메뉴 건너뛰기




Volumn , Issue , 2011, Pages 804-815

The odd one out: Identifying and characterising anomalies

Author keywords

[No Author keywords available]

Indexed keywords

DIAGNOSIS;

EID: 84880091878     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1137/1.9781611972818.69     Document Type: Conference Paper
Times cited : (66)

References (29)
  • 1
    • 15944363863 scopus 로고    scopus 로고
    • Modelling of classification rules on metabolic patterns including machine learning and expert knowledge
    • C. Baumgartnera, C. Böhm, and D. Baumgartner. Modelling of classification rules on metabolic patterns including machine learning and expert knowledge. J. Biomed. Inform., 38:89-98, 2005.
    • (2005) J. Biomed. Inform. , vol.38 , pp. 89-98
    • Baumgartnera, C.1    Böhm, C.2    Baumgartner, D.3
  • 2
    • 0042421807 scopus 로고    scopus 로고
    • Statistical fraud detection: A review
    • R. J. Bolton and D. J. Hand. Statistical fraud detection: A review. Stat. Sci., 17(3), 2002.
    • (2002) Stat. Sci. , vol.17 , Issue.3
    • Bolton, R.J.1    Hand, D.J.2
  • 5
    • 77956189210 scopus 로고    scopus 로고
    • Aquatic multi-species acute toxicity of (chlorinated) anilines: Experimental versus predicted data
    • N. Dom, D. Knapen, D. Benoot, I. Nobels, and R. Blust. Aquatic multi-species acute toxicity of (chlorinated) anilines: Experimental versus predicted data. Chemosphere, 81:177-186, 2010.
    • (2010) Chemosphere , vol.81 , pp. 177-186
    • Dom, N.1    Knapen, D.2    Benoot, D.3    Nobels, I.4    Blust, R.5
  • 6
    • 33745235087 scopus 로고    scopus 로고
    • One-class novelty detection for seizure analysis from intracranial EEG
    • A. B. Gardner, A. M. Krieger, G. Vachtsevanos, and B. Litt. One-class novelty detection for seizure analysis from intracranial EEG. JMLR, 7, 2006.
    • JMLR , vol.7 , pp. 2006
    • Gardner, A.B.1    Krieger, A.M.2    Vachtsevanos, G.3    Litt, B.4
  • 9
    • 34249307704 scopus 로고    scopus 로고
    • FP-outlier: Frequent pattern based outlier detection
    • Z. He, X. Xu, J. Z. Huang, and S. Deng. FP-Outlier: Frequent pattern based outlier detection. ComSIS, 2(1), 2005.
    • (2005) ComSIS , vol.2 , Issue.1
    • He, Z.1    Xu, X.2    Huang, J.Z.3    Deng, S.4
  • 10
    • 70349349341 scopus 로고    scopus 로고
    • One-class classification by combining density and class probability estimation
    • K. Hempstalk, E. Frank, and I.H. Witten. One-class classification by combining density and class probability estimation. In Proceedings of ECML PKDD'08, 2008.
    • (2008) Proceedings of ECML PKDD'08
    • Hempstalk, K.1    Frank, E.2    Witten, I.H.3
  • 11
    • 34347390089 scopus 로고    scopus 로고
    • Feature construction can improve diagnostic criteria for high-dimensional metabolic data in newborn screening for medium-chain acyl-coa dehydrogenase deficiency
    • S. Ho, Z. Lukacs, G. F. Hoffmann, M. Lindner, and T. Wetter. Feature construction can improve diagnostic criteria for high-dimensional metabolic data in newborn screening for medium-chain acyl-coa dehydrogenase deficiency. Clin. Chem., 53(7), 2007.
    • (2007) Clin. Chem. , vol.53 , Issue.7
    • Ho, S.1    Lukacs, Z.2    Hoffmann, G.F.3    Lindner, M.4    Wetter, T.5
  • 13
    • 33745159498 scopus 로고    scopus 로고
    • Intrusion detection in unlabeled data with quarter-sphere support-vector machines
    • P. Laskov, C. Schäfer, and I. Kotenko. Intrusion detection in unlabeled data with quarter-sphere support-vector machines. In Proceedings of DIMVA'04, 2004.
    • (2004) Proceedings of DIMVA'04
    • Laskov, P.1    Schäfer, C.2    Kotenko, I.3
  • 17
    • 84880110952 scopus 로고    scopus 로고
    • Novelty detection: A review
    • M. Markou and S. Singh. Novelty detection: a review. Sign. Proc, 83(12), 2003.
    • (2003) Sign. Proc , vol.83 , Issue.12
    • Markou, M.1    Singh, S.2
  • 18
    • 51849123305 scopus 로고    scopus 로고
    • Outlier detection for transaction databases using association rules
    • K. Narita and H. Kitagawa. Outlier detection for transaction databases using association rules. In Proceedings of WAIM'08, 2008.
    • (2008) Proceedings of WAIM'08
    • Narita, K.1    Kitagawa, H.2
  • 22
    • 70449455563 scopus 로고    scopus 로고
    • Discovering novelty in spatio/temporal data using one-class support vector machines
    • K. Smets, B. Verdonk, and E. M. Jordaan. Discovering novelty in spatio/temporal data using one-class support vector machines. In Proc. of IJCNN'09, 2009.
    • (2009) Proc. of IJCNN'09
    • Smets, K.1    Verdonk, B.2    Jordaan, E.M.3
  • 26
    • 0942266514 scopus 로고    scopus 로고
    • Support vector data description
    • D.M.J. Tax and R.P.W. Duin. Support vector data description. Mach. Learn., 54(1), 2004.
    • (2004) Mach. Learn. , vol.54 , Issue.1
    • Tax, D.M.J.1    Duin, R.P.W.2
  • 27
    • 67049161169 scopus 로고    scopus 로고
    • Filling in the blanks - Krimp minimisation for missing data
    • J. Vreeken and A. Siebes. Filling in the blanks - Krimp minimisation for missing data. In Proceedings of ICDM'08, 2008.
    • (2008) Proceedings of ICDM'08
    • Vreeken, J.1    Siebes, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.