메뉴 건너뛰기




Volumn , Issue , 2012, Pages 2331-2334

Tracing clusters in evolving graphs with node attributes

Author keywords

community detection; evolution; graph clustering; networks

Indexed keywords

ATTRIBUTE INFORMATION; ATTRIBUTED GRAPHS; CLUSTERING METHODS; COMMUNITY DETECTION; DATA-SOURCES; DIFFERENT TIME STEPS; EVOLUTION; EVOLVING GRAPHS; GRAPH CLUSTERING; GRAPH INFORMATION; NODE ATTRIBUTE; SOCIAL NETWORKS;

EID: 84871089992     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2396761.2398633     Document Type: Conference Paper
Times cited : (7)

References (14)
  • 1
    • 84871101071 scopus 로고    scopus 로고
    • Online analysis of community evolution in data streams
    • C. Aggarwal and P. Yu. Online analysis of community evolution in data streams. In SDM, pages 56-67, 2005.
    • (2005) SDM , pp. 56-67
    • Aggarwal, C.1    Yu, P.2
  • 3
    • 36849005505 scopus 로고    scopus 로고
    • Evolutionary spectral clustering by incorporating temporal smoothness
    • Y. Chi, X. Song, D. Zhou, K. Hino, and B. Tseng. Evolutionary spectral clustering by incorporating temporal smoothness. In KDD, pages 153-162, 2007.
    • (2007) KDD , pp. 153-162
    • Chi, Y.1    Song, X.2    Zhou, D.3    Hino, K.4    Tseng, B.5
  • 4
    • 85170282443 scopus 로고    scopus 로고
    • A density-based algorithm for discovering clusters in large spatial databases with noise
    • M. Ester, H.-P. Kriegel, J. S, and X. Xu. A density-based algorithm for discovering clusters in large spatial databases with noise. In KDD, pages 226-231, 1996.
    • (1996) KDD , pp. 226-231
    • Ester, M.1    Kriegel, H.-P.2    S, J.3    Xu, X.4
  • 5
    • 80052417297 scopus 로고    scopus 로고
    • DB-CSC: A density-based approach for subspace clustering in graphs with feature vectors
    • S. Günnemann, B. Boden, and T. Seidl. DB-CSC: A density-based approach for subspace clustering in graphs with feature vectors. In ECML/PKDD (1), pages 565-580, 2011.
    • (2011) ECML/PKDD (1) , pp. 565-580
    • Günnemann, S.1    Boden, B.2    Seidl, T.3
  • 6
    • 79951736796 scopus 로고    scopus 로고
    • Subspace clustering meets dense subgraph mining: A synthesis of two paradigms
    • S. Günnemann, I. Färber, B. Boden, and T. Seidl. Subspace clustering meets dense subgraph mining: A synthesis of two paradigms. In ICDM, pages 845-850, 2010.
    • (2010) ICDM , pp. 845-850
    • Günnemann, S.1    Färber, I.2    Boden, B.3    Seidl, T.4
  • 7
    • 0036967824 scopus 로고    scopus 로고
    • Latent space approaches to social network analysis
    • P. Hoff, A. Raftery, and M. Handcock. Latent space approaches to social network analysis. ASA, 97(460):1090-1098, 2002.
    • (2002) ASA , vol.97 , Issue.460 , pp. 1090-1098
    • Hoff, P.1    Raftery, A.2    Handcock, M.3
  • 8
    • 57349153901 scopus 로고    scopus 로고
    • Facetnet: A framework for analyzing communities and their evolutions in dynamic networks
    • Y. Lin, Y. Chi, S. Zhu, H. Sundaram, and B. Tseng. Facetnet: a framework for analyzing communities and their evolutions in dynamic networks. In WWW, pages 685-694, 2008.
    • (2008) WWW , pp. 685-694
    • Lin, Y.1    Chi, Y.2    Zhu, S.3    Sundaram, H.4    Tseng, B.5
  • 9
    • 34247223815 scopus 로고    scopus 로고
    • Quantifying social group evolution
    • G. Palla, A. Barabasi, and T. Vicsek. Quantifying social group evolution. Nature, 446(7136):664-667,2007
    • (2007) Nature , vol.446 , Issue.7136 , pp. 664-667
    • Palla, G.1    Barabasi, A.2    Vicsek, T.3
  • 10
    • 36849035459 scopus 로고    scopus 로고
    • Dynamic social network analysis using latent space models
    • P. Sarkar and A. Moore. Dynamic social network analysis using latent space models. SIGKDD Explorations, 7(2):31-40, 2005.
    • (2005) SIGKDD Explorations , vol.7 , Issue.2 , pp. 31-40
    • Sarkar, P.1    Moore, A.2
  • 11
    • 36849057643 scopus 로고    scopus 로고
    • Statistical change detection for multi-dimensional data
    • X. Song, M. Wu, C. Jermaine, and S. Ranka. Statistical change detection for multi-dimensional data. In KDD, pages 667-676, 2007.
    • (2007) KDD , pp. 667-676
    • Song, X.1    Wu, M.2    Jermaine, C.3    Ranka, S.4
  • 13
    • 36849035825 scopus 로고    scopus 로고
    • Graphscope: Parameter-free mining of large time-evolving graphs
    • J. Sun, C. Faloutsos, S. Papadimitriou, and P. Yu. Graphscope: parameter-free mining of large time-evolving graphs. In KDD, pages 687-696, 2007.
    • (2007) KDD , pp. 687-696
    • Sun, J.1    Faloutsos, C.2    Papadimitriou, S.3    Yu, P.4
  • 14
    • 49549117057 scopus 로고    scopus 로고
    • Resume mining of communities in social network
    • B. Wu, X. Pei, J. Tan, and Y. Wang. Resume mining of communities in social network. In ICDM Workshops, pages 435-440, 2007.
    • (2007) ICDM Workshops , pp. 435-440
    • Wu, B.1    Pei, X.2    Tan, J.3    Wang, Y.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.