메뉴 건너뛰기




Volumn , Issue , 2010, Pages 65-73

Data mining to predict and prevent errors in health insurance claims processing

Author keywords

Claim rework identification; Health insurance claims; Machine learning; Predictive system

Indexed keywords

ACTIVE LEARNING; ADMINISTRATIVE STAFF; CLAIM REWORK IDENTIFICATION; CONCEPT DRIFTS; EVALUATION METRICS; FEATURE SELECTION; HEALTH INSURANCE COSTS; HIT RATE; INSURANCE COMPANIES; MACHINE LEARNING TECHNIQUES; MACHINE-LEARNING; ORDER OF MAGNITUDE; PREDICTIVE SYSTEMS; PROBLEM FORMULATION; RESEARCH PROBLEMS;

EID: 77956221595     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1835804.1835816     Document Type: Conference Paper
Times cited : (66)

References (12)
  • 1
    • 77956221304 scopus 로고    scopus 로고
    • A data mining framework for identifying claim overpayments for the health insurance industry
    • A. Anand and D. Khots. A data mining framework for identifying claim overpayments for the health insurance industry. INFORMS Workshop on Data Mining and Health Informatics, 2008.
    • (2008) INFORMS Workshop on Data Mining and Health Informatics
    • Anand, A.1    Khots, D.2
  • 2
    • 36849059225 scopus 로고    scopus 로고
    • Detecting changes in large data sets of payment card data: A case study
    • C. Curry, R. L. Grossman, D. Locke, S. Vejcik, and J. Bugajski. Detecting changes in large data sets of payment card data: a case study. KDD, 2007.
    • (2007) KDD
    • Curry, C.1    Grossman, R.L.2    Locke, D.3    Vejcik, S.4    Bugajski, J.5
  • 3
    • 0000406788 scopus 로고
    • Solving multiclass learning problems via error-correcting output codes
    • T. G. Dietterich and G. Bakiri. Solving multiclass learning problems via error-correcting output codes. JAIR, 1995.
    • (1995) JAIR
    • Dietterich, T.G.1    Bakiri, G.2
  • 6
    • 1942483137 scopus 로고    scopus 로고
    • Transductive inference for text classification using support vector machines
    • T. Joachims. Transductive inference for text classification using support vector machines. ICML, 1999.
    • (1999) ICML
    • Joachims, T.1
  • 7
    • 33749563073 scopus 로고    scopus 로고
    • Training linear svms in linear time
    • T. Joachims. Training linear svms in linear time. KDD, 2006.
    • (2006) KDD
    • Joachims, T.1
  • 8
    • 84898935332 scopus 로고    scopus 로고
    • A framework for multiple-instance learning
    • O. Maron and T. Lozano-Pérez. A framework for multiple-instance learning. NIPS, 1998.
    • (1998) NIPS
    • Maron, O.1    Lozano-Pérez, T.2
  • 10
    • 8644274789 scopus 로고    scopus 로고
    • Feature selection using linear classifier weights: Interaction with classification models
    • D. Mladenic and J. Brank. Feature selection using linear classifier weights: interaction with classification models. SIGIR, 2004.
    • (2004) SIGIR
    • Mladenic, D.1    Brank, J.2
  • 11
    • 77956202826 scopus 로고    scopus 로고
    • Date URL checked: 16th May
    • National Coalition on Health Care. Health care facts: Costs. http://nchc.org/sites/default/files/resources/Fact%20Sheet%20-%20Cost.pdf, Date URL checked: 16th May 2010.
    • (2010) Health Care Facts: Costs


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.