메뉴 건너뛰기




Volumn , Issue , 2012, Pages 1258-1266

Mining coherent subgraphs in multi-layer graphs with edge labels

Author keywords

dense subgraphs; graph clustering; networks

Indexed keywords

BEST FIRST SEARCH; EDGE LABELS; GRAPH CLUSTERING; GRAPH MINING; REAL-WORLD DATASETS; SUBGRAPHS;

EID: 84866027591     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2339530.2339726     Document Type: Conference Paper
Times cited : (118)

References (21)
  • 3
    • 70349884040 scopus 로고    scopus 로고
    • Discovering relevant cross-graph cliques in dynamic networks
    • L. Cerf, T. B. N. Nguyen, and J.-F. Boulicaut. Discovering relevant cross-graph cliques in dynamic networks. In ISMIS, pages 513-522, 2009.
    • (2009) ISMIS , pp. 513-522
    • Cerf, L.1    Nguyen, T.B.N.2    Boulicaut, J.-F.3
  • 4
    • 74049087026 scopus 로고    scopus 로고
    • Community detection in graphs
    • S. Fortunato. Community detection in graphs. Physics Reports, 486(3-5):75-174, 2010.
    • (2010) Physics Reports , vol.486 , Issue.3-5 , pp. 75-174
    • Fortunato, S.1
  • 5
    • 83055191163 scopus 로고    scopus 로고
    • External evaluation measures for subspace clustering
    • S. Günnemann, I. Färber, E. Müller, I. Assent, and T. Seidl. External evaluation measures for subspace clustering. In CIKM, pages 1363-1372, 2011.
    • (2011) CIKM , pp. 1363-1372
    • Günnemann, S.1    Färber, I.2    Müller, E.3    Assent, I.4    Seidl, T.5
  • 6
    • 80052417297 scopus 로고    scopus 로고
    • DB-CSC: A density-based approach for subspace clustering in graphs with feature vectors
    • S. Günnemann, B. Boden, and T. Seidl. DB-CSC: A density-based approach for subspace clustering in graphs with feature vectors. In ECML/PKDD (1), pages 565-580, 2011.
    • (2011) ECML/PKDD , Issue.1 , pp. 565-580
    • Günnemann, S.1    Boden, B.2    Seidl, T.3
  • 7
    • 79951736796 scopus 로고    scopus 로고
    • Subspace clustering meets dense subgraph mining: A synthesis of two paradigms
    • S. Günnemann, I. Färber, B. Boden, and T. Seidl. Subspace clustering meets dense subgraph mining: A synthesis of two paradigms. In ICDM, pages 845-850, 2010.
    • (2010) ICDM , pp. 845-850
    • Günnemann, S.1    Färber, I.2    Boden, B.3    Seidl, T.4
  • 9
    • 84899829959 scopus 로고
    • A formal basis for the heuristic determination of minimum cost paths
    • P. Hart, N. Nilsson, and B. Raphael. A formal basis for the heuristic determination of minimum cost paths. Systems Science and Cybernetics, 4(2):100-107, 1968.
    • (1968) Systems Science and Cybernetics , vol.4 , Issue.2 , pp. 100-107
    • Hart, P.1    Nilsson, N.2    Raphael, B.3
  • 10
    • 67149084291 scopus 로고    scopus 로고
    • Clustering high-dimensional data: A survey on subspace clustering, pattern-based clustering, and correlation clustering
    • H.-P. Kriegel, P. Kröger, and A. Zimek. Clustering high-dimensional data: A survey on subspace clustering, pattern-based clustering, and correlation clustering. TKDD, 3(1):1-58, 2009.
    • (2009) TKDD , vol.3 , Issue.1 , pp. 1-58
    • Kriegel, H.-P.1    Kröger, P.2    Zimek, A.3
  • 11
    • 14844298776 scopus 로고    scopus 로고
    • Weighted networks of scientific communication: The measurement and topological role of weight
    • M. Li, Y. Fan, J. Chen, L. Gao, Z. Di, and J. Wu. Weighted networks of scientific communication: the measurement and topological role of weight. Physica A: Statistical Mechanics and its Applications, 350(2):643-656, 2005.
    • (2005) Physica A: Statistical Mechanics and Its Applications , vol.350 , Issue.2 , pp. 643-656
    • Li, M.1    Fan, Y.2    Chen, J.3    Gao, L.4    Di, Z.5    Wu, J.6
  • 12
    • 56049105454 scopus 로고    scopus 로고
    • Effective pruning techniques for mining quasi-cliques
    • G. Liu and L. Wong. Effective pruning techniques for mining quasi-cliques. In ECML/PKDD (2), pages 33-49, 2008.
    • (2008) ECML/PKDD , Issue.2 , pp. 33-49
    • Liu, G.1    Wong, L.2
  • 13
    • 77951149821 scopus 로고    scopus 로고
    • Relevant subspace clustering: Mining the most interesting non-redundant concepts in high dimensional data
    • E. Müller, I. Assent, S. Günnemann, R. Krieger, and T. Seidl. Relevant subspace clustering: Mining the most interesting non-redundant concepts in high dimensional data. In ICDM, pages 377-386, 2009.
    • (2009) ICDM , pp. 377-386
    • Müller, E.1    Assent, I.2    Günnemann, S.3    Krieger, R.4    Seidl, T.5
  • 14
    • 74549169516 scopus 로고    scopus 로고
    • Mining cohesive patterns from graphs with feature vectors
    • F. Moser, R. Colak, A. Rafiey, and M. Ester. Mining cohesive patterns from graphs with feature vectors. In SDM, pages 593-604, 2009.
    • (2009) SDM , pp. 593-604
    • Moser, F.1    Colak, R.2    Rafiey, A.3    Ester, M.4
  • 15
    • 84865086248 scopus 로고    scopus 로고
    • Evaluating clustering in subspace projections of high dimensional data
    • E. Müller, S. Günnemann, I. Assent, and T. Seidl. Evaluating clustering in subspace projections of high dimensional data. In VLDB, pages 1270-1281, 2009.
    • (2009) VLDB , pp. 1270-1281
    • Müller, E.1    Günnemann, S.2    Assent, I.3    Seidl, T.4
  • 17
    • 32344444324 scopus 로고    scopus 로고
    • On mining cross-graph quasi-cliques
    • J. Pei, D. Jiang, and A. Zhang. On mining cross-graph quasi-cliques. In SIGKDD, pages 228-238, 2005.
    • (2005) SIGKDD , pp. 228-238
    • Pei, J.1    Jiang, D.2    Zhang, A.3
  • 18
    • 0039074502 scopus 로고
    • Search through systematic set enumeration
    • R. Rymon. Search through systematic set enumeration. In KR, pages 539-550, 1992.
    • (1992) KR , pp. 539-550
    • Rymon, R.1
  • 19
    • 36849029834 scopus 로고    scopus 로고
    • A spectral clustering approach to optimally combining numerical vectors with a modular network
    • M. Shiga, I. Takigawa, and H. Mamitsuka. A spectral clustering approach to optimally combining numerical vectors with a modular network. In SIGKDD, pages 647-656, 2007.
    • (2007) SIGKDD , pp. 647-656
    • Shiga, M.1    Takigawa, I.2    Mamitsuka, H.3
  • 20
    • 33749600907 scopus 로고    scopus 로고
    • Clan: An algorithm for mining closed cliques from large dense graph databases
    • J. Wang, Z. Zeng, and L. Zhou. Clan: An algorithm for mining closed cliques from large dense graph databases. In ICDE, page 73, 2006.
    • (2006) ICDE , pp. 73
    • Wang, J.1    Zeng, Z.2    Zhou, L.3
  • 21
    • 33749560883 scopus 로고    scopus 로고
    • Coherent closed quasi-clique discovery from large dense graph databases
    • Z. Zeng, J. Wang, L. Zhou, and G. Karypis. Coherent closed quasi-clique discovery from large dense graph databases. In SIGKDD, pages 797-802, 2006.
    • (2006) SIGKDD , pp. 797-802
    • Zeng, Z.1    Wang, J.2    Zhou, L.3    Karypis, G.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.