메뉴 건너뛰기




Volumn 34, Issue 3, 2013, Pages 597-618

SVDD-based outlier detection on uncertain data

Author keywords

Data of uncertainty; Outlier detection; Support vector data description

Indexed keywords

ANOMALY DETECTION; CLASSIFIERS; DATA DESCRIPTION; STATISTICS;

EID: 84874192412     PISSN: 02191377     EISSN: 02193116     Source Type: Journal    
DOI: 10.1007/s10115-012-0484-y     Document Type: Article
Times cited : (148)

References (55)
  • 1
    • 85042570039 scopus 로고
    • Bayesian analysis of some outlier problems in time series
    • Abraham B, Box GEP (1979) Bayesian analysis of some outlier problems in time series. Biometrika 66(2): 229-236.
    • (1979) Biometrika , vol.66 , Issue.2 , pp. 229-236
    • Abraham, B.1    Box, G.E.P.2
  • 3
    • 33845323774 scopus 로고    scopus 로고
    • Detecting anomalies in cross-classified streams: a bayesian approach
    • Agarwal D (2006) Detecting anomalies in cross-classified streams: a bayesian approach. Knowl Inf Syst 11(1): 29-44.
    • (2006) Knowl Inf Syst , vol.11 , Issue.1 , pp. 29-44
    • Agarwal, D.1
  • 7
    • 52649155582 scopus 로고    scopus 로고
    • Outlier detection with uncertain data
    • Aggarwal C, Yu PS (2008) Outlier detection with uncertain data. In: Proceedings of SDM, pp 483-493.
    • (2008) Proceedings of SDM , pp. 483-493
    • Aggarwal, C.1    Yu, P.S.2
  • 8
    • 63449133366 scopus 로고    scopus 로고
    • A survey of uncertain data algorithms and applications
    • Aggarwal C, Yu PS (2009) A survey of uncertain data algorithms and applications. IEEE Trans Knowl Data Eng 21(5): 609-623.
    • (2009) IEEE Trans Knowl Data Eng , vol.21 , Issue.5 , pp. 609-623
    • Aggarwal, C.1    Yu, P.S.2
  • 9
    • 0034552537 scopus 로고    scopus 로고
    • Generalized radial basis function networks for classification and novelty detection: self-organization of optional bayesian decision
    • Albrecht S, Busch J, Kloppenburg M, Metze F, Tavan P (2000) Generalized radial basis function networks for classification and novelty detection: self-organization of optional bayesian decision. Neural Netw 13(10): 1075-1093.
    • (2000) Neural Netw , vol.13 , Issue.10 , pp. 1075-1093
    • Albrecht, S.1    Busch, J.2    Kloppenburg, M.3    Metze, F.4    Tavan, P.5
  • 11
    • 0142253852 scopus 로고    scopus 로고
    • Adam: a testbed for exploring the use of data mining in intrusion detection
    • Barbara D, Couto J, Jajodia S, Wu N (2001b) Adam: a testbed for exploring the use of data mining in intrusion detection. SIGMOD Rec 30(4): 15-24.
    • (2001) SIGMOD Rec , vol.30 , Issue.4 , pp. 15-24
    • Barbara, D.1    Couto, J.2    Jajodia, S.3    Wu, N.4
  • 13
    • 0031191630 scopus 로고    scopus 로고
    • The use of the area under the ROC curve in the evaluation of machine learning algorithms
    • Bradley AP (1997) The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recogn 30(6): 1145-1159.
    • (1997) Pattern Recogn , vol.30 , Issue.6 , pp. 1145-1159
    • Bradley, A.P.1
  • 16
    • 14644414808 scopus 로고    scopus 로고
    • Simultaneous wavelength selection and outlier detection in multivariate regression of near-infrared spectra
    • Chen D, Shao X, Hu B, Su Q (2005) Simultaneous wavelength selection and outlier detection in multivariate regression of near-infrared spectra. Anal Sci 21(2): 161-167.
    • (2005) Anal Sci , vol.21 , Issue.2 , pp. 161-167
    • Chen, D.1    Shao, X.2    Hu, B.3    Su, Q.4
  • 17
    • 0035793042 scopus 로고    scopus 로고
    • Model-based analysis of oligonucleotide arrays: Expression index computation and outlier detection
    • Cheng L, Wing HW (2001) Model-based analysis of oligonucleotide arrays: expression index computation and outlier detection. In: Proceedings of the national academy of sciences, USA (98), pp 31-36.
    • (2001) Proceedings of the national academy of sciences, USA (98) , pp. 31-36
    • Cheng, L.1    Wing, H.W.2
  • 18
    • 36148994784 scopus 로고    scopus 로고
    • Efficient query evaluation on probabilistic databases
    • Dalvi N, Suciu D (2004) Efficient query evaluation on probabilistic databases. VLDB J 16(4): 523-544.
    • (2004) VLDB J , vol.16 , Issue.4 , pp. 523-544
    • Dalvi, N.1    Suciu, D.2
  • 19
    • 67649984540 scopus 로고    scopus 로고
    • Subspace sums for extracting non-random data from massive noise
    • Denton A (2009) Subspace sums for extracting non-random data from massive noise. Knowl Inf Syst 20(1): 35-62.
    • (2009) Knowl Inf Syst , vol.20 , Issue.1 , pp. 35-62
    • Denton, A.1
  • 21
    • 63649164988 scopus 로고    scopus 로고
    • Resolution-based outlier factor: detecting the top-n most outlying data points in engineering data
    • Fan HQ, Zaiane OR, Foss A (2009) Resolution-based outlier factor: detecting the top-n most outlying data points in engineering data. Knowl Inf Syst 19(1): 31-51.
    • (2009) Knowl Inf Syst , vol.19 , Issue.1 , pp. 31-51
    • Fan, H.Q.1    Zaiane, O.R.2    Foss, A.3
  • 22
    • 81155127277 scopus 로고    scopus 로고
    • Class separation through variance: a new application of outlier detection
    • Foss A, Zaiane OR (2011) Class separation through variance: a new application of outlier detection. Knowl Inf Syst 29(3): 565-596.
    • (2011) Knowl Inf Syst , vol.29 , Issue.3 , pp. 565-596
    • Foss, A.1    Zaiane, O.R.2
  • 23
    • 51649118270 scopus 로고    scopus 로고
    • A boundary method for outlier detection based on support vector domain description
    • Guo SM, Chen LC, Tsai JSH (2009) A boundary method for outlier detection based on support vector domain description. Pattern Recogn 42(1): 77-83.
    • (2009) Pattern Recogn , vol.42 , Issue.1 , pp. 77-83
    • Guo, S.M.1    Chen, L.C.2    Tsai, J.S.H.3
  • 24
    • 78651496720 scopus 로고    scopus 로고
    • Statistical outlier detection using direct density ratio estimation
    • Hido S, Tsuboi Y, Kashima H, Sugiyama M, Kanamori T (2011) Statistical outlier detection using direct density ratio estimation. Knowl Inf Syst 26(2): 309-336.
    • (2011) Knowl Inf Syst , vol.26 , Issue.2 , pp. 309-336
    • Hido, S.1    Tsuboi, Y.2    Kashima, H.3    Sugiyama, M.4    Kanamori, T.5
  • 26
    • 0036505650 scopus 로고    scopus 로고
    • Fuzzy support vector machine
    • Huang HP, Liu YH (2002) Fuzzy support vector machine. IEEE Trans Neural Netw 13(2): 464-471.
    • (2002) IEEE Trans Neural Netw , vol.13 , Issue.2 , pp. 464-471
    • Huang, H.P.1    Liu, Y.H.2
  • 33
    • 33846080495 scopus 로고    scopus 로고
    • Density-induced support vector data description
    • Lee KY, Kim DW, Lee KH, Lee D (2007) Density-induced support vector data description. IEEE Trans Neural Netw 18(1): 284-289.
    • (2007) IEEE Trans Neural Netw , vol.18 , Issue.1 , pp. 284-289
    • Lee, K.Y.1    Kim, D.W.2    Lee, K.H.3    Lee, D.4
  • 35
    • 80053295986 scopus 로고    scopus 로고
    • D-Search: an efficient and exact search algorithm for large distribution sets
    • Matsubara Y, Sakurai Y, Yoshikawa M (2011) D-Search: an efficient and exact search algorithm for large distribution sets. Knowl Inf Syst 29(1): 131-157.
    • (2011) Knowl Inf Syst , vol.29 , Issue.1 , pp. 131-157
    • Matsubara, Y.1    Sakurai, Y.2    Yoshikawa, M.3
  • 37
    • 41149110163 scopus 로고    scopus 로고
    • The importance of generalizability for anomaly detection
    • Peterson GL, McBride BT (2011) The importance of generalizability for anomaly detection. Knowl Inf Syst 14(3): 377-392.
    • (2011) Knowl Inf Syst , vol.14 , Issue.3 , pp. 377-392
    • Peterson, G.L.1    McBride, B.T.2
  • 39
    • 28044457628 scopus 로고    scopus 로고
    • Detection of outliers in reference distributions: Performance of Horn's algorithm
    • Solberg HE, Lahti A (2005) Detection of outliers in reference distributions: Performance of Horn's algorithm. Clin Chem 51(12): 2326-2332.
    • (2005) Clin Chem , vol.51 , Issue.12 , pp. 2326-2332
    • Solberg, H.E.1    Lahti, A.2
  • 40
    • 80052022459 scopus 로고    scopus 로고
    • COID: a cluster Coutlier iterative detection approach to multi-dimensional data analysis
    • Shi Y, Zhang L (2011) COID: a cluster Coutlier iterative detection approach to multi-dimensional data analysis. Knowl Inf Syst 28(3): 709-733.
    • (2011) Knowl Inf Syst , vol.28 , Issue.3 , pp. 709-733
    • Shi, Y.1    Zhang, L.2
  • 44
    • 0942266514 scopus 로고    scopus 로고
    • Support vector data description
    • Tax D, Duin R (2004) Support vector data description. Mach Learn 54(1): 45-66.
    • (2004) Mach Learn , vol.54 , Issue.1 , pp. 45-66
    • Tax, D.1    Duin, R.2
  • 45
    • 48749094245 scopus 로고    scopus 로고
    • Real-time credit card fraud detection
    • Varun C (2008) Real-time credit card fraud detection. Expert Syst Appl 35(4): 1721-1732.
    • (2008) Expert Syst Appl , vol.35 , Issue.4 , pp. 1721-1732
    • Varun, C.1
  • 49
    • 7544223741 scopus 로고    scopus 로고
    • A survey of outlier detection methodologies
    • Victoria JH, Jim A (2004) A survey of outlier detection methodologies. Artif Intell Rev 22(2): 85C126.
    • (2004) Artif Intell Rev , vol.22 , Issue.2
    • Victoria, J.H.1    Jim, A.2
  • 52
    • 77951198697 scopus 로고    scopus 로고
    • Multi-sphere support vector data description for outliers detection on multi-distribution data
    • Xiao YS et al (2009) Multi-sphere support vector data description for outliers detection on multi-distribution data. In: 2009 IEEE international conference on data mining workshops, pp 82-87.
    • (2009) 2009 IEEE international conference on data mining workshops , pp. 82-87
    • Xiao, Y.S.1
  • 53
    • 33644780888 scopus 로고    scopus 로고
    • A process-mining framework for the detection of healthcare fraud and abuse
    • Yang WS, Wang SY (2008) A process-mining framework for the detection of healthcare fraud and abuse. Expert Syst Appl 31(1): 56-68.
    • (2008) Expert Syst Appl , vol.31 , Issue.1 , pp. 56-68
    • Yang, W.S.1    Wang, S.Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.