, "Relevant Subspace Clustering: Mining the Most Interesting Non-redundant Concepts in High Dimensional Data," in ICDM, 2009, pp. 377-386.
    • (2009) ICDM , pp. 377-386
    • Müller, E.1    Assent, I.2    Günnemann, S.3    Krieger, R.4    Seidl, T.5
  • 10
    • 84865086248 scopus 로고    scopus 로고
    • Evaluating clustering in subspace projections of high dimensional data
    • E. Müller, S. Günnemann, I. Assent, and T. Seidl, "Evaluating clustering in subspace projections of high dimensional data," PVLDB, vol. 2, no. 1, pp. 1270-1281, 2009.
    • (2009) PVLDB , vol.2 , Issue.1 , pp. 1270-1281
    • Müller, E.1    Günnemann, S.2    Assent, I.3    Seidl, T.4
  • 11
    • 0034832620 scopus 로고    scopus 로고
    • Outlier detection for high dimensional data
    • C. C. Aggarwal and P. S. Yu, "Outlier detection for high dimensional data," in SIGMOD, 2001, pp. 37-46.
    • (2001) SIGMOD , pp. 37-46
    • Aggarwal, C.C.1    Yu, P.S.2
  • 12
    • 67650661596 scopus 로고    scopus 로고
    • Outlier detection in axis-parallel subspaces of high dimensional data
    • H.-P. Kriegel, E. Schubert, A. Zimek, and P. Kröger, "Outlier detection in axis-parallel subspaces of high dimensional data," in PAKDD, 2009, pp. 831-838.
    • (2009) PAKDD , pp. 831-838
    • Kriegel, H.-P.1    Schubert, E.2    Zimek, A.3    Kröger, P.4
  • 13
    • 79957856197 scopus 로고    scopus 로고
    • Statistical selection of relevant subspace projections for outlier ranking
    • E. Müller, M. Schiffer, and T. Seidl, "Statistical selection of relevant subspace projections for outlier ranking," in ICDE, 2011, pp. 434-445.
    • (2011) ICDE , pp. 434-445
    • Müller, E.1    Schiffer, M.2    Seidl, T.3
  • 17
    • 85170282443 scopus 로고    scopus 로고
    • A densitybased algorithm for discovering clusters in large spatial databases
    • M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, "A densitybased algorithm for discovering clusters in large spatial databases," in Proc. KDD, 1996, pp. 226-231.
    • (1996) Proc. KDD , pp. 226-231
    • Ester, M.1    Kriegel, H.-P.2    Sander, J.3    Xu, X.4
  • 18
    • 0039253819 scopus 로고    scopus 로고
    • LOF: Identifying density-based local outliers
    • M. Breunig, H.-P. Kriegel, R. Ng, and J. Sander, "LOF: Identifying density-based local outliers," in SIGMOD, 2000, pp. 93-104.
    • (2000) SIGMOD , pp. 93-104
    • Breunig, M.1    Kriegel, H.-P.2    Ng, R.3    Sander, J.4
  • 21
    • 0345359208 scopus 로고    scopus 로고
    • LOCI: Fast outlier detection using the local correlation integral
    • S. Papadimitriou, H. Kitagawa, P. Gibbons, and C. Faloutsos, "LOCI: Fast outlier detection using the local correlation integral," in ICDE, 2003, pp. 315-326.
    • (2003) ICDE , pp. 315-326
    • Papadimitriou, S.1    Kitagawa, H.2    Gibbons, P.3    Faloutsos, C.4
  • 23
    • 32344440279 scopus 로고    scopus 로고
    • Feature bagging for outlier detection
    • A. Lazarevic and V. Kumar, "Feature bagging for outlier detection," in KDD, 2005, pp. 157-166.
    • (2005) KDD , pp. 157-166
    • Lazarevic, A.1    Kumar, V.2
  • 24
    • 33646023117 scopus 로고    scopus 로고
    • An introduction to roc analysis
    • T. Fawcett, "An introduction to roc analysis," Pattern recognition letters, vol. 27, no. 8, pp. 861-874, 2006.
    • (2006) Pattern Recognition Letters , vol.27 , Issue.8 , pp. 861-874
    • Fawcett, T.1
  • 27
    • 79951760482 scopus 로고    scopus 로고
    • Discovering multiple clustering solutions: Grouping objects in different views of the data
    • E. Müller, S. Günnemann, I. Färber, and T. Seidl, "Discovering multiple clustering solutions: Grouping objects in different views of the data," in ICDM, 2010, p. 1220.
    • (2010) ICDM , pp. 1220
    • Müller, E.1    Günnemann, S.2    Färber, I.3    Seidl, T.4
  • 28
    • 84873117260 scopus 로고    scopus 로고
    • Coala: A novel approach for the extraction of an alternate clustering of high quality and high dissimilarity
    • E. Bae and J. Bailey, "Coala: A novel approach for the extraction of an alternate clustering of high quality and high dissimilarity," in ICDM, 2006, pp. 53-62.
    • (2006) ICDM , pp. 53-62
    • Bae, E.1    Bailey, J.2
  • 29
    • 70350663111 scopus 로고    scopus 로고
    • A principled and flexible framework for finding alternative clusterings
    • Z. Qi and I. Davidson, "A principled and flexible framework for finding alternative clusterings," in KDD, 2009, pp. 717-726.
    • (2009) KDD , pp. 717-726
    • Qi, Z.1    Davidson, I.2
  • 30
    • 77956508144 scopus 로고    scopus 로고
    • Multiple non-redundant spectral clustering views
    • D. Niu, J. Dy, and M. Jordan, "Multiple Non-Redundant Spectral Clustering Views," in ICML, 2010.
    • (2010) ICML
    • Niu, D.1    Dy, J.2    Jordan, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.